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FOREWORD

In the foreword to the first edition of the VAX Architecture Reference Manual, Sam
Fuller stated “Computer design continues to be a dynamic field; I expect we will see
more rather than less change and innovation in the decades ahead.” The Alpha AXP
Architecture Reference Manual demonstrates the accuracy of that prediction.

Alpha follows VAX by about fifteen years. The intervening years have witnessed an
eruption in computer technology, one that shows no sign of abating:

® More than a 1000-fold increase in the performance of microprocessors

® More than a 1000-fold increase in the density of semiconductor memories
* More than a 500-fold increase in the density of magnetic storage devices
® More than a 100-fold increase in the speed of network connections

During the same period, the internal organization of computer systems has changed
as well, based on developments such as RISC architecture, symmetric multiprocess-
ing, and coherent distributed systems. Moreover, the fundamental paradigms of
computing have been changed not once, but several times, with the introduction of
personal computers, networked workstations, local area networks, and client/server
computing.

These developments present an enormous challenge for computing in the 21st cen-
tury. Future computers will be called upon to solve problems of great complexity,
worldwide, in a distributed manner. They will have to provide unprecedented per-
formance, flexibility, reliability, and scalability in order to implement a global infras-
tructure of information, and to give users an untrammelled window on the world.

Alpha is Digital’s response to the challenge of 21st century computing. It represents
the culmination of the company’s knowledge and belief about how the next gener-
ation of computers should be built. Alpha is based on a decade’s experimental and
engineering work in RISC architecture, high-speed implementation, software com-
patibility and migration, and system serviceability. It provides the foundation for
future implementations, from mobile computing units to massively parallel super-
computers.

Alpha is designed to handle the largest computing problems of today and tomorrow.
It represents a major advance over its predecessor, the VAX. Comparing Alpha to
VAX, two differences stand out immediately. First, Alpha is a 64-bit architecture;
VAX is a 82-bit architecture. This means that Alpha’s virtual address capability
extends to a 64-bit linear range of bytes in memory. Supporting this extended virtual
address space are an extended maximum physical address range (up to 48 bits)
and larger pages (8 KB to 64 KB). Alpha’s extended virtual address range allows
direct manipulation of the gigabytes and terabytes of data produced in electrical
and mechanical design, database and transaction processing, and imaging.

Second, Alpha is a RISC architecture, whereas VAX is a CISC architecture. RISC
stands for Reduced Instruction Set Computer, a technique of computer organization
researched at IBM, Stanford, and Berkeley in the early 1980s. RISC architectures



are characterized by simple, fixed-length instruction formats; a small number of ad-
dressing modes; large register files; and a load-store instruction set architecture. In-
structions are typically decoded and executed directly by hardware. Alpha’s stream-
lined organization allows high-speed implementation in a variety of technologies,
while providing strong compatibility for programs and data with today’s computers.

CISC stands for Complex Instruction Set Computer. CISC architectures generally
have variable length instruction formats; a large number of addressing modes; small
to medium sized register files; and a full set of register-to-memory (or even memory-
to-memory) instructions. Instructions are typically decoded and interpreted by a
microprogram.

The following table contrasts the architectural differences between VAX and Alpha.

Characteristic VAX Alpha
Architecture CISC RISC

Virtual address range 32-bit Up to 64-bit
Physical address range Up to 32-bit Up to 48-bit
Page size 512 bytes 8 KB-64 KB
Instruction length 1-51 bytes 4 bytes

General registers 16 32-bit 64 64-bit
Addressing modes 21 3

Instruction set architecture General Load-store
Directly supported data types Integer, floating, Integer, floating

bit field, queue,
character string,
decimal string

This book is the culmination of an effort that began in 1988. Since that time, Alpha
has grown from a paper specification to a cohesive set of chips, systems, and software,
spanning the computer spectrum. This achievement is due to the efforts of many
hundreds of people in Engineering, Marketing, Sales, Service, and Manufacturing.
This book is documentation of, and a tribute to, the outstanding work they have
done.

Bob Supnik
Senior Corporate Consultant,
Vice President



A Note on the Structure of This Book

The Alpha AXP Architecture Reference Manual is divided into 3 Parts, 4 appendixes,

and an index.

Each part or section of a part describes a major portion of the Alpha AXP
architecture. Each contains its own Table of Contents. Additional sections will
be incorporated as development proceeds on the architecture.

The following table outlines the contents of the manual:

Name Symbol Contents

Part One @O

Part Two 41))

Part Three (III)

Appendixes

Index

Common Architecture

This part describes the architecture that is common to and
required by all implementations.

Specific Operating System PALcode Architecture

This part contains sections that describe how the following
operating systems relate to the Alpha AXP architecture:

Section Name and Contents Symbol
OpenVMS AXP Software (II-A)
DEC OSF/1 Software (I1I-B)
Windows NT AXP Software (I1-C)

Console Interface Architecture

This part describes an architected console firmware
implementation.

Because information in the appendixes can be shared by
more than one section, appendixes are grouped together at
the end of the manual.

The index at the end of the manual is structured like
a master index. Index entries are called out by the
appropriate symbol, (I), (II), and so forth, associated with
the corresponding part or section. Index entries for the
appendixes are called out by appendix name and page
number.







Preface to the First Edition

The Alpha architecture is a RISC architecture that was designed for high perfor-
mance and longevity. Following Amdahl, Blaauw, and Brooks!, we distinguish be-
tween architecture and implementation:

* Computer architecture is defined as the attributes of a computer seen by a
machine-language programmer. This definition includes the instruction set, in-
struction formats, operation codes, addressing modes, and all registers and mem-

ory locations that may be directly manipulated by a machine-language program-
mer.

® Implementation is defined as the actual hardware structure, logic design, and
data-path organization.

This architecture book describes the required behavior of all Alpha implementations,
as seen by the machine-language programmer. The architecture does not speak to
implementation considerations such has how fast a program runs, what specific bit
pattern is left in a hardware register after an unpredictable operation, how to sched-
ule code for a particular chip, or how to wire up a given chip; those considerations
are described in implementation-specific documents.

Various Alpha implementations are expected over the coming years, starting with
the Digital 21064 chip.

Goals

When we started the Alpha project in the fall of 1988, we had a small number of
goals:

1. High performance

2. Longevity

3. Run VMS and UNIX

4. Easy migration from VAX (and soon-to-be MIPS) customer base

As principal architects, Rich Witek and I made design decisions that were driven
directly by these goals.

We assumed that high performance was needed to make a new architecture attrac-
tive in the marketplace, and to keep Digital competitive.

We set a 15-25 year design horizon (longevity) and tried to avoid any design elements
that we thought would become limitations during this time. The design horizon led

! Amdahl, G.M., G.A. Blaauw, and F.P. Brooks, Jr. “Architecture of the IBM System/360.” IBM Journal of Research and
Development, vol. 8, no. 2 (April 1964): 87-101.



directly to the conclusion that Alpha could not be a 32-bit architecture: 32-bit ad-
dresses will be too small within 10 years. We thus adopted a full 64-bit architecture,
with a minimal number of 32-bit operations for backward compatibility. Wherever
possible, 32-bit operands are put in registers in a 64-bit canonical form and operated
upon with 64-bit operations.

The longevity goal also caused us to examine how the performance of implementa-
tions would scale up over 25 years. Over the past 25 years, computers have become
about 1000 times faster. This suggested to us that Alpha implementations would
need to do the same, or we would have to bet that the industry would fall off the
historical performance curve. We were unwilling to bet against the industry, and
were unwilling to ignore the issue, so we seriously examined the consequences of
longevity.

We thought that it would be realistic for implementors to improve clock speeds by
a factor of 10 over 25 years, but not by a factor of 100 or 1000. (Clock speeds have
improved by about a factor of 100 over the past 25 years, but physical limits are now
slowing down the rate of increase.)

We concluded that the remaining factor of 100 would have to come from other design
dimensions. If you cannot make the clock faster, the next dimension is to do more
work per clock cycle. So the Alpha architecture is focused on allowing implemen-
tations that issue many instructions every clock cycle. We thought that it would
be realistic for implementors to achieve about a factor of 10 over 25 years by using
multiple instruction issue, but not a factor of 100. Even a factor of 10 will require
perhaps a decade of compiler research.

We concluded that the remaining factor of 10 would have to come from some other
design dimension. If you cannot make the clock faster, and cannot do more work per
clock, the next dimension is to have multiple clocked instruction streams, that is,
multiple processors. So the Alpha architecture is focused on allowing implementa-
tions that apply multiple processors to a single problem. We thought that it would
be realistic for implementors to achieve the remaining factor of 10 over 25 years by
using multiple processors.

Overall, the factor-of-1000 increase in performance looked reasonable, but required
factor-of-10 increases in three different dimensions. These three dimensions there-
fore formed part of our design framework:

¢ Gracefully allow fast cycle time implementations
o Gracefully allow multiple-instruction-issue implementations
¢ Gracefully allow multiple-processor implementations

The cycle-time goal encouraged us to keep the instruction definitions very sim-
ple, and to keep the interactions between instructions very simple. The multiple-
instruction-issue goal encouraged us to eliminate specialized registers, architected
delay slots, precise arithmetic traps, and byte writes (with their embedded read-
modify-write bottleneck). The multiple-processor goal encouraged us to consider the
memory model and atomic-update primitives carefully. We adopted load-locked/store-



conditional sequences as the atomic-update primitive, and eliminated strict read-.
write ordering between processors.

All of the above design decisions were driven directly by the performance and
longevity goals. The lack of byte writes, precise arithmetic traps, and multipro-
cessor read/write ordering have been the most controversial decisions, so far.

Clean Sheet of Paper

To run both OpenVMS and UNIX without burdening the hardware implementa-
tions with elaborate (and sometimes conflicting) operating system underpinnings,
we adopted an idea from a previous Digital RISC design. Alpha places the under-
pinnings for interrupt delivery and return, exceptions, context switching, memory
management, and error handling in a set of privileged software subroutines called
PALcode. PALcode subroutines have controlled entries, run with interrupts turned
off, and have access to real hardware (implementation) registers. By having dif-
ferent sets of PALcode for different operating systems, the architecture itself is not
biased toward a specific operating system or computing style.

PALcode allowed us to design an architecture that could run OpenVMS gracefully
without elaborate hardware and without massively rewriting the VMS synchroniza-
tion and protection mechanisms. PALcode lets the Alpha architecture support some
complex VAX primitives (such as the interlocked queue instructions) that are heavily
used by OpenVMS, without burdening a UNIX implementation in any way.

Finally, we also considered how to move VAX and MIPS code to Alpha. We rejected
various forms of “compatibility mode” hardware, because they would have severely
compromised the performance and time-to-market of the first implementation. After
some experimentation, we adopted the strategy of running existing binary code by
building software translators. One translator converts OpenVMS VAX images to
functicnally identical OpenVMS Alpha images. A second translator converts MIPS
ULTRIX images to functionally identical DEC OSF/1 Alpha images.

Fundamentally, PALcode gave us a migration path for existing operating systems,
and the translators (and native compilers) gave us a migration path for existing
user-mode code. PALcode and the translators provided a clean sheet of design paper
for the bulk of the Alpha architecture. Other than an extra set of VAX floating-point
formats (included for good business reasons, but subsettable later), no specific VAX
or MIPS features are carried directly into the Alpha architecture for compatibility
reasons.

These considerations substantially shaped the architecture described in the rest of
this book.

Organization

The first part of this book describes the instruction-set architecture, and is largely
self-contained for readers who are involved with compilers or with assembly lan-
guage programming. The second and third parts describe the supporting PALcode



routines for each operating system—the specific operating system PALcode architec-
ture.
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Preface to the Second Edition

The Second Edition of the architecture manual continues to describe the required
behavior for all Alpha implementations, as seen by the machine-level programmer.

A number of Alpha CPU implementations have been produced to date, designed
according to the dictates of this architecture. The first generation implementation,
the DECchip 21064, set new standards for high performance and was the basis for
several chips that followed. The DECchip 21066 increased the level of integration
on the chip by including the PCI interface and memory interface control logic on the
chip itself. The DECchip 21064A further enhanced the performance by shrinking
to the next generation CMOS process, providing an increase in operating frequency
and doubling the internal cache size.

The second generation implementation, the DECchip 21164, has expanded beyond
the DECchip 21064A in width of issue and operating frequency, and provides a much
higher-performance memory interface. In fact, since its introduction, an Alpha has
been the highest performance microprocessor on the market. The third generation
chip, currently under development, will continue that trend.

The first Alpha systems were workstations and midrange systems that were directed
to the traditional VAX and MIPS customer base. Since then, the range of Alpha
systems has been greatly expanded. Alpha systems have been designed in the PC
price range to support Windows NT and X Window terminals. Alpha single-board
computers have been introduced to cover the high-end embedded controller market.
And Cray Research has introduced the Cray T3D, an Alpha based MPP, that can
support up to 1024 Alpha CPU’s in an MPP system.

PALcode has made much of this variety possible. By having different sets of PALcode
for different operating systems, the architecture itself is not biased toward a specific
operating system or computing style. PALcode has provided a flexible means, for
example, of supporting Windows NT and the Cray T3D without hardware changes.

Organization

The organization of the Second Edition is similar that of the first. Part One of this
book describes the instruction-set architecture, and is largely self-contained for read-
ers who work with compilers or assembly-language programs. Part Two describes
the supporting PALcode routines for three operating systems — the specific oper-
ating system PALcode architecture. PALcode for Windows NT on Alpha is covered
in this edition. Part Three describes a particular console implementation that is
specific to platforms that support the OpenVMS AXP or DEC OSF/1 operating sys-
tems. A discussion of console issues for Windows NT is included with its PALcode
description.
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Common Architecture (1)

This part describes the common Alpha AXP architecture and contains the following chapters:
¢ Chapter 1, Introduction (I)

e Chapter 2, Basic Architecture (I)

¢ Chapter 3, Instruction Formats (I)

¢ Chapter 4, Instruction Descriptions (I)

¢ Chapter 5, System Architecture and Programming Implications (I)

¢ Chapter 6, Common PALcode Architecture (I)

¢ Chapter 7, Console Subsystem Overview (I)

¢ Chapter 8, Input/Output Overview (I)
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Chapter 1
Introduction (1)

Alpha AXP is a 64-bit load/store RISC architecture that is designed with particular

emphasis on the three elements that most affect performance: clock speed, multiple
instruction issue, and multiple processors.

The Alpha AXP architects examined and analyzed current and theoretical RISC
architecture design elements and developed high-performance alternatives for the
Alpha AXP architecture. The architects adopted only those design elements that
appeared valuable for a projected 25-year design horizon. Thus, Alpha AXP becomes
the first 21st century computer architecture.

The Alpha AXP architecture is designed to avoid bias toward any particular
operating system or programming language. Alpha AXP supports the OpenVMS
AXP, DEC OSF/1, and Windows NT AXP operating systems and supports simple
software migration for applications that run on those operating systems.

This manual describes in detail how Alpha AXP is designed to be the leadership
64-bit architecture of the computer industry.

1.1 The Alpha AXP Approach to RISC Architecture

Alpha AXP Is a True 64-Bit Architecture

Alpha AXP was designed as a 64-bit architecture. All registers are 64 bits in
length and all operations are performed between 64-bit registers. It is not a 32-
bit architecture that was later expanded to 64 bits.

Alpha AXP Is Designed for Very High-Speed Implementations

The instructions are very simple. All instructions are 32 bits in length. Memory

operations are either loads or stores. All data manipulation is done between
registers.

The Alpha AXP architecture facilitates pipelining multiple instances of the same
operations because there are no special registers and no condition codes.

The instructions interact with each other only by one instruction writing a register
or memory and another instruction reading from the same place. That makes it
particularly easy to build implementations that issue multiple instructions every
CPU cycle. (The first implementation issues two instructions per cycle.)

Alpha AXP makes it easy to maintain binary compatibility across multiple
implementations and easy to maintain full speed on multiple-issue implementations.
For example, there are no implementation-specific pipeline timing hazards, no load-
delay slots, and no branch-delay slots.
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The Alpha AXP Approach to Byte Manipulation
The Alpha AXP architecture does byte shifting and masking with normal 64-bit
register-to-register instructions, crafted to keep instruction sequences short.

Alpha AXP does not include single-byte store instructions. This has several
advantages:

¢ Cache and memory implementations need not include byte shift-and-mask logic,
and sequencer logic need not perform read-modify-write on memory locations.
Such logic is awkward for high-speed implementation and tends to slow down
cache access to normal 32-bit or 64-bit aligned quantities.

e The Alpha AXP approach to byte manipulation makes it easier to build a high-
speed error-correcting write-back cache, which is often needed to keep a very fast
RISC implementation busy.

e The Alpha AXP approach can make it easier to pipeline multiple byte operations.

The Alpha AXP Approach to Arithmetic Traps

Alpha AXP lets the software implementor determine the precision of arithmetic
traps. With the Alpha AXP architecture, arithmetic traps (such as overflow and
underflow) are imprecise—they can be delivered an arbitrary number of instructions
after the instruction that triggered the trap. Also, traps from many different
instructions can be reported at once. That makes implementations that use
pipelining and multiple issue substantially easier to build.

However, if precise arithmetic exceptions are desired, trap barrier instructions can
be explicitly inserted in the program to force traps to be delivered at specific points.

The Alpha AXP Approach to Multiprocessor Shared Memory

As viewed from a second processor (including an I/O device), a sequence of reads and
writes issued by one processor may be arbitrarily reordered by an implementation.
This allows implementations to use multibank caches, bypassed write buffers, write
merging, pipelined writes with retry on error, and so forth. If strict ordering
between two accesses must be maintained, explicit memory barrier instructions can
be inserted in the program.

The basic multiprocessor interlocking primitive is a RISC-style load_locked, modify,
store_conditional sequence. If the sequence runs without interrupt, exception, or
an interfering write from another processor, then the conditional store succeeds.
Otherwise, the store fails and the program eventually must branch back and retry
the sequence. This style of interlocking scales well with very fast caches, and makes
Alpha AXP an especially attractive architecture for building multiple-processor
systems.

Alpha AXP Instructions Include Hints for Achieving Higher Speed
A number of Alpha AXP instructions include hints for implementations, all aimed
at achieving higher speed.

e Calculated jump instructions have a target hint that can allow much faster
subroutine calls and returns.
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® There are prefetching hints for the memory system that can allow much higher
cache hit rates.

* There are granularity hints for the virtual-address mapping that can allow much
more effective use of translation lookaside buffers for large contiguous structures.

PALcode—The Alpha AXP Very Flexible Privileged Software Library

A Privileged Architecture Library (PALcode) is a set of subroutines that are specific
to a particular Alpha AXP operating system implementation. These subroutines
provide operating-system primitives for context switching, interrupts, exceptions,
and memory management. PALcode is similar to the BIOS libraries that are
provided in personal computers.

PALcode subroutines are invoked by implementation hardware or by software
CALL_PAL instructions.

PALcode is written in standard machine code with some implementation-specific
extensions to provide access to low-level hardware.

PALcode lets Alpha AXP implementations run the full OpenVMS AXP, DEC OSF/1,
and Windows NT AXP operating systems. PALcode can provide this functionality
with little overhead. For example, the OpenVMS AXP PALcode instructions
let Alpha AXP run OpenVMS with little more hardware than that found on a
conventional RISC machine: the PAL mode bit itself, plus 4 extra protection bits
in each translation buffer entry.

Other versions of PALcode can be developed for real-time, teaching, and other
applications.

PALcode makes Alpha AXP an especially attractive architecture for multiple
operating systems.

Alpha AXP and Programming Languages

Alpha AXP is an attractive architecture for compiling a large variety of programming
languages. Alpha AXP has been carefully designed to avoid bias toward one or two
programming languages. For example:

* Alpha AXP does not contain a subroutine call instruction that moves a
register window by a fixed amount. Thus, Alpha AXP is a good match for

programming languages with many parameters and programming languages
with no parameters.

* Alpha AXP does not contain a global integer overflow enable bit. Such a bit would
need to be changed at every subroutine boundary when a FORTRAN program
calls a C program.

1.2 Data Format Overview
Alpha AXP is a load/store RISC architecture with the following data characteristics:

® All operations are done between 64-bit registers.
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¢ Memory is accessed via 64-bit virtual byte addresses, using the little-endian or,
optionally, the big-endian byte numbering convention.

e There are 32 integer registers and 32 floating-point registers.
¢ Longword (32-bit) and quadword (64-bit) integers are supported.
¢ Five floating-point data types are supported:

— VAX F_floating (32-bit)

— VAX G-_floating (64-bit)

— IEEE single (32-bit)

— IEEE double (64-bit)

— IEEE extended (128-bit)

1.3 Instruction Format Overview

As shown in Figure 1-1, Alpha AXP instructions are all 32 bits in length. As
represented in Figure 1-1, there are four major instruction format classes that
contain 0, 1, 2, or 3 register fields. All formats have a 6-bit opcode.

Figure 1-1: Instruction Format Overview

31 2625 2120 1615 5 4 0

Opcode Number PALcode Format
Opcode RA Disp Branch Format
Opcode RA RB Disp Memory Format
Opcode | RA RB Function | RC |Operate Format

¢ PAlcode instructions specify, in the function code field, one of a few dozen
complex operations to be performed.

¢ Conditional branch instructions test register Ra and specify a signed 21-
bit PC-relative longword target displacement. Subroutine calls put the return
address in register Ra.

¢ Load and store instructions move longwords or quadwords between register
Ra and memory, using Rb plus a signed 16-bit displacement as the memory
address.

e Operate instructions for floating-point and integer operations are both
represented in Figure 1-1 by the operate format illustration and are as follows:

— Floating-point operations use Ra and Rb as source registers, and write the
result in register Rc. There is an 11-bit extended opcode in the function field.
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— Integer operations use Ra and Rb or an 8-bit literal as the source operand,
and write the result in register Re.

Integer operate instructions can use the Rb field and part of the function field

to specify an 8-bit literal. There is a 7-bit extended opcode in the function
field.

1.4 Instruction Overview

PALcode Instructions

As described above, a Privileged Architecture Library (PALcode) is a set
of subroutines that is specific to a particular Alpha AXP operating-system
implementation. These subroutines can be invoked by hardware or by software

CALL_PAL instructions, which use the function field to vector to the specified
subroutine.

Branch Instructions

Conditional branch instructions can test a register for positive/negative or for zero
/monzero. They can also test integer registers for even/odd.

Unconditional branch instructions can write a return address into a register.

There is also a calculated jump instruction that branches to an arbitrary 64-bit
address in a register.

Load/Store Instructions

Load and store instructions move either 32-bit or 64-bit aligned quantities from

and to memory. Memory addresses are flat 64-bit virtual addresses, with no
segmentation.

The VAX floating-point load/store instructions swap words to give a consistent
register format for floating-point operations.

A 32-bit integer datum is placed in a register in a canonical form that makes 33 copies
of the high bit of the datum. A 32-bit floating-point datum is placed in a register in
a canonical form that extends the exponent by 3 bits and extends the fraction with
29 low-order zeros. The 32-bit operates preserve these canonical forms.

There are facilities for doing byte manipulation in registers, eliminating the need
for 8-bit or 16-bit load/store instructions.

Compilers, as directed by user declarations, can generate any mixture of 32-bit and
64-bit operations. The Alpha AXP architecture has no 32/64 mode bit.

Integer Operate Instructions

The integer operate instructions manipulate full 64-bit values, and include the usual
assortment of arithmetic, compare, logical, and shift instructions.

There are just three 32-bit integer operates: add, subtract, and multiply. They
differ from their 64-bit counterparts only in overflow detection and in producing
32-bit canonical results.
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There is no integer divide instruction.

The Alpha AXP architecture also supports the following additional operations:
e Scaled add/subtract instructions for quick subscript calculation

e 128-bit multiply for division by a constant, and multiprecision arithmetic
¢ Conditional move instructions for avoiding branch instructions

® An extensive set of in-register byte and word manipulation instructions

Integer overflow trap enable is encoded in the function field of each instruction,
rather than kept in a global state bit. Thus, for example, both ADDQ/V and ADDQ
opcodes exist for specifying 64-bit ADD with and without overflow checking. That
makes it easier to pipeline implementations.

Floating-Point Operate Instructions

The floating-point operate instructions include four complete sets of VAX and
IEEE arithmetic instructions, plus instructions for performing conversions between
floating-point and integer quantities.

In addition to the operations found in conventional RISC architectures, Alpha
AXP includes conditional move instructions for avoiding branches and merge sign
/exponent instructions for simple field manipulation.

The arithmetic trap enables and rounding mode are encoded in the function field
of each instruction, rather then kept in global state bits. That makes it easier to
pipeline implementations.

1.5 Instruction Set Characteristics

Alpha AXP instruction set characteristics are as follows:
e All instructions are 32 bits long and have a regular format.

e There are 32 integer registers (RO through R31), each 64 bits wide. R31 reads
as zero, and writes to R31 are ignored.

e There are 32 floating-point registers (FO through F31), each 64 bits wide. F31
reads as zero, and writes to F31 are ignored.

e All integer data manipulation is between integer registers, with up to two
variable register source operands (one may be an 8-bit literal), and one register
destination operand.

e All floating-point data manipulation is between floating-point registers, with up
to two register source operands and one register destination operand.

e All memory reference instructions are of the load/store type that move data
between registers and memory.

e There are no branch condition codes. Branch instructions test an integer or
floating-point register value, which may be the result of a previous compare.

o Integer and logical instructions operate on quadwords.
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* Floating-point instructions operate on G_floating, F_floating, IEEE double, and
IEEE single operands. D_floating “format compatibility,” in which binary files
of D_floating numbers may be processed, but without the last 3 bits of fraction
precision, is also provided.

® A minimal number of VAX compatibility instructions are included.

1.6 Terminology and Conventions
The following sections describe the terminology and conventions used in this book.

1.6.1 Numbering

All numbers are decimal unless otherwise indicated. Where there is ambiguity,

numbers other than decimal are indicated with the name of the base in subscript
form, for example, 104.

1.6.2 Security Holes

A security hole is an error of commission, omission, or oversight in a system that
allows protection mechanisms to be bypassed.

Security holes exist when unprivileged software (that is, software running outside
of kernel mode) can:

* Affect the operation of another process without authorization from the operating
system;

* Amplify its privilege without authorization from the operating system; or

* Communicate with another process, either overtly or covertly, without
authorization from the operating system.

The Alpha AXP architecture has been designed to contain no architectural security
holes. Hardware (processors, buses, controllers, and so on) and software should
likewise be designed to avoid security holes.

1.6.3 UNPREDICTABLE and UNDEFINED

The terms UNPREDICTABLE and UNDEFINED are used throughout this book.
Their meanings are quite different and must be carefully distinguished.

In particular, only privileged software (software running in kernel mode) can trigger
UNDEFINED operations. Unprivileged software cannot trigger UNDEFINED

operations. ~However, either privileged or unprivileged software can trigger
UNPREDICTABLE results or occurences.

UNPREDICTABLE results or occurences do not disrupt the basic operation of the
processor; it continues to execute instructions in its normal manner. In contrast,
UNDEFINED operation can halt the processor or cause it to lose information.

The terms UNPREDICTABLE and UNDEFINED can be further described as follows:
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UNPREDICTABLE

¢ Results or occurrences specified as UNPREDICTABLE may vary from moment
to moment, implementation to implementation, and instruction to instruction
within implementations. Software can never depend on results specified as
UNPREDICTABLE.

e An UNPREDICTABLE result may acquire an arbitrary value subject to a few
constraints. Such a result may be an arbitrary function of the input operands
or of any state information that is accessible to the process in its current access
mode. UNPREDICTABLE results may be unchanged from their previous values.

Operations that produce UNPREDICTABLE results may also produce exceptions.

e An occurrence specified as UNPREDICTABLE may happen or not based on an
arbitrary choice function. The choice function is subject to the same constraints
as are UNPREDICTABLE results and, in particular, must not constitute a
security hole.

Specifically, UNPREDICTABLE results must not depend upon, or be a function
of, the contents of memory locations or registers which are inaccessible to the
current process in the current access mode.

Also, operations that may produce UNPREDICTABLE results must not:

— Write or modify the contents of memory locations or registers to which the
current process in the current access mode does not have access, or

— Halt or hang the system or any of its components.

For example, a security hole would exist if some UNPREDICTABLE result
depended on the value of a register in another process, on the contents of
processor temporary registers left behind by some previously running process,
or on a sequence of actions of different processes.

UNDEFINED

® Operations specified as UNDEFINED may vary from moment to moment,
implementation to implementation, and instruction to instruction within
implementations. The operation may vary in effect from nothing, to stopping
system operation.

e UNDEFINED operations may halt the processor or cause it to lose information.
However, UNDEFINED operations must not cause the processor to hang, that
is, reach an unhalted state from which there is no transition to a normal state
in which the machine executes instructions.

1.6.4 Ranges and Extents

“ »

Ranges are specified by a pair of numbers separated by a “..” and are inclusive. For
example, a range of integers 0..4 includes the integers 0, 1, 2, 3, and 4.
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Extents are specified by a pair of numbers in angle brackets separated by a colon

and are inclusive. For example, bits <7:3> specify an extent of bits including bits 7,
6, 5, 4, and 3.

1.6.5 ALIGNED and UNALIGNED

In this document the terms ALIGNED and NATURALLY ALIGNED are used
interchangeably to refer to data objects that are powers of two in size. An aligned
datum of size 2**N is stored in memory at a byte address that is a multiple of 2**N,
that is, one that has N low-order zeros. Thus, an aligned 64-byte stack frame has a
memory address that is a multiple of 64.

If a datum of size 2**N is stored at a byte address that is not a multiple of 2**N, it
is called UNALIGNED.

1.6.6 Must Be Zero (MBZ)

Fields specified as Must be Zero (MBZ) must never be filled by software with a non-
zero value. These fields may be used at some future time. If the processor encounters
a non-zero value in a field specified as MBZ, an Illegal Operand exception occurs.

1.6.7 Read As Zero (RAZ)

Fields specified as Read as Zero (RAZ) return a zero when read.

1.6.8 Should Be Zero (SBZ)

Fields specified as Should be Zero (SBZ) should be filled by software with a zero
value. Non-zero values in SBZ fields produce UNPREDICTABLE results and may
produce extraneous instruction-issue delays.

1.6.9 Ignore (IGN)
Fields specified as Ignore (IGN) are ignored when written.

1.6.10 Implementation Dependent (IMP)

Fields specified as Implementation Dependent (IMP) may be used for implementation-
specific purposes. Each implementation must document fully the behavior of all
fields marked as IMP by the Alpha AXP specification.

1.6.11 Figure Drawing Conventions

Figures that depict registers or memory follow the convention that increasing
addresses run right to left and top to bottom.

1.6.12 Macro Code Example Conventions

All instructions in macro code examples are either listed in Chapter 4 or OpenVMS
AXP Software II-A, Chapter 2, or are stylized code forms found in Appendix A.
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Chapter 2
Basic Architecture ()

2.1 Addressing

The basic addressable unit in the Alpha AXP architecture is the 8-bit byte. Virtual

addresses are 64 bits long. An implementation may support a smaller virtual address
space. The minimum virtual address size is 43 bits.

Virtual addresses as seen by the program are translated into physical memory
addresses by the memory management mechanism.

Although the data types in Section 2.2 are described in terms of little-endian byte
addressing, implementations may also include big-endian addressing support, as
described in Section 2.3. All current implementations have some big-endian support.

2.2 Data Types
Following are descriptions of the Alpha AXP architecture data types.
2.2.1 Byte

A byte is 8 contiguous bits starting on an addressable byte boundary. The bits are
numbered from right to left, 0 through 7, as shown in Figure 2-1.

Figure 2-1: Byte Format

A byte is specified by its address A. A byte is an 8-bit value. The byte is only
supported in Alpha AXP by the extract, mask, insert, and zap instructions.
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2.2.2 Word

A word is 2 contiguous bytes starting on an arbitrary byte boundary. The bits are
numbered from right to left, 0 through 15, as shown in Figure 2-2.

Figure 2-2: Word Format

A word is specified by its address, the address of the byte containing bit 0.

A word is a 16-bit value. The word is only supported in Alpha AXP by the extract,
mask, and insert instructions.

2.2.3 Longword

A longword is 4 contiguous bytes starting on an arbitrary byte boundary. The bits
are numbered from right to left, 0 through 31, as shown in Figure 2-3.

Figure 2-3: Longword Format

31 0

A longword is specified by its address A, the address of the byte containing bit 0. A
longword is a 32-bit value.

When interpreted arithmetically, a longword is a two’s-complement integer with bits
of increasing significance from 0 through 30. Bit 31 is the sign bit. The longword is
only supported in Alpha AXP by sign-extended load and store instructions and by
longword arithmetic instructions.

Note:

Alpha AXP implementations will impose a significant performance penalty when
accessing longword operands that are not naturally aligned. (A naturally aligned
longword has zero as the low-order two bits of its address.)

2.2.4 Quadword

A quadword is 8 contiguous bytes starting on an arbitrary byte boundary. The bits
are numbered from right to left, 0 through 63, as shown in Figure 2—4.
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Figure 2-4: Quadword Format

63

A quadword is specified by its address A, the address of the byte containing bit 0. A
quadword is a 64-bit value. When interpreted arithmetically, a quadword is either
a two’s-complement integer with bits of increasing significance from 0 through 62

and bit 63 as the sign bit, or an unsigned integer with bits of increasing significance
from O through 63.

Note:

Alpha AXP implementations will impose a significant performance penalty when
accessing quadword operands that are not naturally aligned. (A naturally aligned
quadword has zero as the low-order three bits of its address.)

2.2.5 VAX Floating-Point Formats

2.25.1

VAX floating-point numbers are stored in one set of formats in memory and in a
second set of formats in registers. The floating-point load and store instructions
convert between these formats purely by rearranging bits; no rounding or range-
checking is done by the load and store instructions.

F_floating

An F_floating datum is 4 contiguous bytes in memory starting on an arbitrary
byte boundary. The bits are labeled from right to left, 0 through 31, as shown
in Figure 2-5.

Figure 2-5: F_floating Datum

31 161514 76 0
I Fraction Lo |S| Exp. l Frac. Hi—le

An F_floating operand occupies 64 bits in a floating register, left-justified in the
64-bit register, as shown in Figure 2-6.

Figure 2-6: F_floating Register Format

63 62 52 51 2928

S Exp. Fraction 0 :Fx
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The F_floating load instruction reorders bits on the way in from memory, expands the
exponent from 8 to 11 bits, and sets the low-order fraction bits to zero. This produces
in the register an equivalent G_floating number suitable for either F_floating or G_
floating operations. The mapping from 8-bit memory-format exponents to 11-bit
register-format exponents is shown in Table 2-1.

Table 2-1: F_floating Load Exponent Mapping (MAP_F)
Memory <14:7>  Register <62:52>

11111111 1000 1111111
1 XXXXXXX 1 000 xxxxxxx  (xxxxxxx not all 1’s)
0 XXXXXXX 0 111 xxxxxxx (xxxxxxx not all 0’s)
0 0000000 0 000 0000000

This mapping preserves both normal values and exceptional values.

The F_floating store instruction reorders register bits on the way to memory and
does no checking of the low-order fraction bits. Register bits <61:59> and <28:0> are
ignored by the store instruction.

An F_floating datum is specified by its address A, the address of the byte containing
bit 0. The memory form of an F_floating datum is sign magnitude with bit 15 the
sign bit, bits <14:7> an excess-128 binary exponent, and bits <6:0> and <31:16>
a normalized 24-bit fraction with the redundant most significant fraction bit not
represented. Within the fraction, bits of increasing significance are from 16 through
31 and 0 through 6. The 8-bit exponent field encodes the values 0 through 255.
An exponent value of 0, together with a sign bit of 0, is taken to indicate that the
F_floating datum has a value of 0.

If the result of a VAX floating-point format instruction has a value of zero, the
instruction always produces a datum with a sign bit of 0, an exponent of 0, and
all fraction bits of 0. Exponent values of 1..255 indicate true binary exponents of
—127..127. An exponent value of 0, together with a sign bit of 1, is taken as a
reserved operand. Floating-point instructions processing a reserved operand take
an arithmetic exception. The value of an F_floating datum is in the approximate
range 0.29*10%*-38 through 1.7*10**38. The precision of an F_floating datum is
approximately one part in 2**23, typically 7 decimal digits. See Section 4.7.

Note:

Alpha AXP implementations will impose a significant performance penalty when
accessing F_floating operands that are not naturally aligned. (A naturally
aligned F_floating datum has zero as the low-order two bits of its address.)
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2.2.5.2 G_floating

A G_floating datum in memory is 8 contiguous bytes starting on an arbitrary byte
boundary. The bits are labeled from right to left, 0 through 63, as shown in
Figure 2-7.

Figure 2-7: G_floating Datum

31 161514 4 3 0
Fraction Midh S Exp. Frac.Hi|:A

Fraction Lo Fraction Midl :A+4

A G_floating operand occupies 64 bits in a floating register, arranged as shown in
Figure 2-8.

Figure 2-8: G_floating Format

63 62 52 51 32 31 0

S Exp. Fraction Hi Fraction Lo Fx

A G_floating datum is specified by its address A, the address of the byte containing
bit 0. The form of a G_floating datum is sign magnitude with bit 15 the sign bit, bits
<14:4> an excess-1024 binary exponent, and bits <3:0> and <63:16> a normalized 53-
bit fraction with the redundant most significant fraction bit not represented. Within
the fraction, bits of increasing significance are from 48 through 63, 32 through 47, 16
through 31, and 0 through 3. The 11-bit exponent field encodes the values 0 through
2047. An exponent value of 0, together with a sign bit of 0, is taken to indicate that
the G_floating datum has a value of 0.

If the result of a floating-point instruction has a value of zero, the instruction always
produces a datum with a sign bit of 0, an exponent of 0, and all fraction bits
of 0. Exponent values of 1..2047 indicate true binary exponents of —1023..1023.
An exponent value of 0, together with a sign bit of 1, is taken as a reserved
operand. Floating-point instructions processing a reserved operand take a user-
visible arithmetic exception. The value of a G_floating datum is in the approximate
range 0.56*10**-308 through 0.9*10**308. The precision of a G_floating datum is
approximately one part in 2**52, typically 15 decimal digits. See Section 4.7.

Note:

Alpha AXP implementations will impose a significant performance penalty when
accessing G_floating operands that are not naturally aligned. (A naturally
aligned G_floating datum has zero as the low-order three bits of its address.)
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2.2.5.3 D_floating

A D_floating datum in memory is 8 contiguous bytes starting on an arbitrary byte
boundary. The bits are labeled from right to left, 0 through 63, as shown in
Figure 2-9.

Figure 2-9: D_floating Datum

31 161514 76 0
Fraction Midh S Exp. Frac.Hi |:A

Fraction Lo Fraction Midl A+4

A D_floating operand occupies 64 bits in a floating register, arranged as shown in
Figure 2-10.

Figure 2-10: D_floating Register Format

63 62 55 54 48 47 32 31 16 15 0

S Exp. Frac. Hi Fraction Midh Fraction Midl Fraction Lo :Fx

The reordering of bits required for a D_floating load or store are identical to those
required for a G_floating load or store. The G_floating load and store instructions
are therefore used for loading or storing D_floating data.

A D_floating datum is specified by its address A, the address of the byte containing
bit 0. The memory form of a D_floating datum is identical to an F_floating datum
except for 32 additional low significance fraction bits. Within the fraction, bits of
increasing significance are from 48 through 63, 32 through 47, 16 through 31, and 0
through 6. The exponent conventions and approximate range of values is the same
for D_floating as F_floating. The precision of a D_floating datum is approximately
one part in 2**55, typically 16 decimal digits.

Notes:

e D_floating is not a fully supported data type; no D_floating arithmetic operations
are provided in the architecture. For backward compatibility, exact D_
floating arithmetic may be provided via software emulation. D_floating “format
compatibility” in which binary files of D_floating numbers may be processed, but
without the last 3 bits of fraction precision, can be obtained via conversions to
G_floating, G arithmetic operations, then conversion back to D_floating.

¢ Alpha AXP implementations will impose a significant performance penalty on
access to D_floating operands that are not naturally aligned. (A naturally aligned
D_floating datum has zero as the low-order three bits of its address.)
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2.2.6 IEEE Floating-Point Formats

2.2.6.1

The IEEE standard for binary floating-point arithmetic, ANSI/IEEE 754-1985,
defines four floating-point formats in two groups, basic and extended, each having
two widths, single and double. The Alpha AXP architecture supports the basic
single and double formats, with the basic double format serving as the extended
single format. The values representable within a format are specified by using three
integer parameters:

1. P—the number of fraction bits
2. Emax—the maximum exponent
3. Emin—the minimum exponent
Within each format, only the following entities are permitted:
1. Numbers of the form (-1)**S x 2**E x b(0).b(1)b(2)..b(P-1) where:
a. S=0orl
b. E = any integer between Emin and Emax, inclusive
c. bn)=0or1l
2. Two infinities—positive and negative
3. At least one Signaling NaN
4. At least one Quiet NaN

NaN is an acronym for Not-a-Number. A NaN is an IEEE floating-point bit
pattern that represents something other than a number. NaNs come in two forms:
Signaling NaNs and Quiet NaNs. Signaling NaNs are used to provide values
for uninitialized variables and for arithmetic enhancements. Quiet NaNs provide
retrospective diagnostic information regarding previous invalid or unavailable data
and results. Signaling NaNs signal an invalid operation when they are an operand
to an arithmetic instruction, and may generate an arithmetic exception. Quiet

NaNs propagate through almost every operation without generating an arithmetic
exception.

Arithmetic with the infinities is handled as if the operands were of arbitrarily large

magnitude. Negative infinity is less than every finite number; positive infinity is
greater than every finite number.

S_Floating

An IEEE single-precision, or S_floating, datum occupies 4 contiguous bytes in

memory starting on an arbitrary byte boundary. The bits are labeled from right
to left, 0 through 31, as shown in Figure 2-11.
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Figure 2-11: S_floating Datum

3130 2322 0

|S Exp. | Fraction A

An S_floating operand occupies 64 bits in a floating register, left-justified in the
64-bit register, as shown in Figure 2-12.

Figure 2-12: S_floating Register Format

63 62 52 51 2928 0

) Exp. Fraction 0 Fx

The S_floating load instruction reorders bits on the way in from memory, expanding
the exponent from 8 to 11 bits, and sets the low-order fraction bits to zero. This
produces in the register an equivalent T_floating number, suitable for either S_
floating or T_floating operations. The mapping from 8-bit memory-format exponents
to 11-bit register-format exponents is shown in Table 2-2.

Table 2-2: S_floating Load Exponent Mapping (MAP_S)
Memory <30:23> Register <62:52>

11111111 1111 1111111

1 xxXxXXXXX 1 000 xxxxxxx  (xxxxxxx not all 1’s)
0 XXXXXXX 0 111 xxxxxxx  (xxxxxxx not all 0’s)
0 0000000 0 000 0000000

This mapping preserves both normal values and exceptional values. Note that the
mapping for all 1’s differs from that of F_floating load, since for S_floating all 1’s is
an exceptional value and for F_floating all 1’s is a normal value.

The S_floating store instruction reorders register bits on the way to memory and
does no checking of the low-order fraction bits. Register bits <61:59> and <28:0> are
ignored by the store instruction. The S_floating load instruction does no checking of
the input.

The S_floating store instruction does no checking of the data; the preceding operation
should have specified an S_floating result.

An S_floating datum is specified by its address A, the address of the byte containing
bit 0. The memory form of an S_f<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>