

I

1111111IIIIIJIIIIIIIII 1111 1111

DIGITAL EIUIPnENT CORPORATION

Alpha AXP Architecture Reference Manual

Digital Press Editorial Board

Samuel H. Fuller, Chairman

Richard·W. Beane

Donald Z. Harbert

William R. Hawe

Richard J. Hollingsworth

Richard F. Lary

Alan G. Nemeth

Jean A. Proulx

Robert M. Supnik

Gayn B. Winters

Alpha AXP Architecture Reference Manual
Second Edition

Richard L. Sites

Richard T. Witek

Contributing Authors for the Second Edition

Wayne M. Cardoza

Anton Chernoff

John A. DeRosa

Daniel W. Dobberpuhl

John H. Edmondson

Kent Glossop

Henry N. Grieb

Richard B. Grove

Michael S. Harvey

Steven O. Hobbs

Robert F. Hoffman

Nancy P. Kronenberg

Raymond J. Lanza

Derrick R. Meyer

Stephen J. Morris

Joseph Notarangelo

William B. Noyce

Mary H. Payne

Audrey R. Reith

Robert M. Supnik

Benjamin J. Thomas

Digital Press
Boston. Oxford. Melbourne. Singapore. Toronto. Munich. New Delhi.
Tokyo

Copyright © 1995 Digital Equipment Corporation

--------------------)
Digital Press™ is an imprint of Butterworth-Heinemann, Publisher for Digital Equipment Corporation.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by
any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written
permission of the publisher.

~ Recognizing the importance ofpreserving what has been written, Butterworth-Heinemann prints its books on
'eJ acid-free paper whenever possible.

Digital believes that the information in this publication is accurate as of its publication date; such
information is subject to change without notice. Digital is not responsible for any inadvertent errors.

The following are trademarks of Digital Equipment Corporation: Alpha AXP, AXP, DEC, Digital,
OpenVMS, PDP-II, VAX, VAX DOCUMENT, VMS, ULTRIX, and the DIGITAL logo.

Cray is a registered trademark of Cray Research, Inc. IBM is a registered trademark of International Business
Machines Corporation. OSF/l is a registered trademark of Open Software Foundation, Inc. UNIX is a
registered trademark in the United States and other countries licensed exclusively through X/Open Company
Ltd. Windows NT is a trademark of Microsoft Corporation. X Window System is a common law trademark
of the Massachusetts Institute of Technology.

This document was prepared using VAX DOCUMENT, Version 2.1-1.

Technical Writer: Charles Greenman
Production Editor: Kathe Rhoades
Technical Illustrator: Lynne Kenison
Cover Designer: Marshall Henrichs

Library of Congress Cataloging-in-Publication Data
Sites, Richard L.

Alpha AXP architecture reference manual/Richard L. Sites, Richard T. Witek. -- 2nd ed. /
contributing authors, Wayne M. Cardoza ... [et al.l

p. cm.
Rev. ed. of: Alpha architecture reference manual. c 1992.
Includes index.
ISBN 1-55558-145-5
1. Computer architecture. 2. Reduced instruction set computers. I. Witek, Richard T. II. Title. III.

Title: Alpha architecture reference manual
QA76.9.A73A46 1995
004.2'565~c20 95-22578

CIP

The publisher offers discounts on bulk orders of this book.
For information, please write:

Manager of Special Sales, Digital Press
Butterworth-Heinemann
313 Washington Street
Newton, MA 02158-1626

Order number: EY-TI32E-DP

10987654321

Printed in the United States of America

Foreword
Notes
Preface to First Edition
Preface to Second Edition

Part II Common Architecture
1 Introduction
2 Basic Architecture
3 Instruction Formats
4 Instruction Descriptions
5 System Architecture and Programming Implications
6 Common PALcode Architecture
7 Console Subsystem Overview
8 Input/Output Overview

Part II-A I OpenVMS AXP Software
1 Introduction to OpenVMS AXP
2 OpenVMS AXP PALcode Instruction Descriptions
3 OpenVMS AXP Memory Management
4 OpenVMS AXP Process Structure
5 OpenVMS AXP Internal Processor Registers
6 OpenVMS AXP Exceptions, Interrupts, and Machine Checks

Part 11-8 I DEC OSF/1 Software
1 Introduction to DEC OSF/l
2 DEC OSF/l PALcode Instruction Descriptions
3 DEC OSF/} Memory Management
4 DEC OSF/} Process Structure
5 DEC OSF/} Exceptions and Interrupts

Part II-C I Windows NT AXP Software
1 Introduction to Windows NT AXP Software
2 Processor, Process, and Thread Structures and Registers
3 Memory Management
4 Exceptions, Interrupts, and Machine Checks
5 Windows NT AXP PALcode Instruction Descriptions
6 Initialization and Firmware Transitions

Part 1111 Console Interface Architecture
1 Console Subsystem Overview
2 Console Interface to Operating System Software
3 System Bootstrapping

Appendixes
A Software Considerations
B IEEE Floating-Point Conformance
C Instruction Summary
D Waivers and Implementation-Dependent Functionality

Index

Contents

FOREWORD

In the foreword to the first edition of the VAX Architecture Reference Manual, Sam
Fuller stated "Computer design continues to be a dynamic field; I expect we will see
more rather than less change and innovation in the decades ahead." The Alpha AXP
Architecture Reference Manual demonstrates the accuracy of that prediction.

Alpha follows VAX by about fifteen years. The intervening years have witnessed an
eruption in computer technology, one that shows no sign of abating:

• More than a 1000-fold increase in the performance of microprocessors

• More than a 1000-fold increase in the density of semiconductor memories

• More than a 500-fold increase in the density of magnetic storage devices

• More than a 100-fold increase in the speed of network connections

During the same period, the internal organization of computer systems has changed
as well, based on developments such as RISC architecture, symmetric multiprocess
ing, and coherent distributed systems. Moreover, the fundamental paradigms of
computing have been changed not once, but several times, with the introduction of
personal computers, networked workstations, local area networks, and client/server
computing.

These developments present an enormous challenge for computing in the 21st cen
tury. Future computers will be called upon to solve problems of great complexity,
worldwide, in a distributed manner. They will have to provide unprecedented per
formance, flexibility, reliability, and scalability in order to implement a global infras
tructure of information, and to give users an untrammelled window on the world.

Alpha is Digital's response to the challenge of 21st century computing. It represents
the culmination of the company's knowledge and belief about how the next gener
ation of computers should be built. Alpha is based on a decade's experimental and
engineering work in RISC architecture, high-speed implementation, software com
patibility and migration, and system serviceability. It provides the foundation for
future implementations, from mobile computing units to massively parallel super
computers.

Alpha is designed to handle the largest computing problems of today and tomorrow.
It represents a major advance over its predecessor, the VAX. Comparing Alpha to
VAX, two differences stand out immediately. First, Alpha is a 64-bit architecture;
VAX is a 32-bit architecture. This means that Alpha's virtual address capability
extends to a 64-bit linear range ofbytes in memory. Supporting this extended virtual
address space are an extended maximum physical address range (up to 48 bits)
and larger pages (8 KB to 64 KB). Alpha's extended virtual address range allows
direct manipulation of the gigabytes and terabytes of data produced in electrical
and mechanical design, database and transaction processing, and imaging.

Second, Alpha is a RISC architecture, whereas VAX is a CISC architecture. RISC
stands for Reduced Instruction Set Computer, a technique of computer organization
researched at IBM, Stanford, and Berkeley in the early 1980s. RISC architectures

are characterized by simple, fixed-length instruction formats; a small number of ad
dressing modes; large register files; and a load-store instruction set architecture. In
structions are typically decoded and executed directly by hardware. Alpha's stream
lined organization allows high-speed implementation in a variety of technologies,
while providing strong compatibility for programs and data with today's computers.

CISC stands for Complex Instruction Set Computer. CISC architectures generally
have variable length instruction formats; a large number of addressing modes; small
to medium sized register files; and a full set of register-to-memory (or even memory
to-memory) instructions. Instructions are typically decoded and interpreted by a
microprogram.

The following table contrasts the architectural differences between VAX and Alpha.

Characteristic

Architecture

Virtual address range

Physical address range

Page size

Instruction length

General registers

Addressing modes

Instruction set architecture

Directly supported data types

VAX

CISC

32-bit

Up to 32-bit

512 bytes

1-51 bytes

1632-bit

21

General

Integer, floating,
bit field, queue,
character string,
decimal string

Alpha

RISC

Up to 64-bit

Up to 48-bit

8 KB-64 KB

4 bytes

6464-bit

3

Load-store

Integer, floating

This book is the culmination of an effort that began in 1988. Since that time, Alpha
has grown from a paper specification to a cohesive set ofchips, systems, and software,
spanning the computer spectrum. This achievement is due to the efforts of many
hundreds of people in Engineering, Marketing, Sales, Service, and Manufacturing.
This book is documentation of, and a tribute to, the outstanding work they have
done.

Bob Supnik
Senior Corporate Consultant,
Vice President

A Note on the Structure of This Book

The Alpha AXP Architecture Reference Manual is divided into 3 Parts, 4 appendixes,
and an index.

Each part or section of a part describes a major portion of the Alpha AXP
architecture. Each contains its own Table of Contents. Additional sections will
be incorporated as development proceeds on the architecture.

The following table outlines the contents of the manual:

Name Symbol Contents

Part One

Part Two

(I)

(II)

Common Architecture
This part describes the architecture that is common to and
required by all implementations.

Specific Operating System PALcode Architecture
This part contains sections that describe how the following
operating systems relate to the Alpha AXP architecture:

Section Name and Contents

OpenVMS AXP Software

DEC OSF/l Software

Windows NT AXP Software

Symbol

(II-A)

(II-B)

(II-C)

Part Three (III)

Appendixes

Index

Console Interface Architecture
This part describes an architected console firmware
implementation.

Because information in the appendixes can be shared by
more than one section, appendixes are grouped together at
the end of the manual.

The index at the end of the manual is structured like
a master index. Index entries are called out by the
appropriate symbol, (I), (II), and so forth, associated with
the corresponding part or section. Index entries for the
appendixes are called out by appendix name and page
number.

Preface to the First Edition

The Alpha architecture is a RISe architecture that was designed for high perfor
mance and longevity. Following Amdahl, Blaauw, and Brooks1, we distinguish be
tween architecture and implementation:

• Computer architecture is defined as the attributes of a computer seen by a
machine-language programmer. This definition includes the instruction set, in
struction formats, operation codes, addressing modes, and all registers and mem
ory locations that may be directly manipulated by a machine-language program
mer.

• Implementation is defined as the actual hardware structure, logic design, and
data-path organization.

This architecture book describes the required behavior of all Alpha implementations,
as seen by the machine-language programmer. The architecture does not speak to
implementation considerations such has how fast a program runs, what specific bit
pattern is left in a hardware register after an unpredictable operation, how to sched
ule code for a particular chip, or how to wire up a given chip; those considerations
are described in implementation-specific documents.

Various Alpha implementations are expected over the coming years, starting with
the Digital 21064 chip.

Goals

When we started the Alpha project in the fall of 1988, we had a small number of
goals:

1. High performance

2. Longevity

3. Run VMS and UNIX

4. Easy migration from VAX. (and soon-to-be MIPS) customer base

As principal architects, Rich Witek and I made design decisions that were driven
directly by these goals.

We assumed that high performance was needed to make a new architecture attrac
tive in the marketplace, and to keep Digital competitive.

We set a 15-25 year design horizon (longevity) and tried to avoid any design elements
that we thought would become limitations during this time. The design horizon led

1 Amdahl, G.M., G.A. Blaauw, and F.P. Brooks, Jr. "Architecture of the IBM System/360." IBM Journal of Research and
Development, vol. 8, no. 2 (April 1964): 87-101.

directly to the conclusion that Alpha could not be a 32-bit architecture: 32-bit ad
dresses will be too small within 10 years. We thus adopted a full 64-bit architecture,
with a minimal number of 32-bit operations for backward compatibility. Wherever
possible, 32-bit operands are put in registers in a 64-bit canonical form and operated
upon with 64-bit operations.

The longevity goal also caused us to examine how the performance of implementa
tions would scale up over 25 years. Over the past 25 years, computers have become
about 1000 times faster. This suggested to us that Alpha implementations would
need to do the same, or we would have to bet that the industry would falloff the
historical performance curve. We were unwilling to bet against the industry, and
were unwilling to ignore the issue, so we seriously examined the consequences of
longevity.

We thought that it would be realistic for implementors to improve clock speeds by
a factor of 10 over 25 years, but not by a factor of 100 or 1000. (Clock speeds have
improved by about a factor of 100 over the past 25 years, but physical limits are now
slowing down the rate of increase.)

We concluded that the remaining factor of 100 would have to come from other design
dimensions. If you cannot make the clock faster, the next dimension is to do more
work per clock cycle. So the Alpha architecture is focused on allowing implemen
tations that issue many instructions every clock cycle. We thought that it would
be realistic for implementors to achieve about a factor of 10 over 25 years by using
multiple instruction issue, but not a factor of 100. Even a factor of 10 will require
perhaps a decade of compiler research.

We concluded that the remaining factor of 10 would have to come from some other
design dimension. If you cannot make the clock faster, and cannot do more work per
clock, the next dimension is to have multiple clocked instruction streams, that is,
multiple processors. So the Alpha architecture is focused on allowing implementa
tions that apply multiple processors to a single problem. We thought that it would
be realistic for implementors to achieve the remaining factor of 10 over 25 years by
using multiple processors.

Overall, the factor-of-1000 increase in performance looked reasonable, but required
factor-of-10 increases in three different dimensions. These three dimensions there
fore formed part of our design framework:

• Gracefully allow fast cycle time implementations

• Gracefully allow multiple-instruction-issue implementations

• Gracefully allow multiple-processor implementations

The cycle-time goal encouraged us to keep the instruction definitions very sim
ple, and to keep the interactions between instructions very simple. The multiple
instruction-issue goal encouraged us to eliminate specialized registers, architected
delay slots, precise arithmetic traps, and byte writes (with their embedded read
modify-write bottleneck). The multiple-processor goal encouraged us to consider the
memory model and atomic-update primitives carefully. We adopted load-Iocked/store-

conditional sequences as the .atomic-update primitive, and eliminated ,strict read-.
write ordering between processors.

All of the above design decisions were driven directly by the performance and
longevity goals. The lack of byte writes, precise arithmetic traps, and multipro
cessor read/write ordering have been the most controversial decisions, so far.

Clean Sheet of Paper

To run both OpenVMS and UNIX without burdening the hardware implementa
tions with elaborate (and sometimes conflicting) operating system underpinnings,
we adopted an idea from a previous Digital RISC design. Alpha places the under
pinnings for interrupt delivery and return, exceptions, context switching, memory
management, and error handling in a set of privileged software subroutines called
PALcode. PALcode subroutines have controlled entries, run with interrupts turned
off, and have access to real hardware (implementation) registers. By having dif
ferent sets of PALcode for different operating systems, the architecture itself is not
biased toward a specific operating system or computing style.

PALcode allowed us to design an architecture that could run OpenVMS gracefully
without elaborate hardware and without massively rewriting the VMS synchroniza
tion and protection mecharlisms. PALcode lets the Alpha architecture support some
complex VAX primitives (such as the interlocked queue instructions) that are heavily
used by OpenVMS, without burdening a UNIX implementation in any way.

Finally, we also considered how to move VAX and MIPS code to Alpha. We rejected
various forms of "compatibility mode" hardware, because they would have severely
compromised the performance and time-to-market of the first implementation. After
some experimentation, we adopted the strategy of running existing binary code by
building software translators. One translator converts OpenVMS VAX images to
functionally identical OpenVMS Alpha images. A second translator converts MIPS
ULTRIX images to functionally identical DEC OSF/l Alpha images.

Fundamentally, PALcode gave us a migration path for existing operating systems,
and the translators (and native compilers) gave us a migration path for existing
user-mode code. PALcode and the translators provided a clean sheet of design paper
for the bulk of the Alpha architecture. Other than an extra set of VAX floating-point
formats (included for good business reasons, but subsettable later), no specific VAX
or MIPS features are carried directly into the Alpha architecture for compatibility
reasons.

These considerations substantially shaped the architecture described in the rest of
this book.

Organization

The first part of this book describes the instruction-set architecture, and is largely
self-contained for readers who are involved with compilers or with assembly lan
guage programming. The second and third parts describe the supporting PALcode

routines for each operating system-the specific operating system PALcode architec
ture.

Acknowledgments

My collaboration with Rich Witek over the past few years has been extremely re
warding, both personally and professionally. By combining our backgrounds and
viewpoints, we have produced an architecture that is substantially better than ei
ther of us could have produced alone. Thank you, Rich.

A work of this magnitude cannot be done on a shoestring or in isolation. Rich and
I were blessed with a rich environment of dozens and later hundreds of bright,
thoughtful, and outspoken professional peers. I thank the management of Digital
Equipment Corporation for providing that rich environment, and those peers for
making the architecture so much more robust and well-considered.

Three people have especially influenced my views of computer architecture, through
personal interaction and landmark machine design: Fred Brooks, John Cocke, and
Seymour Cray. This work is built directly upon theirs, and could not exist without
them.

The organization, editing, and production of this text in final form is largely the
work of Charlie Greenman, whose clear writing is much appreciated.

Richard L. Sites, May 1992

Preface to the Second Edition

The Second Edition of the architecture manual continues to describe the required
behavior for all Alpha implementations, as seen by the machine-level programmer.

A number of Alpha CPU implementations have been produced to date, designed
according to the dictates of this architecture. The first generation implementation,
the DECchip 21064, set new standards for high performance and was the basis for
several chips that followed. The DECchip 21066 increased the level of integration
on the chip by including the PCI interface and memory interface control logic on the
chip itself. The DECchip 21064A further enhanced the performance by shrinking
to the next generation CMOS process, providing an increase in operating frequency
and doubling the internal cache size.

The second generation implementation, the DECchip 21164, has expanded beyond
the DECchip 21064A in width of issue and operating frequency, and provides a much
higher-performance memory interface. In fact, since its introduction, an Alpha has
been the highest performance microprocessor on the market. The third generation
chip, currently under development, will continue that trend.

The first Alpha systems were workstations and midrange systems that were directed
to the traditional VAX and MIPS customer base. Since then, the range of Alpha
systems has been greatly expanded. Alpha systems have been designed in the PC
price range to support Windows NT and X Window terminals. Alpha single-board
computers have been introduced to cover the high-end embedded controller market.
And Cray Research has introduced the Cray T3D, an Alpha based MPP, that can
support up to 1024 Alpha CPU's in an MPP system.

PALcode has made much of this variety possible. By having different sets ofPALcode
for different operating systems, the architecture itself is not biased toward a specific
operating system or computing style. PALcode has provided a flexible means, for
example, of supporting Windows NT and the Cray T3D without hardware changes.

Organization
The organization of the Second Edition is similar that of the first. Part One of this
book describes the instruction-set architecture, and is largely self-contained for read
ers who work with compilers or assembly-language programs. Part Two describes
the supporting PALcode routines for three operating systems - the specific oper
ating system PALcode architecture. PALcode for Windows NT on Alpha is covered
in this edition. Part Three describes a particular console implementation that is
specific to platforms that support the OpenVMS AXP or DEC OSF/I operating sys
tems. A discussion of console issues for Windows NT is included with its PALcode
description.

Acknowledgments
The list ofpeople who have contributed to Alpha's current success has grown too large
to itemize. Rather, we want to acknowledge the software and hardware engineers
who have worked since long before Alpha's introduction to provide the whole system.
On the software side, engineers have put in countless hours writing, porting, and
optimizing code for the operating systems, compilers, run time libraries, CASE tools,
and applications. Hardware engineers have spent long hours designing the broad
range of products that today span a 2000X price range. We sincerely acknowledge
their efforts.

The organization, editing, and production of this text in final form remain largely
the work of Charlie Greenman, whose clear writing is much appreciated.

Richard L. Sites and Richard T. Witek, February 1995

Common Architecture (I)

This part describes the common Alpha AXP architecture and contains the following chapters:

• Chapter 1, Introduction (I)

• Chapter 2, Basic Architecture (I)

• Chapter 3, Instruction Formats (I)

• Chapter 4, Instruction Descriptions (I)

• Chapter 5, System Architecture and Programming Implications (I)

• Chapter 6, Common PALcode Architecture (I)

• Chapter 7, Console Subsystem Overview (I)

• Chapter 8, Input/Output Overview (I)

Contents

Chapter 1 Introduction (I)

1.1 The Alpha AXP Approach to RISC Architecture .
1.2 Data Format Overview .
1.3 Instruction Format Overview .
1.4 Instruction Overview .
1.5 Instruction Set Characteristics .
1.6 Terminology and Conventions .
1.6.1 Numbering .
1.6.2 Security Holes .
1.6.3 UNPREDICTABLE and UNDEFINED .
1.6.4 Ranges and Extents .
1.6.5 ALIGNED and UNALIGNED .
1.6.6 Must Be Zero (MBZ) .
1.6.7 Read As Zero (RAZ) .
1.6.8 Should Be Zero (SBZ) .
1.6.9 Ignore (IGN) .
1.6.10 Implementation Dependent (IMP) .
1.6.11 Figure Drawing Conventions .
1.6.12 Macro Code Example Conventions .

Chapter 2 Basic Architecture (I)

2.1 Addressing .
2.2 Data 1YI>es .
2.2.1 Byte .
2.2.2 Word .
2.2.3 Longword .
2.2.4 Quadword .
2.2.5 VAX Floating-Point Formats .
2.2.5.1 F_floating .
2.2.5.2 G_floating .
2.2.5.3 D_floating .
2.2.6 IEEE Floating-Point Formats .
2.2.6.1 S_Floating .
2.2.6.2 T_floating .
2.2.6.3 X_Floating .
2.2.7 Longword Integer Format in Floating-Point Unit .
2.2.8 Quadword Integer Format in Floating-Point Unit .
2.2.9 Data 1YI>es with No Hardware Support .

1-1
1-3
1-4
1-5
1-6
1-7
1-7
1-7
1-7
1-8
1-9
1-9
1-9
1-9
1-9
1-9
1-9
1-9

2-1
2-1
2-1
2-2
2-2
2-2
2-3
2-3
2-5
2-6
2-7
2-7
2-9

2-10
2-12
2-13
2-13

iii

•

2.3 Big-endian Addressing Support. .. 2-14

Chapter 3 Instruction Formats (I)

3.1 Alpha AXP Registers . 3-1
3.1.1 Program Counter. 3-1
3.1.2 Integer Registers . 3-1
3.1.3 Floating-Point Registers. 3-2
3.1.4 Lock Registers . 3-2
3.1.5 Processor Cycle Counter (PCC) Register 3-2
3.1.6 Optional Registers. 3-3
3.1.6.1 Memory Prefetch Registers 3-3
3.1.6.2 VAX Compatibility Register. 3-3
3.2 Notation. 3-3
3.2.1 Operand Notation 3-3
3.2.2 Instruction Operand Notation . 3-4
3.2.3 Operators. 3-6
3.2.4 Notation Conventions. 3-8
3.3 Instruction Formats. 3-9
3.3.1 Memory Instruction Format. 3-9
3.3.1.1 Memory Format Instructions with a Function Code. .. 3-10
3.3.1.2 Memory Format Jump Instructions .. 3-10
3.3.2 Branch Instruction Format 3-10
3.3.3 Operate Instruction Format. .. 3-11
3.3.4 Floating-Point Operate Instruction Format .. 3-12
3.3.4.1 Floating-Point Convert Instructions. .. 3-13
3.3.5 PALcode Instruction Format 3-13

Chapter 4 Instruction Descriptions (I)

4.1 Instruction Set Overview. 4-1
4.1.1 Subsetting Rules 4-2
4.1.1.1 Floating-Point Subsets. 4-2
4.1.2 Software Emulation Rules . 4-2
4.1.3 Opcode Qualifiers. 4-3
4.2 Memory Integer Load/Store Instructions . 4-4
4.2.1 Load Address. 4-5
4.2.2 Load Memory Data into Integer Register. 4-6
4.2.3 Load Unaligned Memory Data into Integer Register. 4-7
4.2.4 Load Memory Data into Integer Register Locked " 4-8
4.2.5 Store Integer Register Data into Memory Conditional. .. 4-11
4.2.6 Store Integer Register Data into Memory 4-14
4.2.7 Store Unaligned Integer Register Data into Memory. .. 4-15
4.3 Control Instructions. .. 4-16
4.3.1 Conditional Branch 4-18

iv

4.3.2 Unconditional Branch .
4.3.3 Jumps .
4.4 Integer Arithmetic Instructions .
4.4.1 Longword Add .
4.4.2 Scaled Longword Add .
4.4.3 Quadword Add .
4.4.4 Scaled Quadword Add .
4.4.5 Integer Signed Compare .
4.4.6 Integer Unsigned Compare .
4.4.7 Longword Multiply .
4.4.8 Quadword Multiply .
4.4.9 Unsigned Quadword Multiply High .
4.4.10 Longword Subtract .
4.4.11 Scaled Longword Subtract .
4.4.12 Quadword Subtract .
4.4.13 Scaled Quadword Subtract .
4.5 Logical and Shift Instructions .
4.5.1 Logical Functions .
4.5.2 Conditional Move Integer .
4.5.3 Shift Logical .
4.5.4 Shift Arithmetic .
4.6 Byte-Manipulation Instructions .
4.6.1 Compare Byte .
4.6.2 Extract Byte .
4.6.3 Byte Insert .
4.6.4 Byte Mask .
4.6.5 Zero Bytes .
4.7 Floating-Point Instructions .
4.7.1 Floating-Point Single-Precision Operations .
4.7.2 Floating Subsets and Floating Faults .
4.7.3 Definitions .
4.7.4 Encodings .
4.7.5 Floating-Point Rounding Modes .
4.7.6 Floating-Point Trapping Modes .
4.7.6.1 Imprecise /Software Completion Trap Modes .
4.7.6.2 Invalid Operation (INV) Arithmetic Trap .
4.7.6.3 Division by Zero (DZE) Arithmetic Trap .
4.7.6.4 Overflow (OVF) Arithmetic Trap .
4.7.6.5 Underflow (UNF) Arithmetic Trap .
4.7.6.6 Inexact Result (INE) Arithmetic Trap .
4.7.6.7 Integer Overflow (IOV) Arithmetic Trap .
4.7.6.8 Floating-Point Trap Disable Bits .
4.7.7 FPCR Register and Dynamic Rounding Mode .
4.7.7.1 Accessing the FPCR .
4.7.7.2 Default Values of the FPCR .

4--20
4--21
4--23
4--24
4--25
4--26
4--27
4--28
4--29
4--30
4--31
4--32
4--33
4--34
4--35
4--36
4--37
4--38
4--39
4--41
4-42
4--43
4-45
4-47
4--51
4--53
4--56
4--57
4--57
4--57
4--58
4--59
4-60
4-62
4--63
4--65
4--66
4--66
4--66
4-66
4--67
4--67
4--67
4--70
4--71

v

I

4.7.7.3 Saving and Restoring the FPCR .
4.7.8 Floating-Point Computational Models .
4.7.9 Floating-Point Instruction Function Field Format .
4.7.10 IEEE Standard .
4.7.10.1 Conversion of NaN and Infinity Values .
4.7.10.2 Copying NaN Values .
4.7.10.3 Generating NaN Values .
4.7.10.4 Propagating NaN Values .
4.8 Memory Format Floating-Point Instructions .
4.8.1 Load F_floating .
4.8.2 Load G_floating .
4.8.3 Load S_floating .
4.8.4 Load T_floating .
4.8.5 Store F_floating .
4.8.6 Store G_floating .
4.8.7 Store S_floating .
4.8.8 Store T_floating " .
4.9 Branch Format Floating-Point Instructions .
4.9.1 Conditional Branch .
4.10 Floating-Point Operate Format Instructions .
4.10.1 Copy Sign .
4.10.2 Convert Integer to Integer .
4.10.3 Floating-Point Conditional Move .
4.10.4 Move from/to Floating-Point Control Register .
4.10.5 VAX. Floating Add .
4.10.6 IEEE Floating Add .
4.10.7 VAX. Floating Compare .
4.10.8 IEEE Floating Compare .
4.10.9 Convert VAX Floating to Integer .
4.10.10 Convert Integer to VAX. Floating .
4.10.11 Convert VAX Floating to VAX Floating .
4.10.12 Convert IEEE Floating to Integer .
4.10.13 Convert Integer to IEEE Floating .
4.10.14 Convert IEEE S_Floating to IEEE T_Floating .
4.10.15 Convert IEEE T_Floating to IEEE S_Floating .
4.10.16 VAX. Floating Divide .
4.10.17 IEEE Floating Divide .
4.10.18 VAX Floating Multiply .
4.10.19 IEEE Floating Multiply .
4.10.20 VAX Floating Subtract .
4.10.21 IEEE Floating Subtract .
4.11 Miscellaneous Instructions .
4.11.1 Call Privileged Architecture Library .
4.11.2 Exception Barrier .
4.11.3 Prefetch Data .

vi

4--71
4--72
4--73
4--76
4--76
4--77
4--77
4-77
4--78
4--79
4--80
4--81

4--82
4--83

4-84
4-85
4--86
4--87
4--88

4--90
4--93
4-94
4--95
4--97
4--98
4--99

4--100
4--101
4-103
4--104
4--105
4-107
4--108
4--109
4--110
4--111
4--113
4--114
4--115
4--116
4--118
4--119
4--120
4--121
4--122

4.11.4 Memory Barrier 4-124
4.11.5 Read Processor Cycle Counter 4-125
4.11.6 Tr-ap Barrier 4-126
4.11.7 Write Memory Barrier 4-127
4.12 VAX Compatibility Instructions 4-128
4.12.1 VAX Compatibility Instructions 4-129

Chapter 5 System Architecture and Programming Implications (I)

5.1 Introduction .
5.2 Physical Address Space Characteristics .
5.2.1 Coherency of Memory Access .
5.2.2 Granularity of Memory Access .
5.2.3 Width of Memory Access .
5.2.4 Memory-Like and Non-Memory-Like Behavior .
5.3 Translation Buffers and Virtual Caches .
5.4 Caches and Write Buffers .
5.5 Data Sharing .
5.5.1 Atomic Change of a Single Datum .
5.5.2 Atomic Update of a Single Datum .
5.5.3 Atomic Update of Data Structures .
5.5.4 Ordering Considerations for Shared Data Structures .
5.6 ReadlWrite Ordering .
5.6.1 Alpha AXP Shared Memory Model .
5.6.1.1 Architectural Definition of Processor Issue Sequence .
5.6.1.2 Definition of Processor Issue Order .
5.6.1.3 Definition of Memory Access Sequence .
5.6.1.4 Definition of Location Access Order .
5.6.1.5 Effect of Access Size .
5.6.1.6 Definition of Storage .
5.6.1.7 Relationship Between Issue Order and Access Order .
5.6.1.8 Definition of Before and After .
5.6.1.9 Timeliness .
5.6.2 Litmus Tests .
5.6.2.1 Litmus Test 1 (Impossible Sequence) .
5.6.2.2 Litmus Test 2 (Impossible Sequence) .
5.6.2.3 Litmus Test 3 (Impossible Sequence) .
5.6.2.4 Litmus Test 4 (Sequence Okay) .
5.6.2.5 Litmus Test 5 (Sequence Okay) .
5.6.2.6 Litmus Test 6 (Sequence Okay) .
5.6.2.7 Litmus Test 7 (Impossible Sequence) .
5.6.2.8 Litmus Test 8 (Impossible Sequence) .
5.6.2.9 Litmus Test 9 (Impossible Sequence) .
5.6.2.10 Litmus Test 10 (Sequence Okay) .
5.6.2.11 Litmus Test 11 (Impossible Sequence) .

5-1
5-1
5-1
5-2
5-3
5-3
5-4
5-4
5-5
5-5
5-6
5-7
5-8
5-9

5-10
5-11
5-11
5-13
5-13
5-13
5-15
5-15
5-15
5-16
5-16
5-16
5-16
5-17
5-17
5-17
5-17
5-18
5-18
5-18
5-19
5-19

vii

•

5.6.3 Implied Barriers. .. 5-20
5.6.4 Implications for Software .. 5-20
5.6.4.1 Single-Processor Data Stream .. 5-20
5.6.4.2 Single-Processor Instruction Stream 5-20
5.6.4.3 Multiple-Processor Data Stream (Including Single Processor with DMA 110) ... 5-20
5.6.4.4 Multiple-Processor Instruction Stream (Including Single Processor with DMA 110) 5-21
5.6.4.5 Multiple-Processor Context Switch 5-22
5.6.4.6 Multiple-Processor SendlReceive Interrupt 5-24
5.6.4.7 Implications for Memory Mapped 110. .. 5-24
5.6.5 Implications for Hardware. .. 5-25
5.7 Arithmetic '!'.raps. .. 5-26

Chapter 6 Common PALcode Architecture (I)

6.1 PALcode . 6-1
6.2 PALcode Instructions and Functions . 6-1
6.3 PALcode Environment . 6-2
6.4 Special Functions Required for PALcode . 6-2
6.5 PALcode Effects on System Code . 6-3
6.6 PALcode Replacement 6-3
6.7 Required PALcode Instructions 6-4
6.7.1 Drain Aborts 6-6
6.7.2 Halt. 6-8
6.7.3 Instruction Memory Barrier. 6-9

Chapter 7 Console Subsystem Overview (I)

Chapter 8 Input/Output Overview (I)

Figures

1-1 Instruction Format Overview. 1-4
2-1 Byte Format. 2-1
2-2 Word Format . 2-2
2-3 L9ngword Format. 2-2
2-4 Quadword Format . 2-3
2-5 F_floating Datum . 2-3
2-6 F_floating Register Format 2-3
2-7 G_floating Datum. 2-5
2-8 G_floating Format . 2-5
2-9 D_floating Datum. 2-6
2-10 D_floating Register Format . 2-6
2-11 S_floating Datum. 2-8
2-12 S_floating Register Format 2-8

viii

Tables

2-1 F_floating Load Exponent Mapping (MAP_F) .
2-2 S_floating Load Exponent Mapping (MAP_S) .
3-1 Operand Notation .
3-2 Operand Value Notation .
3-3 Expression Operand Notation .
3-4 Operators .
4-1 Opcode Qualifiers .
4-2 Memory Integer Load/Store Instructions .
4-3 Control Instructions Summary .
4-4 Jump Instructions Branch Prediction .
4-5 Integer Arithmetic Instructions Summary .
4-6 Logical and Shift Instructions Summary .
4-7 Byte-Manipulation Instructions Summary .
4-8 Floating-Point Control Register (FPCR) Bit Descriptions .
4-9 IEEE Floating-Point Function Field Bit Summary .
4-10 VAX Floating-Point Function Field Bit Summary .
4-11 Memory Format Floating-Point Instructions Summary .
4-12 Floating-Point Branch Instructions Summary .
4-13 Floating-Point Operate Instructions Summary .
4-14 Miscellaneous Instructions Summary .
4-15 VAX Compatibility Instructions Summary .

2-13
2-14
2-15
2-16
2-17
2-18
2-19
2-20
2-21
2-22
2-23
2-24
3-1
3-2
3-3
3-4
3-5
3-6
4-1
4-2
8-1

T_floating Datum .
T_floating Register Format .
X_Floating Datum .
X_Floating Register Format .
X_Floating Big-Endian Datum .
X_Floating Big-Endian Register Format .
Longword Integer Datum .
Longword Integer Floating-Register Format .
Quadword Integer Datum .
Quadword Integer Floating-Register Format .
Little-Endian Byte Addressing .
Big-Endian Byte Addressing .
Memory Instruction Format .
Memory Instruction with Function Code Format .
Branch Instruction Format .
Operate Instruction Format .
Floating-Point Operate Instruction Format .
PALcode Instruction Format .
Floating-Point Control Register (FPCR) Format .
Floating-Point Instruction Function Field .
Alpha AXP System Overview .

2-9
2-9

2-10
2-11
2-11
2-12
2-12
2-12
2-13
2-13
2-14
2-14
3-9

3-10
3-10
3-11
3-12
3-13
4-68
4-73
8-1

2-4
2-8
3-3
3-4
3-4
3-6
4-3
4-4

4-17
4-22
4-23
4-37
4-43
4-68
4-73
4-75
4-78
4-87
4-90

4-119
4-128

ix

I

5-1
5-2
5-3
5-4
6-1
6-2

x

Processor Issue Order .
Location Access Order .
Processor Issue Order With Access Size Effect .
Location Access Order With Access Size Effect .
PALcode Instructions that Require Recognition .
Required PALcode Instructions .

5-12
5-13
5-14
5-14
6-4
6-5

Chapter 1

Introduction (I)

Alpha AXP is a 64-bit load/store RISC architecture that is designed with particular
emphasis on the three elements that most affect performance: clock speed, multiple
instruction issue, and multiple processors.

The Alpha AXP architects examined and analyzed current and theoretical RISC
architecture design elements and developed high-performance alternatives for the
Alpha AXP architecture. The architects adopted only those design elements that
appeared valuable for a projected 25-year design horizon. Thus, Alpha AXP becomes
the first 21st century computer architecture.

The Alpha AXP architecture is designed to avoid bias toward any particular
operating system or programming language. Alpha AXP supports the OpenVMS
AXP, DEC OSF/l, and Windows NT AXP operating systems and supports simple
software migration for applications that run on those operating systems.

This manual describes in detail how Alpha AXP is designed to be the leadership
64-bit architecture of the computer industry.

1.1 The Alpha AXP Approach to RiSe Architecture

Alpha AXP Is a True 64-Bit Architecture
Alpha AXP was designed as a 64-bit architecture. All registers are 64 bits in
length and all operations are performed between 64-bit registers. It is not a 32
bit architecture that was later expanded to 64 bits.

Alpha AXP Is Designed for Very High-Speed Implementations
The instructions are very simple. All instructions are 32 bits in length. Memory
operations are either loads or stores. All data manipulation is done between
registers.

The Alpha AXP architecture facilitates pipelining multiple instances of the same
operations because there are no special registers and no condition codes.

The instructions interact with each other only by one instruction writing a register
or memory and another instruction reading from the same place. That makes it
particularly easy to build implementations that issue multiple instructions every
CPU cycle. (The first implementation issues two instructions per cycle.)

Alpha AXP makes it easy to maintain binary compatibility across multiple
implementations and easy to maintain full speed on multiple-issue implementations.
For example, there are no implementation-specific pipeline timing hazards, no load
delay slots, and no branch-delay slots.

Introduction (I) 1-1

I

The Alpha AXP Approach to Byte Manipulation
The Alpha AXP architecture does byte shifting and masking with normal 64-bit
register-to-register instructions, crafted to keep instruction sequences short.

Alpha AXP does not include single-byte store instructions. This has several
advantages:

• Cache and memory implementations need not include byte shift-and-mask logic,
and sequencer logic need not perform read-modify-write on memory locations.
Such logic is awkward for high-speed implementation and tends to slow down
cache access to normal 32-bit or 64-bit aligned quantities.

• The Alpha AXP approach to byte manipulation makes it easier to build a high
speed error-correcting write-back cache, which is often needed to keep a very fast
RISe implementation busy.

• The Alpha AXP approach can make it easier to pipeline multiple byte operations.

The Alpha AXP Approach to Arithmetic Traps
Alpha AXP lets the software implementor determine the precision of arithmetic
traps. With the Alpha AXP architecture, arithmetic traps (such as overflow and
underflow) are imprecise-they can be delivered an arbitrary number of instructions
after the instruction that triggered the trap. Also, traps from many different
instructions can be reported at once. That makes implementations that use
pipelining and multiple issue substantially easier to build.

However, if precise arithmetic exceptions are desired, trap barrier instructions can
be explicitly inserted in the program to force traps to be delivered at specific points.

The Alpha AXP Approach to MUltiprocessor Shared Memory
As viewed from a second processor (including an 110 device), a sequence of reads and
writes issued by one processor may be arbitrarily reordered by an implementation.
This allows implementations to use multibank caches, bypassed write buffers, write
merging, pipelined writes with retry on error, and so forth. If strict ordering
between two accesses must be maintained, explicit memory barrier instructions can
be inserted in the program.

The basic multiprocessor interlocking primitive is a RISC-style load_locked, modify,
store_conditional sequence. If the sequence runs without interrupt, exception, or
an interfering write from another processor, then the conditional store succeeds.
Otherwise, the store fails and the program eventually must branch back and retry
the sequence. This style of interlocking scales well with very fast caches, and makes
Alpha AXP an especially attractive architecture for building multiple-processor
systems.

Alpha AXP Instructions Include Hints for Achieving Higher Speed
A number of Alpha AXP instructions include hints for implementations, all aimed
at achieving higher speed.

• Calculated jump instructions have a target hint that can allow much faster
subroutine calls and returns.

1-2 Common Architecture (I)

• There are prefetching hints for the memory system that can allow much higher
cache hit rates.

• There are granularity hints for the virtual-address mapping that can allow much
more effective use of translation lookaside buffers for large contiguous -structures.

PALcode-The Alpha AXP Very Flexible Privileged Software Library
A Privileged Architecture Library (PALcode) is a set of subroutines that are specific
to a particular Alpha AXP operating system implementation. These subroutines
provide operating-system primitives for context switching, interrupts, exceptions,
and memory management. PALcode is similar to the BIOS libraries that are
provided in personal computers.

PALcode subroutines are invoked by implementation hardware or by software
CALL_PAL instructions.

PALcode is written in standard machine code with some implementation-specific
extensions to provide access to low-level hardware.

PALcode lets Alpha AXP implementations run the full OpenVMS AXP, DEC OSF/l,
and Windows NT AXP operating systems. PALcode can provide this functionality
with little overhead. For example, the OpenVMS AXP PALcode instructions
let Alpha AXP run OpenVMS with little more hardware than that found on a
conventional RISC machine: the PAL mode bit itself, plus 4 extra protection bits
in each translation buffer entry.

Other versions of PALcode_ can be developed for real-time, teaching, and other
applications.

PALcode makes Alpha AXP an especially attractive architecture for multiple
operating systems.

Alpha AXP and Programming Languages
Alpha AXP is an attractive architecture for compiling a large variety of programming
languages. Alpha AXP has been carefully designed to avoid bias toward one or two
programming lan~ages. For example:

• Alpha. AXP does not contain a subroutine call instruction that moves a
register window by a fixed amount. Thus, Alpha AXP is a good match for
programming languages with many parameters and programming languages
with no parameters.

• Alpha AXP does not contain a global integer overflow enable bit. Such a bit would
need to be changed at every subroutine boundary when a FORTRAN program
calls a C program.

1.2 Data Format Overview

Alpha AXP is a load/store RISC architecture with the following data characteristics:

• All operations are done between 64-bit registers.

Introduction (I) 1-3

I

• Memory is accessed via 64-bit virtual byte addresses, using the little-endian or,
optionally, the big-endian byte numbering convention.

• There are 32 integer registers and 32 floating-point registers.

• Longword (32-bit) and quadword (64-bit) integers are supported.

• Five floating-point data types are supported:

VAX F_floating (32-bit)

VAX G_floating (64-bit)

IEEE single (32-bit)

IEEE double (64-bit)

IEEE extended (128-bit)

1.3 Instruction Format Overview

As shown in Figure 1-1, Alpha AXP instructions are all 32 bits in length. As
represented in Figure 1-1, there are four major instruction format classes that
contain 0, 1, 2, or 3 register fields. All formats have a 6-bit opcode.

Figure 1-1: Instruction Format Overview

31 26 25 21 20 16 15 5 4

Opcode Number

Opcode RA Disp

Opcode RA RB Disp

Opcode RA RB Function I RC

PALcode Format

Branch Format

Memory Format

Operate Format

• PALcode instructions specify, in the function code field, one of a few dozen
complex operations to be performed.

• Conditional branch instructions test register Ra and specify a signed 21
bit PC-relative longword target displacement. Subroutine calls put the return
address in register Ra.

• Load and store instructions move longwords or quadwords between register
Ra and memory, using Rb plus a signed 16-bit displacement as the memory
address.

• Operate instructions for floating-point and integer operations are both
represented in Figure 1-1 by the operate format illustration and are as follows:

Floating-point operations use Ra and Rb as source registers, and write the
result in register Rc. There is an 11-bit extended opcode in the function field.

. 1-4 Common Architecture (I)

Integer operations use Ra and Rb or an 8-bit literal as the source operand,
and write the result in register Rc.

Integer operate instructions can use the Rb field and part of the function field
to specify an 8-bit literal. There is a 7-bit extended opcode in the function
field.

1.4 Instruction Overview

PALcode Instructions
As described above, a Privileged Architecture Library (PALcode) is a set
of subroutines that is specific to a particular Alpha AXP operating-system
implementation. These subroutines can be invoked by hardware or by software
CALL_PAL instructions, which use the function field to vector to the specified
subroutine.

Branch Instructions
Conditional branch instructions can test a register for positive/negative or for zero
/nonzero. They can also test integer registers for even/odd.

Unconditional branch instructions can write a return address into a register.

There is also a calculated jump instruction that branches to an arbitrary 64-bit
address in a register.

Load/Store Instructions I
Load and store instructions move either 32-bit or 64-bit aligned quantities from
and to memory. Memory addresses are flat 64-bit virtual addresses, with no
segmentation.

The VAX floating-point load/store instructions swap words to give a consistent
register format for floating-point operations.

A 32-bit integer datum is placed in a register in a canonical form that makes 33 copies
of the high bit of the datum. A 32-bit floating-point datum is placed in a register in
a canonical form that extends the exponent by 3 bits and extends the fraction with
29 low-order zeros. The 32-bit operates preserve these canonical forms.

There are facilities for doing byte manipulation in registers, eliminating the need
for 8-bit or 16-bit load/store instructions.

Compilers, as directed by user declarations, can generate any mixture of 32-bit and
64-bit operations. The Alpha AXP architecture has no 32/64 mode bit.

Integer Operate Instructions
The integer operate instructions manipulate full 64-bit values, and include the usual
assortment of arithmetic, compare, logical, and shift instructions.

There are just three 32-bit integer operates: add, subtract, and multiply. They
differ from their 64-bit counterparts only in overflow detection and in producing
32-bit canonical results.

Introduction (I) 1-5

There is no integer divide instruction.

The Alpha AXP architecture also supports the following additional operations:

• Scaled add/subtract instructions for quick subscript calculation

• 128-bit multiply for division by a constant, and multiprecision arithmetic

• Conditional move instructions for avoiding branch instructions

• An extensive set of in-register byte and word manipulation instructions

Integer overflow trap enable is encoded in the function field of each instruction,
rather than kept in a global state bit. Thus, for example, both ADDQN and ADDQ
opcodes exist for specifying 64-bit ADD with and without overflow checking. That
makes it easier to pipeline implementations.

Floating-Point Operate Instructions
The floating-point operate instructions include four complete sets of VAX and
IEEE arithmetic instructions, plus instructions for performing conversions between
floating-point and integer quantities.

In addition to the operations found in conventional RISC architectures, Alpha
AXP includes conditional move instructions for avoiding branches and merge sign
/exponent instructions for simple field manipulation.

The arithmetic trap enables and rounding mode are encoded in the function field
of each instruction, rather then kept in global state bits. That makes it easier to
pipeline implementations.

1.5 Instruction Set Characteristics

Alpha AXP instruction set characteristics are as follows:

• All instructions are 32 bits long and have a regular format.

• There are 32 integer registers (RO through R31), each 64 bits wide. R31 reads
as zero, and writes to R31 are ignored.

• There are 32 floating-point registers (FO through F31), each 64 bits wide. F31
reads as zero, and writes to F31 are ignored.

• All integer data manipulation is between integer registers, with up to two
variable register source operands (one may be an 8-bit literal), and one register
destination operand.

• All floating-point data manipulation is between floating-point registers, with up
to two register source operands and one register destination operand.

• All memory reference instructions are of the load/store type that move data
between registers and memory.

• There are no branch condition codes. Branch instructions test an integer or
floating-point register value, which may be the result of a previous compare.

• Integer and logical instructions operate on quadwords.

1-6 Common Architecture (I)

• Floating-point instructions operate on G_floating, F_floating, IEEE double, and
IEEE single operands. D_floating "format compatibility," in which binary files
of D_floating numbers may be processed, but without the last 3 bits of fraction
precision, is also provided.

• A minimal number of VAX compatibility instructions are included.

1.6 Terminology and Conventions

The following sections describe the terminology and conventions used in this book.

1.6.1 Numbering

All numbers are decimal unless otherwise indicated. Where there is ambiguity,
numbers other than decimal are indicated with the name of the base in subscript
form, for example, 1016.

1.6.2 Security Holes

A security hole is an error of commission, omission, or oversight in a system that
allows protection mechanisms to be bypassed.

Security holes exist when unprivileged software (that is, software running outside
of kernel mode) can:

• Affect the operation of another process without authorization from the operating
system;

• Amplify its privilege without authorization from the operating system; or

• Communicate with another process, either overtly or covertly, without
authorization from the operating system.

The Alpha AXP architecture has been designed to contain no architectural security
holes. Hardware (processors, buses, controllers, and so on) and software should
likewise be designed to avoid security holes.

1.6.3 UNPREDICTABLE and UNDEFINED
The terms UNPREDICTABLE and UNDEFINED are used throughout this book.
Their meanings are quite different and must be carefully distinguished.

In particular, only privileged software (software running in kernel mode) can trigger
UNDEFINED operations. Unprivileged software cannot trigger UNDEFINED
operations. However, either privileged or unprivileged software can trigger
UNPREDICTABLE results or occurences.

UNPREDICTABLE results or occurences do not disrupt the basic operation of the
processor; it continues to execute instructions in its normal manner. In contrast,
UNDEFINED operation can halt the processor or cause it to lose information.

The terms UNPREDICTABLE and UNDEFINED can be further described as follows:

Introduction (I) 1-7

I

UNPREDICTABLE

• Results or occurrences specified as UNPREDICTABLE may vary from moment
to moment, implementation to implementation, and instruction to instruction
within implementations. Software can never depend on results specified as
UNPREDICTABLE.

• An UNPREDICTABLE result may acquire an arbitrary value subject to a few
constraints. Such a result may be an arbitrary function of the input operands
or of any state information that is accessible to the process in its current access
mode. UNPREDICTABLE results may be unchanged from their previous values.

Operations that produce UNPREDICTABLE results may also produce exceptions.

• An occurrence specified as UNPREDICTABLE may happen or not based on an
arbitrary choice function. The choice function is subject to the same constraints
as are UNPREDICTABLE results and, in particular, must not constitute a
security hole.

Specifically, UNPREDICTABLE results must not depend upon, or be a function
of, the contents of memory locations or registers which are inaccessible to the
current process in the current access mode.

Also, operations that may produce UNPREDICTABLE results must not:

- Write or modify the contents of memory locations or registers to which the
current process in the current access mode does not have access, or

- Halt or hang the system or any of its components.

For example, a security hole would exist if some UNPREDICTABLE result
depended on the value of a register in another process, on the contents of
processor temporary registers left behind by some previously running process,
or on a sequence of actions of different processes.

UNDEFINED

• Operations specified as UNDEFINED may vary from moment to moment,
implementation to implementation, and instruction to instruction within
implementations. The operation may vary in effect from nothing, to stopping
system operation.

• UNDEFINED operations may halt the processor or cause it to lose information.
However, UNDEFINED operations must not cause the processor to hang, that
is, reach an unhalted state from which there is no transition to a normal state
in which the machine executes instructions.

1.6.4 Ranges and Extents

Ranges are specified by a pair of numbers separated by a ".." and are inclusive. For
example, a range of integers 0..4 includes the integers 0, 1, 2, 3, and 4.

1-8 Common Architecture (I)

Extents are specified by a pair of numbers in angle brackets separated by a colon
and are inclusive. For example, bits <7:3> specify an extent of bits including bits 7,
6, 5, 4, and 3.

1.6.5 ALIGNED and UNALIGNED

In this document the terms ALIGNED and NATURALLY ALIGNED are used
interchangeably to refer to data objects that are powers of two in size. An aligned
datum of size 2**N is stored in memory at a byte address that is a multiple of 2**N,
that is, one that has N low-order zeros. Thus, an aligned 64-byte stack frame has a
memory address that is a multiple of 64.

If a datum of size 2**N is stored at a byte address that is not a multiple of 2**N, it
is called UNALIGNED.

1.6.6 Must Be Zero (MBZ)

Fields specified as Must be Zero (MBZ) must never be filled by software with a non
zero value. These fields may be used at some future time. If the processor encounters
a non-zero value in a field specified as MBZ, an Illegal Operand exception occurs.

1.6.7 Read As Zero (RAZ)

Fields specified as Read as Zero (RAZ) return a zero when read.

1.6.8 Should Be Zero (SBZ)

Fields specified as Should be Zero (SBZ) should be filled by software with a zero I
value. Non-zero values in SBZ fields produce UNPREDICTABLE results and may
produce extraneous instruction-issue delays.

1.6.9 Ignore (IGN)

Fields specified as Ignore (IGN) are ignored when written.

1.6.10 Implementation Dependent (IMP)

Fields specified as Implementation Dependent (IMP) may be used for implementation
specific purposes. Each implementation must document fully the behavior of all
fields marked as IMP by the Alpha AXP specification.

1.6.11 Figure Drawing Conventions

Figures that depict registers or memory follow the convention that increasing
addresses run right to left and top to bottom.

1.6.12 Macro Code Example Conventions

All instructions in macro code examples are either listed in Chapter 4 or OpenVMS
AXP Software II-A, Chapter 2, or are stylized code forms found in Appendix A.

Introduction (I) 1-9

Chapter 2

Basic Architecture (I)

2.1 Addressing

The basic addressable unit in the Alpha AXP architecture is the 8-bit byte. Virtual
addresses are 64 bits long. An implementation may support a smaller virtual address
space. The minimum virtual address size is 43 bits.

Virtual addresses as seen by the program are translated into physical memory
addresses by the memory management mechanism.

Although the data types in Section 2.2 are described in terms of little-endian byte
addressing, implementations may also include big-endian addressing support, as
described in Section 2.3. All current implementations have some big-endian support.

2.2 Data Types

Following are descriptions of the Alpha AXP architecture data types.

2.2.1 Byte I
A byte is 8 contiguous bits starting on an addressable byte boundary. The bits are
numbered from right to left, 0 through 7, as shown in Figure 2-1.

Figure 2-1: Byte Format

7 0D:A
A byte is specified by its address A. A byte is an 8-bit value. The byte is only
supported in Alpha AXP by the extract, mask, insert, and zap instructions.

Basic Architecture (I) 2-1

2.2.2 Word

A word is 2 contiguous bytes starting on an arbitrary byte boundary. The bits are
numbered from right to left, 0 through 15, as shown in Figure 2-2.

Figure 2-2: Word Format

15 0

A word is specified by its address, the address of the byte containing bit o.
A word is a 16-bit value. The word is only supported in Alpha AX.P by the extract,
mask, and insert instructions.

2.2.3 Longword

A longword is 4 contiguous bytes starting on an arbitrary byte boundary. The bits
are numbered from right to left, 0 through 31, as shown in Figure 2-3.

Figure 2-3: Longword Format

31 0

1"--__I:A

A longword is specified by its address A, the address of the byte containing bit o. A
longword is a 32-bit value.

When interpreted arithmetically, a longword is a two's-complement integer with bits
of increasing significance from 0 through 30. Bit 31 is the sign bit. The longword is
only supported in Alpha AX.P by sign-extended load and store instructions and by
longword arithmetic instructions.

Note:

Alpha AX.P implementations will impose a significant performance penalty when
accessing longword operands that are not naturally aligned. (A naturally aligned
longword has zero as the low-order two bits of its address.)

2.2.4 Quadword

A quadword is 8 contiguous bytes starting on an arbitrary byte boundary. The bits
are numbered from right to left, 0 through 63, as shown in Figure 2-4.

2-2 Common Architecture (I)

Figure 2-4: Quadword Format

63 0

IL....-- I:A

A quadword is specified by its address A, the address of the byte containing bit o. A
quadword is a 64-bit value. When interpreted arithmetically, a quadword is either
a two's-complement integer with bits of increasing significance from 0 through 62
and bit 63 as the sign bit, or an unsigned integer with bits of increasing significance
from 0 through 63.

Note:

Alpha AXP implementations will impose a significant performance penalty when
accessing quadword operands that are not naturally aligned. (A naturally aligned
quadword has zero as the low-order three bits of its address.)

2.2.5 VAX Floating-Point Formats
VAX. floating-point numbers are stored in one set of formats in memory and in a
second set of formats in registers. The floating-point load and store instructions
convert between these formats purely by rearranging bits; no rounding or range
checking is done by the load and store instructions.

2.2.5.1 F_floating

An F_floating datum is 4 contiguous bytes in memory starting on an arbitrary
byte boundary. The bits are labeled from right to left, 0 through 31, as shown
in Figure 2-5.

Figure 2-5: F_floating Datum

31 161514 7 6 0

I---F-ra-c-tio-n-L-o--I~l--E-x-p.-""'I-F-ra-c-. -Hi~I:A

An F_floating operand occupies 64 bits in a floating register, left-justified in the
64-bit register, as shown in Figure 2-6.

Figure 2-6: F_floating Register Format

I

63 62 5251

~ Exp. I
Fraction

2928

I
o

Basic Architecture (I) 2-3

The F_floating load instruction reorders bits on the way in from memory, expands the
exponent from 8 to 11 bits, and sets the low-order fraction bits to zero. This produces
in the register an equivalent G_floating number suitable for either F_floating or G_
floating operations. The mapping from 8-bit memory-format exponents to II-bit
register-format exponents is shown in Table 2-1.

Table 2-1: F_floating Load Exponent Mapping (MAP_F)

Memory <14:7> Register <62:52>

11111111

1 xxxxxxx

oxxxxxxx

o0000000

1 000 1111111

1 000 xxxxxxx (xxxxxxx not all l's)

o 111 xxxxxxx (xxxxxxx not all O's)

o000 0000000

This mapping preserves both normal values and exceptional values.

The F_floating store instruction reorders register bits on the way to memory and
does no checking of the low-order fraction bits. Register bits <61:59> and <28:0> are
ignored by the store instruction.

An F_floating datum is specified by its address A, the address of the byte containing
bit O. The memory form of an F_floating datum is sign magnitude with bit 15 the
sign bit, bits <14:7> an excess-128 binary exponent, and bits <6:0> and <31:16>
a normalized 24-bit fraction with the redundant most significant fraction bit not
represented. Within the fraction, bits of increasing significance are from 16 through
31 and 0 through 6. The 8-bit exponent field encodes the values 0 through 255.
An exponent value of 0, together with a sign bit of 0, is taken to indicate that the
F_floating datum has a value of O.

If the result of a VAX. floating-point format instruction has a value of zero, the
instruction always produces a datum with a sign bit of 0, an exponent of 0, and
all fraction bits of o. Exponent values of 1..255 indicate true binary exponents of
-127..127. An exponent value of 0, together with a sign bit of 1, is taken as a
reserved operand. Floating-point instructions processing a reserved operand take
an arithmetic exception. The value of an F_floating datum is in the approximate
range 0.29*10**-38 through 1.7*10**38. The precision of an F_floating datum is
approximately one part in 2**23, typically 7 decimal digits. See Section 4.7.

Note:

Alpha AXP implementations will impose a significant performance penalty when
accessing F_floating operands that are not naturally aligned. (A naturally
aligned F_floating datum has zero as the low-order two bits of its address.)

2-4 Common Architecture (I)

2.2.5.2 G_floating

A G_floating datum in memory is 8 contiguous bytes starting on an arbitrary byte
boundary. The bits are labeled from right to left, 0 through 63, as shown in
Figure 2-7.

Figure 2-7: G_floating Datum

31 161514 430

Fraction Midh 81 Exp. IFrac.Hi

Fraction Lo Fraction Midi

:A

:A+4

A G_floating operand occupies 64 bits in a floating register, arranged as shown in
Figure 2-8.

Figure 2-8: G_floating Format

63 62 5251

~1 Exp. I Fraction Hi

3231

I
Fraction Lo

o

I:F'

A G_floating datum is specified by its address A, the address of the byte containing I
bit O. The form of a G_fioating datum is sign magnitude with bit 15 the sign bit, bits
<14:4> an excess-1024 binary exponent, and bits <3:0> and <63:16> a normalized 53-
bit fraction with the redundant most significant fraction bit not represented. Within
the fraction, bits of increasing significance are from 48 through 63,32 through 47,16
through 31, and 0 through 3. The II-bit exponent field encodes the values 0 through
2047. An exponent value of 0, together with a sign bit of 0, is taken to indicate that
the G_floating datum has a value of O.

If the result ofa floating-point instruction has a value of zero, the instruction always
produces a datum with a sign bit of 0, an exponent of 0, and all fraction bits
of O. Exponent values of 1..2047 indicate true binary exponents of -1023..1023.
An exponent value of 0, together with a sign bit of 1, is taken as a reserved
operand. Floating-point instructions processing a reserved operand take a user
visible arithmetic exception. The value of a G_floating datum is in the approximate
range 0.56*10**-308 through 0.9*10**308. The precision of a G_floating datum is
approximately one part in 2**52, typically 15 decimal digits. See Section 4.7.

Note:

Alpha AXP implementations will impose a significant performance penalty when
accessing G_floating operands that are not naturally aligned. (A naturally
aligned G_floating datum has zero as the low-order three bits of its address.)

Basic Architecture (I) 2-5

2.2.5.3 D_floating

A D_floating datum in memory is 8 contiguous bytes starting on an arbitrary byte
boundary. The bits are labeled from right to left, 0 through 63, as shown in
Figure 2-9.

Figure 2-9: D_floating Datum

31 161514 7 6 o
Fraction Midh 81 Exp. I Frac.Hi

Fraction Lo Fraction Midi

:A

:A+4

A D_floating operand occupies 64 bits in a floating register, arranged as shown in
Figure 2-10.

Figure 2-10: D_floating Register Format

6362 5554 4847 3231 1615

8 Exp. Frac. Hi Fraction Midh Fraction Midi Fraction Lo :Fx

The reordering of bits required for a D_floating load or store are identical to those
required for a G_floating load or store. The G_floating load and store instructions
are therefore used for loading or storing D_floating data.

A D_floating datum is specified by its address A, the address of the byte containing
bit o. The memory form of a D_floating datum is identical to an F_floating datum
except for 32 additional low significance fraction bits. Within the fraction, bits of
increasing significance are from 48 through 63, 32 through 47, 16 through 31, and 0
through 6. The exponent conventions and approximate range of values is the same
for D_floating as F_floating. The precision of a D_floating datum is approximately
one part in 2**55, typically 16 decimal digits.

Notes:

• D_floating is not a fully supported data type; no D_floating arithmetic operations
are provided in the architecture. For backward compatibility, exact D_
floating arithmetic may be provided via software emulation. D_floating "format
compatibility" in which binary files ofD_floating numbers may be processed, but
without the last 3 bits of fraction precision, can be obtained via conversions to
G_floating, G arithmetic operations, then conversion back to D_floating.

• Alpha AXP implementations will impose a significant performance penalty on
access to D_floating operands that are not naturally aligned. (A naturally aligned
D_floating datum has zero as the low-order three bits of its address.)

2-6 Common Architecture (I)

2.2.6 IEEE Floating-Point Formats

The IEEE standard for binary floating-point arithmetic, ANSIIIEEE 754-1985,
defines four floating-point formats in two groups, basic and extended, each having
two widths, single and double. The Alpha AXP architecture supports the basic
single and double formats, with the basic double format serving as the extended
single format. The values representable within a format are specified by using three
integer parameters:

1. P-the number of fraction bits

2. Emax-the maximum exponent

3. Emin-the minimum exponent

Within each format, only the following entities are permitted:

1. Numbers of the form (-l)**S x 2**E x b(O).b(1)b(2)..b(P-1) where:

a. S =0 or 1

b. E = any integer between Emin and Emax, inclusive

c. b(n) = 0 or 1

2. Two infinities-positive and negative

3. At least one Signaling NaN

4. At least one Quiet NaN

NaN is an acronym for Not-a-Number. A NaN is an IEEE floating-point bit
pattern that represents something other than a number. NaNs come in two forms:
Signaling NaNs and Quiet NaNs. Signaling NaNs are used to provide values
for uninitialized variables and for arithmetic enhancements. Quiet NaNs provide
retrospective diagnostic information regarding previous invalid or unavailable data
and results. Signaling NaNs signal an invalid operation when they are an operand
to an arithmetic instruction, and may generate an arithmetic exception. Quiet
NaNs propagate through almost every operation without generating an arithmetic
exception.

Arithmetic with the infinities is handled as if the operands were of arbitrarily large
magnitude. Negative infinity is less than every finite number; positive infinity is
greater than every finite number.

2.2.6.1 S_Floating

An IEEE single-precision, or S_floating, datum occupies 4 contiguous bytes in
memory starting on an arbitrary byte boundary. The bits are labeled from right
to left, 0 through 31, as shown in Figure 2-11.

Basic Architecture (I) 2-7

I

Figure 2-11: S_floating Datum

3130 2322

~ Exp. I Fraction

o

I:A

An S_floating operand occupies 64 bits in a floating register, left-justified in the
64-bit register, as shown in Figure 2-12.

Figure 2-12: S_floating Register Format

63 62 5251

~ Exp. I
Fraction

2928

I
o

o

I:FX

The S_floating load instruction reorders bits on the way in from memory, expanding
the exponent from 8 to 11 bits, and sets the low-order fraction bits to zero. This
produces in the register an equivalent T_floating number, suitable for either S_
floating or T_floating operations. The mapping from 8-bit memory-format exponents
to II-bit register-format exponents is shown in Table 2-2.

Table 2-2: S_floating Load Exponent Mapping (MAP_S)

Memory <30:23> Register <62:52>

11111111

1 xxxxxxx

oxxxxxxx

o0000000

1 111 1111111

1000xxxxxxx

o 111 xxxxxxx

o000 0000000

(xxxxxxx not all l's)

(xxxxxxx not all O's)

This mapping preserves both normal values and exceptional values. Note that the
mapping for alII's differs from that of F_floating load, since for S_floating alII's is
an exceptional value and for F_floating alII's is a normal value.

The S_floating store instruction reorders register bits on the way to memory and
does no checking of the low-order fraction bits. Register bits <61:59> and <28:0> are
ignored by the store instruction. The S_floating load instruction does no checking of
the input.

The S_floating store instruction does no checking of the data; the preceding operation
should have specified an S_floating result.

An S_floating datum is specified by its address A, the address of the byte containing
bit o. The memory form ofan S_floating datum is sign magnitude with bit 31 the sign
bit, bits <30:23> an excess-127 binary exponent, and bits <22:0> a 23-bit fraction.

2-8 Common Architecture (I)

The value (V) of an 8_floating number is inferred from its constituent sign (8),
exponent (E), and fraction (F) fields as follows:

1. If E=255 and F<>O, then V is NaN, regardless of 8.

2. If E=255 and F=O, then V = (-1)**8 x Infinity.

3. If 0 < E < 255, then V = (-1)**8 x 2**(E-127) x (I.F).

4. If E=O and F<>O, then V = (-1)**8 x 2**(-126) x (O.F).

5. If E=O and F=O, then V = (-1)**8 x 0 (zero).

Floating-point operations on 8_floating numbers may take an arithmetic exception
for a variety of reasons, including invalid operations, overflow, underflow, division
by zero, and inexact results.

Note:

Alpha AXP implementations will impose a significant performance penalty when
accessing 8_floating operands that are not naturally aligned. (A naturally
aligned S_floating datum has zero as the low-order two bits of its address.)

2.2.6.2 T_floating

An IEEE double-precision, or T_floating, datum occupies 8 contiguous bytes in
memory starting on an arbitrary byte boundary. The bits are labeled from right
to left, 0 through 63, as shown in Figure 2-13.

Figure 2-13: T_floating Datum

3130 2019 o I
sI Exponent I

Fraction Lo

Fraction Hi

:A

:A+4

A T_floating operand occupies 64 bits in a floating register, arranged as shown in
Figure 2-14.

Figure 2-14: T_floating Register Format

63 62 5251

B Exp. I Fraction Hi

3231

I
Fraction Lo

The T_floating load instruction performs no bit reordering on input, nor does it
perform checking of the input data.

The T_floating store instruction performs no bit reordering on output. This
instruction does no checking of the data; the preceding operation should have
specified a T_floating result.

Basic Architecture (I) 2-9

A T_floating datum is specified by its address A, the address of the byte containing
bit o. The form of a T_floating datum is sign magnitude with bit 63 the sign bit, bits
<62:52> an excess-1023 binary exponent, and bits <51:0> a 52-bit fraction.

The value (V) of a T_floating number is inferred from its constituent sign (8),
exponent (E), and fraction (F) fields as follows:

1. If E=2047 and F<>O, then V is NaN, regardless of 8.

2. IfE=2047 and F=O, then V = (-1)**8 x Infinity.

3. If 0 < E < 2047, then V = (-1)**8 x 2**(E-l023) x (l.F).

4. If E=O and F<>O, then V = (-1)**8 x 2**(-1022) x (O.F).

5. If E=O and F=O, then V = (-1)**8 x 0 (zero).

Floating-point operations on T_floating numbers may take an arithmetic exception
for a variety of reasons, including invalid operations, overflow, underflow, division
by zero, and inexact results.

Note:

Alpha AXP implementations will impose a significant performance penalty when
accessing T_floating operands that are not naturally aligned. (A naturally
aligned T_floating datum has zero as the low-ord~r three bits of its address.)

2.2.6.3 X_Floating

8upport for 128-bit IEEE extended-precision (X_float) floating-point is initially
provided entirely through software. This section is included to preserve the intended
consistency of implementation with other IEEE floating-point data types, should the
X_float data type be supported in future hardware.

An IEEE extended-precision, or X_floating, datum occupies 16 contiguous bytes in
memory, starting on an arbitrary byte boundary. The bits are labeled from right to
left, 0 through 127, as shown in Figure 2-15.

Figure 2-15: X_Floating Datum

6362 4847 0

L Fraction_low lOA
@]r------Ex-p-on-e-nt---~--------F-ra-ct-io-n_-h-i9-h-------------., :A+8

An X_floating datum occupies two consecutive even/odd floating-point registers (such
as F4IF5), as shown in Figure 2-16.

2-10 Common Architecture (I)

Figure 2-16: X_Floating Register Format

127126 112 111

Fracti;;_high
6463

Fract:;_IOW

0

S Exponent
I I
A

Y Y

Fn OR 1 Fn

An X_floating datum is specified by its address A, the address of the byte containing
bit o. The form of an X_floating datum is sign magnitude with bit 127 the sign bit,
bits <126:112> an excess-16383 binary exponent, and bits <111:0> a 112-bit fraction.

The value (V) of an X_floating number is inferred from its constituent sign (8),
exponent (E) and fraction (F) fields as follows:

1. If E=32767 and F<>O, then V is a NaN, regardless of 8.

2. If E=32767 and F=O, then V = (-1)**8 x Infinity.

3. If 0 < E < 32767, then V = (-1)**8 x 2**(E-16383) x (l.F).

4. If E=O and F<> 0, then V = (-1)**8 x 2**(-16382) x (O.F).

5. If E = 0 and F = 0, then V = (-1)**8 x 0 (zero).

Note:

Alpha AXP implementations will impose a significant performance penalty when
accessing X_floating operands that are not naturally aligned. (A naturally
aligned X_floating datum has zero as the low-order four bits of its address.)

X_Floating Big-Endian Formats
8ection 2.3 describes Alpha AXP support for big-endian data types. It is intended
that software or hardware implementation for a big-endian X_float data type comply
with that support and have the following formats.

Figure 2-17: X_Floating Big-Endian Datum

Byte
o

A: EJ========E=xp=o=ne=n=t========================F=ra=c=tio=n=_h=i9=h==================1Byte
15

I

A+8: Fraction_low I
~_---------

Basic Architecture (I) 2-11

Figure 2-18: X_Floating Big-Endian Register Format
Byte Byte

o 15

L-S....&..-E_x_po_n_e_nt-J- F_ra_c...;>t;nl-;-_h_i9_h ----1.. F_ra_c~t~;)-_-IO-W------.....J1
y

Fn OR 1

J..
y

Fn

2.2.7 Longword Integer Format in Floating-Point Unit

A longword integer operand occupies 32 bits in memory, arranged as shown in
Figure 2-19.

Figure 2-19: Longword Integer Datum

3130 0

~L....- ln_te_9_e_r I:A

A longword integer operand occupies 64 bits in a floating register, arranged as shown
in Figure 2-20.

Figure 2-20: Longword Integer Floating-Register Format

63 62 61 59 58 29 28 0mr------,nteg-er-----r-I---o---I:FX
There is no explicit longword load or store instruction; the S_floating load/store
instructions are used to move longword data into or out of the floating registers.
The register bits <61:59> are set by the S_floating load exponent mapping. They are
ignored by S_floating store. They are also ignored in operands of a longword integer
operate instruction, and they are set to 000 in the result of a longword operate
instruction.

The register format bit <62> "I" in Figure 2-20 is part of the Integer field in
Figure 2-19 and represents the high-order bit of that field.

Note:

Alpha AXP implementations will impose a significant performance penalty
when accessing longwords that are not naturally aligned. (A naturally aligned
longword datum has zero as the low-order two bits of its address.)

2-12 Common Architecture (I)

2.2.8 Quadword Integer Format in Floating-Point Unit
A quadword integer operand occupies 64 bits in memory, arranged as shown in
Figure 2-21.

Figure 2-21 : Quadword Integer Datum

3130 0

[Integer La I'A
~r--------I-nt-eg-e-r-H-i--------i :A+4

A quadword integer operand occupies 64 bits in a floating register, arranged as
shown in Figure 2-22.

Figure 2-22: Quadword Integer Floating-Register Format

6362 3231 0

8 ,n_te_ge_r_H_i -.JIL.... ln_te_ge_r_Lo I:FX

There is no explicit quadword load or store instruction; the T_floating load/store
instructions are used to move quadword data into or out of the floating registers.

The T_floating load instruction performs no bit reordering on input. The T_floating
store instruction performs no bit reordering on output. This instruction does no
checking of the data; when used to store quadwords, the preceding operation should
have specified a quadword result.

Note:

Alpha AXP implementations will impose a significant performance penalty when
accessing quadwords that are not naturally aligned. (A naturally aligned
quadword datum has zero as the low-order three bits of its address.)

2.2.9 Data Types with No Hardware Support

The following VAX data types are not directly supported in Alpha AXP hardware.

• Octaword

• H_floating

• D_floating (except load/store and convert to/from G_floating)

• Variable-Length Bit Field

• Character String

• Trailing Numeric String

Basic Architecture (I) 2-13

•

• Leading Separate Numeric String

• Packed Decimal String

2.3 Big-endian Addressing Support

Alpha AXP implementations may include optional big-endian addressing support.

In a little-endian machine, the bytes within a quadword are numbered right to left:

Figure 2-23: Little-Endian Byte Addressing

o

In a big-endian machine, they are numbered left to right:

Figure 2-24: Big-Endian Byte Addressing

Bit numbering within bytes is not affected by the byte numbering convention (big
endian or little-endian).

The format for the X_float big-endian data type is shown in Section 2.2.6.3.

The byte numbering convention does not matter when accessing complete aligned
quadwords in memory. However, the numbering convention does matter when
accessing smaller or unaligned quantities, or when manipulating data in registers,
as follows:

• A quadword load or store of data at location 0 moves the same eight bytes under
both numbering conventions. However, a longword load or store of data at
location 4 must move the leftmost half of a quadword under the little-endian
convention, and the rightmost half under the big-endian convention. Thus, to
support both conventions, the convention being used must be known and it must
affect longword load/store operations.

• A byte extract of byte 5 from a quadword of data into the low byte of a register
requires a right shift of 5 bytes under the little-endian convention, but a right
shift of 2 bytes under the big-endian convention.

• Manipulating data in a register is almost the same for both conventions. In
both, integer and floating-point data have their sign bits in the leftmost byte
and their least significant bit in the rightmost byte, so the same integer and

2-14 Common Architecture (I)

floating-point instructions are used unchanged for both conventions. Big-endian
character strings have their most significant character on the left, while little
endian strings have their most significant character on the right.

• The compare byte (CMPBGE) instruction is neutral about direction, doing eight
byte compares in parallel. However, following the CMPBGE instruction, the code
is different that examines the byte mask to determine which string is larger,
depending on whether the rightmost or leftmost unequal byte is used. Thus,
compilers must be instructed to generate somewhat different code sequences for
the two conventions.

Implementations that include big-endian support must supply all of the following
features:

• A means at boot time to choose the byte numbering convention. The
implementation is not required to support dynamically changing the convention
during program execution. The chosen convention applies to all code executed,
both operating-system and user.

• If the big-endian convention is chosen, the longword-Iength load/store
instructions (LDF, LDL, LDL_L, LDS, STF, STL, STL_C, STS) invert bit va<2>
(bit 2 of the virtual address). This has the effect of accessing the half of a
quadword other than the half that would be accessed under the little-endian
convention.

• If the big-endian convention is chosen, the byte manipulation instructions
(EXTxx, INSxx, MSKxx) invert bits Rbv<2:0>. This has the effect of changing a
shift of 5 bytes into a shift of 2 bytes, for example.

The instruction stream is always considered to be little-endian, and is independent
of the chosen byte numbering convention. Compilers, linkers, and debuggers must
be aware of this when accessing an instruction stream using data-stream load/store
instructions. Thus, the rightmost instruction in a quadword is always executed first
and always has the instruction-stream address 0 MOD 8. The same bytes accessed
by a longword load/store instruction have data-stream address 0 MOD 8 under the
little-endian convention, and 4 MOD 8 under the big-endian convention.

Using either byte numbering convention, it is sometimes necessary to access data
that originated on a machine that used the other convention. When this occurs, it
is often necessary to swap the bytes within a datum. See Appendix A, Byte Swap,
for a suggested/code sequence.

Basic Architecture (I) 2-15

•

Chapter 3

Instruction Formats (I)

3.1 Alpha AXP Registers

Each Alpha AXP processor has a set of registers that hold the current processor
state. If an Alpha AXP system contains multiple Alpha AXP processors, there are
multiple per-processor sets of these registers.

3.1.1 Program Counter
The Program Counter (PC) is a special register that addresses the instruction stream.
As each instruction is decoded, the PC is advanced to the next sequential instruction.
This is referred to as the updated PC. Any instruction that uses the value of the PC
will use the updated PC. The PC includes only bits <63:2> with bits <1:0> treated as
RAZIIGN. This quantity is a longword-aligned byte address. The PC is an implied
operand on conditional branch and subroutine jump instructions. The PC is not
accessible as an integer register.

3.1.2 Integer Registers
There are 32 integer registers (RO through R31), each 64 bits wide.

Register R31 is assigned special meaning by the Alpha AXP architecture. When R31
is specified as a register source operand, a zero-valued operand is supplied.

For all cases except the Unconditional Branch and Jump instructions, results of
an instruction that specifies R31 as a destination operand are discarded. Also,
it is UNPREDICTABLE whether the other destination operands (implicit and
explicit) are changed by the instruction. It is implementation dependent to what
extent the instruction is actually executed once it has been fetched. It is also
UNPREDICTABLE whether exceptions are signaled during the execution of such
an instruction. Note, however, that exceptions associated with the instruction fetch
of such an instruction are always signaled.

There are some interesting cases involving R31 as a destination:

• STx_C R31,disp(Rb)

Although this might seem like a good way to zero out a shared location and reset
the lock_flag, this instruction causes the lock_flag and virtual location (Rbv +
SEXT(disp)} to become UNPREDICTABLE.

• LDx_L R31,disp(Rb)

This instruction produces no useful result since it causes both lock_flag and
locked_physical_address to become UNPREDICTABLE.

Instruction Formats (I) 3-1

•

Unconditional Branch (BR and BSR) and Jump (JMP, JSR, RET, and JSR_
COROUTINE) instructions, when R31 is specified as the Ra operand, execute
normally and update the PC with the target virtual address. Of course, no PC
value can be saved in R31.

3.1.3 Floating-Point Registers

There are 32 floating-point registers (FO through F31), each 64 bits wide.

When F31 is specified as a register source operand, a true zero-valued operand is
supplied. See Section 4.7.3 for a definition of true zero.

Results of an instruction that specifies F31 as a destination operand are discarded
and it is UNPREDICTABLE whether the other destination operands (implicit and
explicit) are changed by the instruction. In this case, it is implementation-dependent
to what extent the instruction is actually executed once it has been fetched. It is also
UNPREDICTABLE whether exceptions are signaled during the execution of such an
instruction. Note, however, that exceptions associated with the instruction fetch of
such an instruction are always signaled.

A floating-point instruction that operates on single-precision data reads all bits
<63:0> of the source floating-point register. A floating-point instruction that
produces a single-precision result writes all bits <63:0> of the destination floating
point register.

3.1.4 Lock Registers

There are two per-processor registers associated with the LDx_L and STx_C
instructions, the lock_flag and the locked_physical_address register. The use of these
registers is described in Section 4.2.

3.1.5 Processor Cycle Counter (PCC) Register

The PCC register consists of two 32-bit fields. The low-order 32 bits (PCC<31:0»
are an unsigned, wrapping counter, PCC_CNT. The high-order 32 bits (PCC<63:32»,
PCC_OFF, are operating system dependent in their implementation.

PCC_CNT is the base clock register for measuring time intervals, and is suitable for
timing intervals on the order of nanoseconds.

PCC_CNT increments once per N CPU cycles, where N is an implementation-specific
integer in the range 1..16. The cycle counter frequency is the number of times the
processor cycle counter gets incremented per second. The integer count wraps to
o from a count of FFFF FFFF16. The counter wraps no more frequently than 1.5
times the implementation's interval clock interrupt period (which is two thirds of
the interval clock interrupt frequency), which guarantees that an interrupt occurs
before PCC_CNT overflows twice.

PCC_OFF need not contain a value related to time and could contain all zeros in
a simple implementation. However, if PCC_OFF is used to calculate a per-process
or per-thread cycle count, it must contain a value that, when added to PCC_CNT,
returns the total PCC register count for that process or thread, modulo 2**32.

3-2 Common Architecture (I)

Implementation Note:

OpenVMS AXP and DEC OSF/1 supply a per-process value in PCC_OFF.

PCC is required on all implementations. It is required for every processor, and each
processor on a multiprocessor system has its own private, independent PCC.

The PCC is read by the RPCC instruction. See Section 4.11.5.

3.1.6 Optional Registers
Some Alpha AXP implementations may include optional memory prefetch or VAX
compatibility processor registers.

3.1.6.1 Memory Prefetch Registers

If the prefetch instructions FETCH and FETCH_M are implemented, an
implementation will include two sets of state prefetch registers used by those
instructions. The use of these registers is described in Section 4.11. These registers
are not directly accessible by software and are listed for completeness.

3.1.6.2 VAX Compatibility Register

The VAX compatibility instructions RC and RS include the intr_flag register, as
described in Section 4.12.

3.2 Notation

The notation used to describe the operation ofeach instruction is given as a sequence
of control and assignment statements in an ALGOL-like syntax.

3.2.1 Operand Notation
Tables 3-1, 3-2, and 3-3 list the notation for the operands, the operand values, and
the other expression operands.

Table 3-1: Operand Notation

Notation Meaning

Ra An integer register operand in the Ra field of the instruction.

Rb An integer register operand in the Rb field of the instruction.

#b An integer literal operand in the Rb field of the instruction.

Rc An integer register operand in the Rc field of the instruction.

Fa A floating-point register operand in the Ra field of the instruction.

Fb A floating-point register operand in the Rb field of the instruction.

Fc A floating-point register operand in the Rc field of the instruction.

Instruction Formats (I) 3-3

•

Table 3-2: Operand Value Notation

Notation Meaning

Rav The value of the Ra operand. This is the contents of register Ra.

Rbv The value of the Rb operand. This could be the contents of register Rb, or a
zero-extended 8-bit literal in the case of an Operate format instruction.

Fav The value of the floating point Fa operand. This is the contents of register Fa.

Fbv The value of the floating point Fb operand. This is the contents of register Fb.

Table 3-3: Expression Operand Notation
Notation Meaning

IPR_x

IPR_SP[mode]

PC

Rn

Fn

X[m]

Contents of Internal Processor Register x

Contents of the per-mode stack pointer selected by mode

Updated PC value

Contents of integer register n

Contents of floating-point register n

Element m of array X

3.2.2 Instruction Operand Notation

The notation used to describe instruction operands follows from the operand specifier
notation used in the VAX Architecture Standard. Instruction operands are described
as follows:

<name>.<access type><data type>

<name>
Specifies the instruction field (Ra, Rb, Rc, or disp) and register type of the operand
(integer or floating). It can be one of the following:

Name

disp

fnc

Ra

Rb

#b

Rc

Fa

Meaning

The displacement field of the instruction.

The PALcode function field of the instruction.

An integer register operand in the Ra field of the instruction.

An integer register operand in the Rb field of the instruction.

An integer literal operand in the Rb field of the instruction.

An integer register operand in the Rc field of the instruction.

A floating-point register operand in the Ra field of the instruction.

3-4 Common Architecture (I)

Name Meaning

Fb A floating-point register operand in the Rb field of the instruction.

Fc A floating-point register operand in the Rc field of the instruction.

<access type>
Is a letter denoting the operand access type:

Access Type

a

r

m

w

Meaning

The operand is used in an address calculation to form an effective
address. The data type code that follows indicates the units of
addressability (or scale factor) applied to this operand when the
instruction is decoded.

For example:

".al" means scale by 4 (longwords) to get byte units (used in branch
displacements); ".ab" means the operand is already in byte units
(used in load/store instructions).

The operand is an immediate literal in the instruction.

The operand is read only.

The operand is both read and written. I
The operand is write only.

<data type>
Is a letter denoting the data type of the operand:

Data Type

b

f

g

I

q

s

t

w

x

Meaning

Byte

F_floating

G_floating

Longword

Quadword

IEEE single floating (S_floating)

IEEE double floating (T_floating)

Word

The data type is specified by the instruction

Instruction Formats (I) 3-5

3.2.3 Operators

Table 3-4 describes the operators:

Table 3-4: Operators
Operator

+

*
*U

**
/

+-

I I
()

(x)

x<m:n>

x<m>

ACCESS(x,y)

AND

ARITH_RIGHT_SHIFT(x,y)

3-6 Common Architecture (I)

Meaning

Comment delimiter

Addition

Subtraction

Signed multiplication

Unsigned multiplication

Exponentiation (left argument raised to right argument)

Division

Replacement

Bit concatenation

Indicates explicit operator precedence

Contents of memory location whose address is x

Contents of bit field of x defined by bits n through m

M'th bit ofx

Accessibility of the location whose address is x using the
access mode y. Returns a Boolean value TRUE if the address
is accessible, else FALSE.

Logical product

Arithmetic right shift of first operand by the second operand.
Y is an unsigned shift value. Bit 63, the sign bit, is copied
into vacated bit positions and shifted out bits are discarded.

X is a quadword, y is an 8-bit vector in which each bit
corresponds to a byte of the result. The y bit to x byte
correspondence is y<n> +-+ x<8n+7:8n>. This correspondence
also exists between y and the result.

For each bit of y from n = 0 to 7, if y <n> is 0 then byte <n>
of x is copied to byte <n> of result, and if y <n> is 1 then byte
<n> of result is forced to all zeros.

Table 3-4 (Cant.): Operators

Operator Meaning

CASE

DIY

LEFT_SHIFT(x,y)

LOAD_LOCKED

MINU(x,y)

xMODy

NOT

OR

PHYSICAL_ADDRESS

PRIORITY_ENCODE

The CASE construct selects one of several actions based on
the value of its argument. The form of a case is:

CASE argument OF
argvaluel: action_l
argvalue2: action_2

argvaluen: action_n
[otherwise: default_action]

ENDCASE

If the value of argument is argvaluel then action_l is
executed; if argument =argvalue2, then action_2 is executed,
and so forth.

Once a single action is executed, the code stream breaks
to the ENDCASE (there is an implicit break as in Pascal).
Each action may nonetheless be a sequence of pseudocode
operations, one operation per line.

Optionally, the last argvalue may be the atom 'otherwise'. The
associated default action will be taken if none of the other
argvalues match the argument.

Integer division (truncates)

Logical left shift of first operand by the second operand.

Y is an unsigned shift value. Zeros are moved into the vacated
bit positions, and shifted out bits are discarded.

The processor records the target physical address in a per
processor locked_physical_address register and sets the per
processor lock_flag.

Log to the base 2

F_float or S_float memory-to-register exponent mapping
function.

Returns the smaller of x and y, with x and y interpreted as
unsigned integers

x modulo y

Logical (ones) complement

Logical sum

Translation of a virtual address

Returns the bit position of most significant set bit, interpret
ing its argument as a positive integer (= int(19(x))).

For example:

priority_encode (255) = 7

Instruction Formats (I) 3-7

•

Table 3-4 (Cont.): Operators
Operator Meaning

Relational Operators

Operator

LT
LTU
LE

LEU
EQ

NE

GE

GEU
GT
GTU
LBC
LBS

Meaning

Less than signed

Less than unsigned

Less or equal signed

Less or equal unsigned

Equal signed and unsigned

Not equal signed and unsigned

Greater or equal signed

Greater or equal unsigned

Greater signed

Greater unsigned

Low bit clear

Low bit set

RIGHT_SHIFT(x,Y)

SEXT(x)

STORE_CONDITIONAL

TEST(x,cond)

XOR

ZEXT(x)

Logical right shift of first operand by the second operand. Y
is an unsigned shift value. Zeros are moved into vacated bit
positions, and shifted out bits are discarded.

X is sign-extended to the required size.

If the lock_flag is set, then do the indicated store and clear
the lock_flag.

The contents of register x are tested for branch condition
(cond) true. TEST returns a Boolean value TRUE if x bears
the specified relation to 0, else FALSE is returned. Integer
and floating test conditions are drawn from the preceding list
of relational operators.

Logical difference

X is zero-extended to the required size.

3.2.4 Notation Conventions

The following conventions are used:

1. Only operands that appear on the left side ofa replacement operator are modified.

2. No operator precedence is assumed other than that replacement (~) has the
lowest precedence. Explicit precedence is indicated by the use of "{}".

3-8 Common Architecture (I)

3. All arithmetic, logical, and relational operators are defined in the context of their
operands. For example, "+" applied to G_floating operands means a G_floating
add, whereas "+" applied to quadword operands is an integer add. Similarly, "LT"
is a G_floating comparison when applied to G_floating operands and an integer
comparison when applied to quadword operands.

3.3 Instruction Formats

There are five basic Alpha AXP instruction formats:

• Memory

• Branch

• Operate

• Floating-point Operate

• PALcode

All instruction formats are 32 bits long with a 6-bit major opcode field in bits <31:26>
of the instruction.

Any unused register field (Ra, Rb, Fa, Fb) of an instruction must be set to a value
of31.

Software Note: I
There are several instructions, each formatted as a memory instruction, that do
not use the Ra and/or Rb fields. These instructions are: Memory Barrier, Fetch,
Fetch_M, Read Process Cycle Counter, Read and Clear, Read and Set, and Trap
Barrier.

3.3.1 Memory Instruction Format
The Memory format is used to transfer data between registers and memory, to
load an effective address, and for subroutine jumps. It has the format shown in
Figure 3-1.

Figure 3-1: Memory Instruction Format

31 26 25 21 20 16 15 0

IOpcodern Memory_disp I

A Memory format instruction contains a 6-bit opcode field, two 5-bit register address
fields, Ra and Rb, and a 16-bit signed displacement field.

The displacement field is a byte offset. It is sign-extended and added to the contents
of register Rb to form a virtual address. Overflow is ignored in this calculation.

Instruction Formats (I) 3-9

The virtual address is used as a memory load/store address or a result value,
depending on the specific instruction. The virtual address (va) is computed as follows
for all memory format instructions except the load address high (LDAH):

va +- {Rbv + SEXT(Memory_disp)}

For LDAH the virtual address (va) is computed as follows:

va +- {Rbv + SEXT(Memory_disp*65536)}

3.3.1.1 Memory Format Instructions with a Function Code

Memory format instructions with a function code replace the memory displacement
field in the memory instruction format with a function code that designates a set of
miscellaneous instructions. The format is shown in Figure 3-2.

Figure 3-2: Memory Instruction with Function Code Format

31 2625 2120 1615 0

[Opcode EG~-Fun-ctio-n-'1
The memory instruction with function code format contains a 6-bit opcode field and
a 16-bit function field. Unused function codes produce UNPREDICTABLE but not
UNDEFINED results; they are not security holes.

There are two fields, Ra and Rb. The usage ofthose fields depends on the instruction.
See Section 4.11.

3.3.1.2 Memory Format Jump Instructions

For computed branch instructions (CALL, RET, JMP, JSR_COROUTINE) the
displacement field is used to provide branch-prediction hints as described in
Section 4.3.

3.3.2 Branch Instruction Format

The Branch format is used for conditional branch instructions and for PC-relative
subroutine jumps. It has the format shown in Figure 3-3.

Figure 3-3: Branch Instruction Format

31 26 25 21 20 0

IOpcode B--sran-ch--disp----,I
A Branch format instruction contains a 6-bit opcode field, one 5-bit register address
field (Ra), and a 21-bit signed displacement field.

3-10 Common Architecture (I)

The displacement is treated as a longword offset. This means it is shifted left two bits
(to address a longword boundary), sign-extended to 64 bits and added to the updated
PC to form the target virtual address. Overflow is ignored in this calculation. The
target virtual address (va) is computed as follows:

va +- PC + {4*SEXT(Branch_disp)}

3.3.3 Operate Instruction Format
The Operate format is used for instructions that perform integer register to integer
register operations. The Operate format allows the specification of one destination
operand and two source operands. One of the source operands can be a literal
constant. The Operate format in Figure 3-4 shows the two cases when bit <12> of
the instruction is 0 and 1.

Figure 3-4: Operate Instruction Format

31 2625 2120 1615131211 5 4

Opcode Aa Ab SBZ 0 Function Ac

31 26 25 21 20 13 12 11 5 4 0IO~ode G-L1T---tj Function G
An Operate format instruction contains a 6-bit opcode field and a 7-bit function field.
Unused function codes for those opcodes defined as reserved in the Version 5 Alpha
AXP architecture specification (May 1992) produce an illegal instruction trap. Those
opcodes are 01, 02, 03, 04, 05, 06, 07, OA, OC, OD, OE, 14, 19, 1B, 1C, 1D, 1E, and
1F. For other opcodes, unused function codes produce UNPREDICTABLE but not
UNDEFINED results; they are not security holes.

There are three operand fields, Ra, Rb, and Rc.

The Ra field specifies a source operand. Symbolically, the integer Rav operand is
formed as follows:

IF inst<25:21> EQ 31 THEN
Rav +- 0

ELSE
Rav +- Ra

END

The Rb field specifies a source operand. Integer operands can specify a literal or an
integer register using bit <12> of the instruction.

If bit <12> of the instruction is 0, the Rb field specifies a source register operand.

If bit <12> of the instruction is 1, an 8-bit zero-extended literal constant is formed
by bits <20:13> of the instruction. The literal is interpreted as a positive integer

Instruction Formats (I) 3-11

I

between 0 and 255 and is zero-extended to 64 bits. Symbolically, the integer Rbv
operand is formed as follows:

IF inst<12> EQ 1 THEN
Rbv +- ZEXT(inst<20:13»

ELSE
IF inst<20:16> EQ 31 THEN

Rbv +- 0
ELSE

Rbv +- Rb
END

END

The Rc field specifies a destination operand.

3.3.4 Floating-Point Operate Instruction Format

The Floating-point Operate format is used for instructions that perform floating
point register to floating-point register operations. The Floating-point Operate
format allows the specification of one destination operand and two source operands.
The Floating-point Operate format is shown in Figure 3-5.

Figure 3-5: Floating-Point Operate Instruction Format

31 26 25 21 20 16 15 5 4 0

IOpcode rn--F-u-nc-ti-on---'8
A Floating-point Operate format instruction contains a 6-bit opcode field and an 11
bit function field. Unused function codes for those opcodes defined as reserved in
the Version 5 Alpha AXP architecture specification (May 1992) produce an illegal
instruction trap. Those opcodes are 01, 02, 03, 04, 05, 06, 07, OA, OC, OD, OE,
14, 19, 1B, 1C, 1D, 1E, and 1F. For other opcodes, unused function codes produce
UNPREDICTABLE but not UNDEFINED results; they are not security holes.

There are three operand fields, Fa, Fb, and Fc. Each operand field specifies either
an integer or floating-point operand as defined by the instruction.

The Fa field specifies a source operand. Symbolically, the Fav operand is formed as
follows:

IF inst<25:21> EQ 31 THEN
Fav +- 0

ELSE
Fav +- Fa

END

The Fb field specifies a source operand. Symbolically, the Fbv operand is formed as
follows:

3-12 Common Architecture (I)

IF inst<20:16> EQ 31 THEN
Fbv ~ 0

ELSE
Fbv ~ Fb

END

Note

Neither Fa nor Fb can be a literal in Floating-point Operate instructions.

The Fc field specifies a destination operand.

3.3.4.1 Floating-Point Convert Instructions

Floating-point Convert instructions use a subset of the Floating-point Operate
format and perform register-to-register conversion operations. The Fb operand
specifies the source; the Fa field must be F31.

3.3.5 PALcode Instruction Format

The Privileged Architecture Library (PALcode) format is used to specify extended
processor functions. It has the format shown in Figure 3-6.

Figure 3-6: PALcode Instruction Format

31 2625 0

11-.°_P_C_Od_e....lII-. P_A_L_CO_d_e_F_Un_c_tio_n 1

The 26-bit PALcode function field specifies the operation.

The source and destination operands for PALcode instructions are supplied in fixed
registers that are specified in the individual instruction descriptions.

An opcode of zero and a PALcode function of zero specify the HALT instruction.

Instruction Formats (I) 3-13

I

Chapter 4

Instruction Descriptions (I)

4.1 Instruction Set Overview

This chapter describes the instructions implemented by the Alpha AXP architecture.
The instruction set is divided into the following sections:

Instruction Type

Integer load and store

Integer control

Integer arithmetic

Logical and shift

Byte manipulation

Floating-point load and store

Floating-point control

Floating-point operate

Miscellaneous

Section

4.2

4.3

4.4

4.5

4.6

4.8

4.9

4.10

4.11 I
Within each major secti~n, closely related instructions are combined into groups and
described together. The instruction group description is composed of the following:

• The group name

• The format of each instruction in the group, which includes the name, access
type, and data type of each instruction operand

• The operation of the instruction

• Exceptions specific to the instruction

• The instruction mnemonic and name of each instruction in the group

• Qualifiers specific to the instructions in the group

• A description of the instruction operation

• Optional programming examples and optional notes on the instruction

Instruction Descriptions (I) 4-1

4.1.1 Subsetting Rules

An instruction that is omitted in a subset implementation of the Alpha AXP
architecture is not performed in either hardware or PALcode. System software may
provide emulation routines for subsetted instructions.

4.1.1.1 Floating-Point Subsets

Floating-point support is optional on an Alpha AXP processor. An implementation
that supports floating-point must implement the 32 floating-point registers, the
Floating-point Control Register (FPCR) and the instructions to access it, floating
point branch instructions, floating-point copy sign (CPYSx) instructions, floating
point convert instructions, floating-point conditional move instruction (FCMOV), and
the S_floating and T_floating memory operations.

Software Note:

A system that will not support floating-point operations is still required to provide
the 32 floating-point registers, the Floating-point Control Register (FPCR) and
the instructions to access it, and the T_floating memory operations if the system
intends to support the OpenVMS AXP operating system. This requirement
facilitates the implementation of a floating-point emulator and simplifies context
switching.

In addition, floating-point support requires at least one of the following subset
groups:

1. VAX. Floating-point Operate and Memory instructions (F_ and G_floating).

2. IEEE Floating-point Operate instructions (S_ and T_floating). Within this group,
an implementation can choose to include or omit separately the ability to perform
IEEE rounding to plus infinity and minus infinity.

Note: if one instruction in a group is provided, all other instructions in that group
must be provided. An implementation with full floating-point support includes
both groups; a subset floating-point implementation supports only one of these
groups. The individual instruction descriptions indicate whether an instruction can
be subsetted.

4.1.2 Software Emulation Rules
General-purpose layered and application software that executes in User mode may
assume that certain loads (LDL, LDQ, LDF, LDG, LDS, and LDT) and certain stores
(STL, STQ, STF, STG, STL and STT) of unaligned data are emulated by system
software. General-purpose layered and application software that executes in User
mode may assume that subsetted instructions are emulated by system software.
Frequent use of emulation may be significantly slower than using alternative code
sequences.

Emulation of loads and stores of unaligned data and subsetted instructions need
not be provided in privileged access modes. System software that supports special
purpose dedicated applications need not provide emulation in User mode ifemulation
is not needed for correct execution of the special-purpose applications.

4-2 Common Architecture (I)

4.1.3 Opcode Qualifiers

Some Operate format and Floating-point Operate format instructions have several
variants. For example, for the VAX. formats, Add F_floating (ADDF) is supported
with and without floating underflow enabled, and with either chopped or VAX.
rounding. For IEEE formats, IEEE unbiased rounding, chopped, round toward plus
infinity, and round toward minus infinity can be selected.

The different variants of such instructions are denoted by opcode qualifiers, which
consist of a slash (I) followed by a string of selected qualifiers. Each qualifier is
denoted by a single character as shown in Table 4-1. The opcodes for each qualifier
are listed in Appendix C.

Table 4-1: Opcode Qualifiers

Qualifier Meaning

The default values are normal rounding, software completion disabled, inexact result
disabled, floating underflow disabled, and integer overflow disabled.

C

D

M

I

S

U

V

Chopped rounding

Rounding mode dynamic

Round toward minus infinity

Inexact result enable

Software completion enable

Floating underflow enable

Integer overflow enable

I

Instruction Descriptions (I) 4-3

4.2 Memory Integer Load/Store Instructions

The instructions in this section move data between the integer registers and memory.

They use the Memory instruction format. The instructions are summarized in
Table 4-2.

Table 4-2: Memory Integer Load/Store Instructions

Mnemonic Operation

LDA

LDAH

LDL

LDL_L

LDQ

LD(LL

LD(LU

STL

STL_C

STQ

ST(LC

ST(LU

Load Address

Load Address High

Load Sign-Extended Longword

Load Sign-Extended Longword Locked

Load Quadword

Load Quadword Locked

Load Quadword Unaligned

Store Longword

Store Longword Conditional

Store Quadword

Store Quadword Conditional

Store Quadword Unaligned

4-4 Common Architecture (I)

4.2.1 Load Address

Format:

LDAx

Operation:

Ra.wq,disp.ab(Rb.ab) !Memory format

Ra +- Rbv + SEXT{disp)

Ra +- Rbv + SEXT(disp*65536)

Exceptions:

None

Instruction mnemonics:

!LDA

!LDAH

LDA

LDAH

Qualifiers:

None

Load Address

Load Address High

•Description:

The virtual address is computed by adding register Rb to the sign-extended 16-bit
displacement for LDA, and 65536 times the sign-extended 16-bit displacement for
LDAH. The 64-bit result is written to register Ra.

Instruction Descriptions (I) 4-5

4.2.2 Load Memory Data into Integer Register

Format:

LDx

Operation:

Ra.wq,disp.ab(Rb.ab) !Memory format

va +- {Rbv + SEXT(disp)}

CASE
big_endian_data: va' +- va XOR 1002
little_endian_data: va' +- va

ENDCASE

Ra +- SEXT((va')<31:0»
Ra +- (va)<63:0>

Exceptions:

Access Violation
Alignment
Fault on Read
Translation Not Valid

Instruction mnemonics:

! LDL
LDL
LDL
LDL

LDL
LDQ

LDL Load Sign-Extended Longword from Memory to Register

LDQ Load Quadword from Memory to Register

Qualifiers:

None

Description:

The virtual address is computed by adding register Rb to the sign-extended I6-bit
displacement. For a big-endian longword access, va<2> (bit 2 of the virtual address)
is inverted, and any memory management fault is reported for va (not va'). The
source operand is fetched from memory, sign-extended, and written to register Ra.
If the data is not naturally aligned, an alignment exception is generated.

4-6 Common Architecture (I)

4.2.3 Load Unaligned Memory Data into Integer Register

Format:

LD~U

Operation:

Ra.wq,disp.abCRb.ab) !Memory format

va +- {{Rbv + SEXT(disp)} AND NOT 7}

Ra +- (va)<63:0>

Exceptions:

Access Violation
Fault on Read
Translation Not Valid

Instruction mnemonics:

LD~U

Qualifiers:

None

Load Unaligned Quadword from Memory to Register

I
Description:

The virtual address is computed by adding register Rb to the sign-extended 16
bit displacement, then the low-order three bits are cleared. The source operand is
fetched from memory and written to register Ra.

Instruction Descriptions (I) 4-7

4.2.4 Load Memory Data into Integer Register Locked

Format:

Ra.wq,disp.ab(Rb.ab) !Memory format

Operation:

va +- {Rbv + SEXT(disp)}

CASE
big_endian_data: va' +- va XOR 1002
little_endian_data: va' +- va

ENDCASE

! LDL_L
! LDL_L
! LDL_L
! LDL_L

lock_flag +- 1
locked-physical_address +- PHYSICAL_ADDRESS (va)

Ra +- SEXT((va')<31:0»
Ra +- (va)<63:0>

Exceptions:

Access Violation
Alignment
Fault on Read
Translation Not Valid

Instruction mnemonics:

Load Sign-Extended Longword from Memory to Register Locked

Load Quadword from Memory to Register Locked

Qualifiers:

None

Description:

The virtual address is computed by adding register Rb to the sign-extended 16-bit
displacement. For a big-endian longword access, va<2> (bit 2 of the virtual address)
is inverted, and any memory management fault is reported for va (not va'). The
source operand is fetched from memory, sign-extended for LDL_L, and written to
register Ra.

4-8 Common Architecture (I)

When a LDx_L instruction is executed without faulting, the processor records the
target physical address in a per-processor locked_physical_address register and sets
the per-processor lock_flag.

If the per-processor lock_flag is (still) set when a STx_C instruction is executed, the
store occurs; otherwise, it does not occur, as described for the STx_C instructions.

If processor Ks lock_flag is set and processor B successfully does a store within Ks
locked range of physical addresses, then Ks lock_flag is cleared. A processor's locked
range is the aligned block of 2**N bytes that includes the locked_physical_address.
The 2**N value is implementation dependent. It is at least 16 (minimum lock
range is an aligned quadword) and is at most the page size for that implementation
(maximum lock range is one physical page).

A processor's lock_flag is also cleared if that processor encounters a CALL_PAL REI,
CALL_PAL rti, or CALL_PAL rfe instruction. It is UNPREDICTABLE whether or
not a processor's lock_flag is cleared on any other CALL_PAL instruction. It is
UNPREDICTABLE whether a processor's lock_flag is cleared by that processor's
executing a normal load or store instruction. It is UNPREDICTABLE whether
a processor's lock_flag is cleared by that processor's executing a taken branch
(including BR, BSR, and Jumps); conditional branches that fall through do not clear
the lock_flag.

The sequence:

LDx_L
Modify
STx_C
BEQ xxx

when executed on a given processor, does an atomic read-modify-write of a datum
in shared memory if the branch falls through. If the branch is taken, the store did
not modify memory and the sequence may be repeated until it succeeds.

Notes:

• LDx_L instructions do not check for write access; hence a matching STx_C may
take an access-violation or fault-on-write exception.

Executing a LDx_L instruction on one processor does not affect any
architecturally visible state on another processor, and in particular cannot cause
a STx_C on another processor to fail.

LDx_L and STx_C instructions need not be paired. In particular, an LDx_L may
be followed by a conditional branch: on the fall-through path an STx_C is done,
whereas on the taken path no matching STx_C is done.

If two LDx_L instructions execute with no intervening STx_C, the second one
overwrites the state of the first one. If two STx_C instructions execute with no
intervening LDx_L, the second one always fails because the first clears lock_flag.

• Software will not emulate unaligned LDx_L instructions.

Instruction Descriptions (I) 4-9

I

• If any other memory access (LDx, LD(LU, STx, ST(LU) is done on the given
processor between the LDx_L and the STx_C, the sequence above may always
fail on some implementations; hence, no useful program should do this.

• If a branch is taken between the LDx_L and the STx_C, the sequence above may
always fail on some implementations; hence, no useful program should do this.
(CMOVxx may be used to avoid branching.)

• If a subsetted instruction (for example, floating-point) is done between the LDx_L
and the STx_C, the sequence above may always fail on some implementations,
because of the Illegal Instruction Trap; hence, no useful program should do this.

• Ifa large number of instructions are executed between the LDx_L and the STx_C,
the sequence above may always fail on some implementations, because of a timer
interrupt always clearing the lock_flag before the sequence completes; hence, no
useful program should do this.

• Hardware implementations are encouraged to lock no more than 128 bytes.
Software implementations are encouraged to separate locked locations by at
least 128 bytes from other locations that could potentially be written by another
processor while the first location is locked.

Implementation Notes:

Implementations that impede the mobility of a cache block on LDx_L, such as
that which may occur in a Read for Ownership cache coherency protocol, may
release the cache block and make the subsequent STx_C fail if a branch-taken
or memory instruction is executed on that processor.

All implementations should guarantee that at least 40 non-subsetted operate
instructions can be executed between timer interrupts.

4-10 Common Architecture (I)

4.2.5 Store Integer Register Data into Memory Conditional

Format:

Ra.mx,disp.ab(Rb.ab)

Operation:

va +- {Rbv + SEXT(disp)}

!Memory format

CASE
big_endian_data: va' +- va XOR 1002
little_endian_data: va' +- va

ENDCASE

IF lock_flag EQ 1 THEN
(va')<31:0> +- Rav<31:0>
(va) +- Rav

Ra +- lock_flag
lock_flag +- 0

Exceptions:

Access Violation
Fault on Write
Alignment
Translation Not Valid

Instruction mnemonics:

STL_C
STL_C
STL_C
STL_C

I
STL_C

STeLC

Qualifiers:

None

Store Longword from Register to Memory Conditional

Store Quadword from Register to Memory Conditional

Description:

The virtual address is computed by adding register Rb to the sign-extended 16-bit
displacement. For a big-endian longword access, va<2> (bit 2 of the virtual address)
is inverted, and any memory management fault is reported for va (not va').

If the lock_flag is set and the address meets the following constraints relative to
the address specified by the preceding LDx_L instruction, the Ra operand is written
to memory at this address. If the address meets the following constraints but the

Instruction Descriptions (I) 4-11

lock_flag is not set, a zero is returned in Ra and no write to memory occurs. The
constraints are:

• The computed virtual address must specify a location within the naturally
aligned 16-byte block in virtual memory accessed by the preceding LDx_L
instruction.

• The resultant physical address must specify a location within the naturally
aligned 16-byte block in physical memory accessed by the preceding LDx_L
instruction.

If the lock_flag is set but the addressing constraints are not met, the outcome of the
STx_C instruction is UNPREDICTABLE. In all cases, Ra is set to zero if the STx_C
failed (memory was not written) and set to one if it succeeded (memory was written).

If the addressing constraints were not met and the lock_flag was cleared by execution
of a CALL_PAL REI, CALL_PAL rti, CALL_PAL rfe, or STx_C instruction since the
most recent execution of a LDx_L instruction, a zero is returned in Ra and no write
to memory occurs. (See the LDx_L description for conditions that clear the lock_
flag.)

In all cases, the lock_flag is set to zero at the end of the operation.

Notes:

• Software will not emulate unaligned STx_C instructions.

• Each implementation must do the test and store atomically, as illustrated in the
following two examples. (See Section 5.6.1 for complete information.)

If two processors attempt STx_C instructions to the same lock range and that
lock range was accessed by both processors' preceding LDx_L instructions,
exactly one of the stores succeeds.

A processor executes a LDx_USTx_C sequence and includes an MB between
the LDx_L to a particular address and the successful STx_C to a different
address (one that meets the constraints required for predictable behavior).
That instruction sequence establishes an access order under which a store
operation by another processor to that lock range occurs before the LDx_L or
after the STx_C.

• The following sequence should not be used:

try_again: LDQ_L Rl,x
<modify Rl>
STQ_C Rl,x
BEQ Rl, try_again

That sequence penalizes performance when the ST(LC succeeds, because the
sequence contains a backward branch, which is predicted to be taken in the
Alpha AXP architecture. In the case where the STQ_C succeeds and the branch

4-12 Common Architecture (I)

will actually fall through, that sequence incurs unnecessary delay due to a
mispredicted backward branch. Instead, a forward branch should be used to
handle the failure case as shown in Section 5.5.2.

Software Note:

If the address specified by a STx_C instruction does not match the one given
in the preceding LDx_L instruction, an MB is required to guarantee ordering
between the two instructions.

Hardware/Software Implementation Note:

ST<LC is used in the first Alpha AXP implementations to access the MailBox
Pointer Register (MBPR). In this special case, the effect of the ST<LC is well
defined (that is, not UNPREDICTABLE) even though the preceding LDx_L did
not specify the address of the MBPR.

Implementation Notes:

A STx_C must propagate to the point of coherency, where it is guaranteed to
prevent any other store from changing the state of the lock bit, before its outcome
can be determined.

If an implementation could encounter a TB or cache miss on the data reference of
the STx_C in the sequence above (as might occur in some shared 1- and D-stream
direct-mapped TBs/caches), it must be able to resolve the miss and complete the
store without always failing.

Instruction Descriptions (I) 4-13

I

4.2.6 Store Integer Register Data into Memory

Format:

STx

Operation:

Ra.rx,disp.ab(Rb.ab) !Memory format

va +- {Rbv + SEXT(disp)}

CASE STL
big_endian_data: va' +- va XOR 1002 STL
little_endian_data: va' +- va STL

ENDCASE STL

(va')<31:0> +- Rav<31:0>
(va) +- Rav

Exceptions:

Access Violation
Fault on Write
Alignment
Translation Not Valid

Instruction mnemonics:

STL
STQ

STL Store Longword from Register to Memory

STQ Store Quadword from Register to Memory

Qualifiers:

None

Description:

The virtual address is computed by adding register Rb to the sign-extended 16-bit
displacement. For a big-endian longword access, va<2> (bit 2 of the virtual address)
is inverted, and any memory management fault is reported for va (not va'). The Ra
operand is written to memory at this address. If the data is not naturally aligned,
an alignment exception is generated.

4-14 Common Architecture (I)

4.2.7 Store Unaligned Integer Register Data into Memory

Format:

Ra.rq,disp.ab(Rb.ab) !Memory format

Operation:

va +- {{Rbv + SEXT(disp)} AND NOT 7}

(va)<63:0> +- Rav<63:0>

Exceptions:

Access Violation
Fault on Write
Translation Not Valid

Instruction mnemonics:

ST<LU

Qualifiers:

None

Store Unaligned Quadword from Register to Memory

I
Description:

The virtual address is computed by adding register Rb to the sign-extended 16-bit
displacement, then clearing the low order three bits. The Ra operand is written to
memory at this address.

Instruction Descriptions (I) 4-15

4.3 Control Instructions

Alpha AXP provides integer conditional branch, unconditional branch, branch to
subroutine, and jump instructions. The PC used in these instructions is the updated
PC, as described in Section 3.1.1.

To allow implementations to achieve high performance, the Alpha AXP architecture
includes explicit hints based on a branch-prediction model:

1. For many implementations of computed branches (JSRJRET/JMP) , there is a
substantial performance gain in forming a good guess of the expected target 1
cache address before register Rb is accessed.

2. For many implementations, the first-level (or only) I-cache is no bigger than a
page (8 KB to 64 KB).

3. Correctly predicting subroutine returns is important for good performance. Some
implementations will therefore keep a small stack of predicted subroutine return
I-cache addresses.

The Alpha AXP architecture provides three kinds of branch-prediction hints: likely
target address, return-address stack action, and conditional branch-taken.

For computed branches, the otherwise unused displacement field contains a function
code (JMP/JSRJRET/JSR_COROUTINE) , and, for JSR and JMP, a field that
statically specifies the 16 low bits of the most likely target address. The PC
relative calculation using these bits can be exactly the PC-relative calculation used
in unconditional branches. The low 16 bits are enough to specify an I-cache block
within t~e largest possible Alpha AXP page and hence are expected to be enough for
branch-prediction logic to start an early I-cache access for the most likely target.

For all branches, hint or opcode bits are used to distinguish simple branches,
subroutine calls, subroutine returns, and coroutine links. These distinctions allow
branch-predict logic to maintain an accurate stack of predicted return addresses.

For conditional branches, the sign of the target displacement is used as a taken
Ifall-through hint. The instructions are summarized in Table 4--3.

4-16 Common Architecture (I)

Table 4-3: Control Instructions Summary

Mnemonic Operation

BEQ

BGE

BGT

BLBC

BLBS

BLE

BLT

BNE

BR

BSR

Branch if Register Equal to Zero

Branch if Register Greater Than or Equal to Zero

Branch if Register Greater Than Zero

Branch if Register Low Bit Is Clear

Branch if Register Low Bit Is Set

Branch if Register Less Than or Equal to Zero

Branch if Register Less Than Zero

Branch if Register Not Equal to Zero

Unconditional Branch

Branch to Subroutine

JMP Jump

JSR Jump to Subroutine

RET Return from Subroutine

JSR_COROUTINE Jump to Subroutine Return

Instruction Descriptions (I) 4-17

I

4.3.1 Conditional Branch

Format:

Bxx

Operation:

Ra.rq,disp.al !Branch format

{update PC}
va +- PC + {4*SEXT(disp)}
IF TEST (Rav, Condition_based_on_Opcode) THEN

PC +- va

Exceptions:

None

Instruction mnemonics:

BEQ

BGE

BGT

BLBC

BLBS

BLE

BLT

BNE

Qualifiers:

None

Branch if Register Equal to Zero

Branch if Register Greater Than or Equal to Zero

Branch if Register Greater Than Zero

Branch if Register Low Bit Is Clear

Branch if Register Low Bit Is Set

Branch if Register Less Than or Equal to Zero

Branch if Register Less Than Zero

Branch if Register Not Equal to Zero

Description:

Register Ra is tested. If the specified relationship is true, the PC is loaded with
the target virtual address; otherwise, execution continues with the next sequential
instruction.

The displacement is treated as a signed longword offset. This means it is shifted
left two bits (to address a longword boundary), sign-extended to 64 bits, and added
to the updated PC to form the target virtual address.

The conditional branch instructions are PC-relative only. The 21-bit signed
displacement gives a forwardlbackward branch distance of +/- 1M instructions.

4-18 Common Architecture (I)

The test is on the signed quadword integer interpretation of the register contents;
all 64 bits are tested.

Notes:

• Forward conditional branches (positive displacement) are predicted to fall
through. Backward conditional branches (negative displacement) are predicted
to be taken. Conditional branches do not affect a predicted return address stack.

Instruction Descriptions (I) 4-19

I

4.3.2 Unconditional Branch

Format:

BxR

Operation:

Ra.wq,disp.al !Branch format

{update PC}
Ra.- PC
pc.- PC + (4*SEXT(disp)}

Exceptions:

None

Instruction mnemonics:

BR Unconditional Branch

BSR Branch to Subroutine

Qualifiers:

None

Description:

The PC of the following instruction (the updated PC) is written to register Ra, and
then the PC is loaded with the target address.

The displacement is treated as a signed longword offset. This means it is shifted
left two bits (to address a longword boundary), sign-extended to 64 bits, and added
to the updated PC to form the target virtual address.

The unconditional branch instructions are PC-relative. The 21-bit signed
displacement gives a forwardlbackward branch distance of +/- 1M instructions.

PC-relative addressability can be established by:

BR Rx,Ll
Ll:

Notes:

• BR and BSR do identical operations. They only differ in hints to possible branch
prediction logic. BSR is predicted as a subroutine call (pushes the return address
on a branch-prediction stack), whereas BR is predicted as a branch (no push).

4-20 Common Architecture (I)

4.3.3 Jumps

Format:

mnemonic Ra.wq,(Rb.ab),hint

Operation:

{update PC}
va.- Rbv AND {NOT 3}
Ra +- PC
PC +- va

Exceptions:

None

Instruction mnemonics:

!Memory format

JMP Jump

JSR Jump to Subroutine

RET Return from Subroutine

JSR_COROUTINE Jump to Subroutine Return

Qualifiers:

None

Description:

The PC of the instruction following the Jump instruction (the updated PC) is written
to register Ra, and then the PC is loaded with the target virtual address.

The new PC is supplied from register Rb. The low two bits of Rb are ignored. Ra
and Rb may specify the same register; the target calculation using the old value is
done before the new value is assigned.

All Jump instructions do identical operations. They only differ in hints to possible
branch-prediction logic. The displacement field of the instruction is used to pass this
information. The four different "opcodes" set different bit patterns in disp<15:14>,
and the hint operand sets disp<13:0>.

Instruction Descriptions (I) 4-21

I

These bits are intended to be used as shown in Table 4-4.

Table 4-4: Jump Instructions Branch Prediction

Predicted
disp<15:14> Meaning Target<15:0>

Prediction
Stack Action

00

01

10

11

JMP

JSR

RET

JSR_COROUTINE

PC + {4*disp<13:0>l

PC + {4*disp<13:0>J

Prediction stack

Prediction stack

Push PC

Pop

Pop, push PC

The design in Table 4-4 allows specification of the low 16 bits of a likely longword
target address (enough bits to start a useful I-cache access early), and also allows
distinguishing call from return (and from the other two less frequent operations).

Note that the above information is used only as a hint; correct setting of these bits
can improve performance but is not needed for correct operation. See Appendix A
for more information on branch prediction.

An unconditional long jump can be performed by:

JMP R31, (Rb),hint

Coroutine linkage can be performed by specifying the same register in both the Ra
and Rb operands. When disp<15:14> equals '10' (RET) or '11' (JSR_COROUTINE)
(that is, the target address prediction, if any, would come from a predictor
implementation stack), then bits <13:0> are reserved for software and must be
ignored by all implementations. All encodings for bits <13:0> are used by Digital
software or Reserved to Digital, as follows:

Encoding Meaning

000016

000116

Indicates non-procedure return

Indicates procedure return

All other encodings are reserved to Digital.

4-22 Common Architecture (I)

4.4 Integer Arithmetic Instructions

The integer arithmetic instructions perform add, subtract, multiply, and signed and
unsigned compare operations.

The integer instructions are summarized in Table 4-5.

Table 4-5: Integer Arithmetic Instructions Summary

Mnemonic Operation

ADD

S4ADD

S8ADD

CMPEQ

CMPLT

CMPLE

CMPULT

CMPULE

MUL

UMULH

SUB

S4SUB

S8SUB

Add QuadwordILongword

Scaled Add by 4

Scaled Add by 8

Compare Signed Quadword Equal

Compare Signed Quadword Less Than

Compare Signed Quadword Less Than or Equal

Compare Unsigned Quadword Less Than

Compare Unsigned Quadword Less Than or Equal

Multiply QuadwordILongword

Multiply Quadword Unsigned High

Subtract QuadwordILongword

Scaled Subtract by 4

Scaled Subtract by 8

I
There is no integer divide instruction. Division by a constant can be done via
UMULH; division by a variable can be done via a subroutine. See Appendix A.

Instruction Descriptions (I) 4-23

4.4.1 Longword Add

Format:

ADDL
ADDL

Operation:

Ra.rl,Rb.rl,Rc.wq

Ra.rl,#b.ib,Rc.wq

!Operate format

!Operate format

Rc +- SEXT((Rav + Rbv)<31:0»

Exceptions:

Integer Overflow

Instruction mnemonics:

ADDL

Qualifiers:

Add Longword

Integer Overflow Enable (N)

Description:

Register Ra is added to register Rb or a literal, and the sign-extended 32-bit sum is
written to Rc.

The high order 32 bits of Ra and Rb are ignored. Rc is a proper sign extension
of the truncated 32-bit sum. Overflow detection is based on the longword
sum Rav<31:0> + Rbv<31:0>.

4-24 Common Architecture (I)

4.4.2 Scaled Longword Add

Format:

SxADDL

SxADDL

Operation:

Ra.rl,Rb.rq,Rc.wq

Ra.rl,#b.ib,Rc.wq

!Operate format

!Operate format

CASE
S4ADDL: Rc +- SEXT (((LEFT_SHIFT(Rav,2)) + Rbv)<31:0»
S8ADDL: Rc +- SEXT (((LEFT_SHIFT(Rav,3)) + Rbv)<31:0»

ENDCASE

Exceptions:

None

Instruction mnemonics:

S4ADDL

S8ADDL

Qualifiers:

None

Scaled Add Longword by 4

Scaled Add Longword by 8 I
Description:

Register Ra is scaled by 4 (for S4ADDL) or 8 (for S8ADDL) and is added to register
Rb or a literal, and the sign-extended 32-bit sum is written to Rc.

The high 32 bits of Ra and Rb are ignored. Rc is a proper sign extension of the
truncated 32-bit sum.

Instruction Descriptions (I) 4-25

4.4.3 Quadword Add

Format:

ADDQ
ADDQ

Operation:

Ra.rq,Rb.rq,Rc.wq

Ra.rq,#b.ib,Rc.wq

!Operate format

!Operate format

Rc +- Rav + Rbv

Exceptions:

Integer Overflow

Instruction mnemonics:

ADDQ

Qualifiers:

Add Quadword

Integer Overflow Enable (N)

Description:

Register Ra is added to register Rb or a literal, and the 64-bit sum is written to Rc.

On overflow, the least significant 64 bits of the true result are written to the
destination register.

The unsigned compare instructions can be used to generate carry. After adding two
values, if the sum is less unsigned than either one of the inputs, there was a carry
out of the most significant bit.

4-26 Common Architecture (I)

4.4.4 Scaled Quadword Add

Format:

SxADDQ

SxADDQ

Operation:

Ra.rq,Rb.rq,Rc.wq

Ra.rq,#b.ib,Rc.wq

!Operate format

!Operate format

CASE
S4ADDQ: Rc +- LEFT_SHIFT (Rav,2) + Rbv
S8ADDQ: Rc +- LEFT_SHIFT (Rav,3) + Rbv

ENDCASE

Exceptions:

None

Instruction mnemonics:

S4ADDQ

S8ADDQ

Qualifiers:

None

Scaled Add Quadword by 4

Scaled Add Quadword by 8

•
Description:

Register Ra is scaled by 4 (for S4ADDQ) or 8 (for S8ADDQ) and is added to register
Rb or a literal, and the 64-bit sum is written to Rc.

On overflow, the least significant 64 bits of the true result are written to the
destination register.

Instruction Descriptions (I) 4-27

4.4.5 Integer Signed Compare

Format:

CMPxx

CMPxx

Operation:

Ra.rq,Rb.rq,Rc.wq

Ra.rq,#b.ib,Rc.wq

!Operate format

!Operate format

IF Rav SIGNED_RELATION Rbv THEN
Rc ~ 1

ELSE
Rc ~ 0

Exceptions:

None

Instruction mnemonics:

CMPEQ

CMPLE

CMPLT

Qualifiers:

None

Compare Signed Quadword Equal

Compare Signed Quadword Less Than or Equal

Compare Signed Quadword Less Than

Description:

Register Ra is compared to Register Rb or a literal. If the specified relationship is
true, the value one is written to register Rc; otherwise, zero is written to Rc.

Notes:

• Compare Less Than A,B is the same as Compare Greater Than B,A; Compare
Less Than or Equal A,B is the same as Compare Greater Than or Equal B,A.
Therefore, only the less-than operations are included.

4-28 Common Architecture (I)

4.4.6 Integer Unsigned Compare

Format:

CMPUxx

CMPUxx

Operation:

Ra.rq,Rb.rq,Rc.wq

Ra.rq,#b.ib,Rc.wq

!Operate format

!Operate format

IF Rav UNSIGNED_RELATION Rbv THEN
Rc +- 1

ELSE
Rc +- 0

Exceptions:

None

Instruction mnemonics:

CMPULE Compare Unsigned Quadword Less Than or Equal

CMPULT Compare Unsigned Quadword Less Than

Qualifiers:

None

Description:

Register Ra is compared to Register Rb or a literal. If the specified relationship is
true, the value one is written to register Rc; otherwise, zero is written to Rc.

Instruction Descriptions (I) 4-29

•

4.4.7 Longword MUltiply

Format:

MULL

MULL

Operation:

Ra.rl,Rb.rl,Rc.wq

Ra.rl,#b.ib,Rc.wq

!Operate format

!Operate format

Rc +- SEXT ((Rav * Rbv) <31: o>}

Exceptions:

Integer Overflow

Instruction mnemonics:

MULL

Qualifiers:

Multiply Longword

Integer Overflow Enable (N)

Description:

Register Ra is multiplied by register Rb or a literal, and the sign-extended 32-bit
product is written to Rc.

The high 32 bits of Ra and Rb are ignored. Rc is a proper sign extension
of the truncated 32-bit product. Overflow detection is based on the longword
product Rav<31:0> * Rbv<31:0>. On overflow, the proper sign extension of the least
significant 32 bits of the true result are written to the destination register.

The MULQ instruction can be used to return the full 64-bit product.

4-30 Common Architecture (I)

4.4.8 Quadword Multiply

Format:

MULQ

MULQ

Operation:

Ra.rq,Rb.rq,Rc.wq

Ra.Rq,#b.ib,Rc.wq

!Operate format

!Operate format

Rc ~ Rav * Rbv

Exceptions:

Integer Overflow

Instruction mnemonics:

Integer Overflow Enable (N)

Description:

Register Ra is multiplied by register Rb or a literal, and the 64-bit product is written
to register Rc. Overflow detection is based on considering the operands and the result
as signed quantities. On overflow, the least significant 64 bits of the true result are
written to the destination register.

The UMULH instruction can be used to generate the upper 64 bits of the 128-bit
result when an overflow occurs.

MULQ

Qualifiers:

Multiply Quadword

•

Instruction Descriptions (I) 4-31

4.4.9 Unsigned Quadword Multiply High

Format:

UMULH

UMULH

Operation:

Ra.rq,Rb.rq,Rc.wq

Ra.Rq,#b.ib,Rc.wq

!Operate format

!Operate format

Rc +- {Rav *U Rbv}<127:64>

Exceptions:

None

Instruction mnemonics:

UMULH Unsigned Multiply Quadword High

Qualifiers:

None

Description:

Register Ra and Rb or a literal are multiplied as unsigned numbers to produce a
128-bit result. The high-order 64-bits are written to register Rc.

The UMULH instruction can be used to generate the upper 64 bits of a 128-bit result
as follows:

Ra and Rb are unsigned: result of UMULH

Ra and Rb are signed: (result of UMULH) - Ra<63>*Rb - Rb<63>*Ra

The MULQ instruction gives the low 64 bits of the result in either case.

4-32 Common Architecture (I)

4.4.10 Longword Subtract

Format:

SUBL

SUBL

Operation:

Ra.rl,Rb.rl,Rc.wq

Ra.rl,#b.ib,Rc.wq

!Operate format

!Operate format

Rc +- SEXT ((Rav - Rbv) <31: 0»

Exceptions:

Integer Overflow

Instruction mnemonics:

Integer Overflow Enable (N)

Description:

Register Rb or a literal is subtracted from register Ra, and the sign-extended 32-bit
difference is written to Rc.

The high 32 bits of Ra and Rb are ignored. Rc is a proper sign extension of the
truncated 32-bit difference. Overflow detection is based on the longword difference
Rav<31:0> - Rbv<31:0>.

SUBL

Qualifiers:

Subtract Longword

•

Instruction Descriptions (I) 4-33

4.4.11 Scaled Longword Subtract

Format:

SxSUBL

SxSUBL

Operation:

Ra.rl,Rb.rl,Rc.wq

Ra.rl,#b.ib,Rc.wq

!Operate format

!Operate format

CASE
S4SUBL: Rc +- SEXT (((LEFT_SHIFT(Rav,2)) - Rbv)<31:0»
S8SUBL: Rc +- SEXT (((LEFT_SHIFT(Rav,3)) - Rbv)<31:0»

ENDCASE

Exceptions:

None

Instruction mnemonics:

S4SUBL

S8SUBL

Qualifiers:

None

Scaled Subtract Longword by 4

Scaled Subtract Longword by 8

Description:

Register Rb or a literal is subtracted from the scaled value of register Ra, which is
scaled by 4 (for S4SUBL) or 8 (for S8SUBL), and the sign-extended 32-bit difference
is written to Rc.

The high 32 bits of Ra and Rb are ignored. Rc is a proper sign extension of the
truncated 32-bit difference.

4-34 Common Architecture (I)

4.4.12 Quadword Subtract

Format:

SUBQ

SUBQ

Operation:

Ra.rq,Rb.rq,Rc.wq

Ra.rq,#b.ib,Rc.wq

!Operate format

!Operate format

Rc +- Rav - Rbv

Exceptions:

Integer Overflow

Instruction mnemonics:

Integer Overflow Enable (N)

Description:

Register Rb or a literal is subtracted from register Ra, and the 64-bit difference is
written to register Rc. On overflow, the least significant 64 bits of the true result
are written to the destination register.

The unsigned compare instructions can be used to generate borrow. If the minuend
(Rav) is less unsigned than the subtrahend (Rbv), there will be a borrow.

SUBQ

Qualifiers:

Subtract Quadword

•

Instruction Descriptions (I) 4-35

4.4.13 Scaled Quadword Subtract

Format:

SxSUBQ

SxSUBQ

Operation:

Ra.rq,Rb.rq,Rc.wq

Ra.rq,#b.ib,Rc.wq

!Operate format

!Operate format

CASE
S4SUBQ: Rc +- LEFT_SHIFT (Rav,2) - Rbv
S8SUBQ: Rc +- LEFT_SHIFT (Rav,3) - Rbv

ENDCASE

Exceptions:

None

Instruction mnemonics:

S4SUBQ

S8SUBQ

Qualifiers:

None

Scaled Subtract Quadword by 4

Scaled Subtract Quadword by 8

Description:

Register Rb or a literal is subtracted from the scaled value of register Ra, which is
scaled by 4 (for S4SUBQ) or 8 (for S8SUBQ), and the 64-bit difference is written to
Rc.

4-36 Common Architecture (I)

4.5 Logical and Shift Instructions

The logical instructions perform quadword Boolean operations. The conditional move
integer instructions perform conditionals without a branch. The shift instructions
perform left and right logical shift and right arithmetic shift. These are summarized
in Table 4-6.

Table 4-6: Logical and Shift Instructions Summary
Mnemonic Operation

AND

BIC

BIS

EQV

ORNOT

XOR

CMOVxx

SLL

SRA

SRL

Logical Product

Logical Product with Complement

Logical Sum (OR)

Logical Equivalence (XORNOT)

Logical Sum with Complement

Logical Difference

Conditional Move Integer

Shift Left Logical

Shift Right Arithmetic

Shift Right Logical •Software Note:

There is no arithmetic left shift instruction. Where an arithmetic left shift would
be used, a logical shift will do. For multiplying by a small power of two in address
computations, logical left shift is acceptable.

Integer multiply should be used to perform an arithmetic left shift with overflow
checking.

Bit field extracts can be done with two logical shifts. Sign extension can be done
with left logical shift and a right arithmetic shift.

Instruction Descriptions (I) 4-37

4.5.1 Logical Functions

Format:

mnemonic Ra.rq,Rb.rq,Rc.wq

mnemonic Ra.rq,#b.ib,Rc.wq

Operation:

Rc +- Rav AND Rbv
Rc +- Rav OR Rbv
Rc +- Rav XOR Rbv
Rc +- Rav AND {NOT Rbv}
Rc +- Rav OR {NOT Rbv}
Rc +- Rav XOR {NOT Rbv}

Exceptions:

None

Instruction mnemonics:

!Operate format

!Operate format

!AND
!BIS
!XOR
!BIC
!ORNOT
!EQV

AND

BIC

BIS

EQV
ORNOT

XOR

Qualifiers:

None

Description:

Logical Product

Logical Product with Complement

Logical Sum (OR)

Logical Equivalence (XORNOT)

Logical Sum with Complement

Logical Difference

These instructions perform the designated Boolean function between register Ra and
register Rb or a literal. The result is written to register Rc.

The "NOT" function can be performed by doing an ORNOT with zero (Ra =R31).

4-38 Common Architecture (I)

4.5.2 Conditional Move Integer

Format:

CMOVxx Ra.rq,Rb.rq,Rc.wq

CMOVxx Ra.rq,#b.ib,Rc.wq

Operation:

!Operate format

!Operate format

IF TEST (Rav, Condition_based_on_Opcode) THEN

Rc.- Rbv

Exceptions:

None

Instruction mnemonics:

CMOVEQ

CMOVGE

CMOVGT

CMOVLBC

CMOVLBS

CMOVLE

CMOVLT

CMOVNE

Qualifiers:

None

CMOVE if Register Equal to Zero

CMOVE if Register Greater Than or Equal to Zero

CMOVE if Register Greater Than Zero

CMOVE if Register Low Bit Clear

CMOVE if Register Low Bit Set

CMOVE if Register Less Than or Equal to Zero

CMOVE if Register Less Than Zero

CMOVE if Register Not Equal to Zero

•

Description:

Register Ra is tested. If the specified relationship is true, the value Rbv is written
to register Rc.

Instruction Descriptions (I) 4-39

Notes:
Except that it is likely in many implementations to be substantially faster, the
instruction:

CMOVEQ Ra,Rb,Rc

is exactly equivalent to:

BNE Ra,label
OR Rb,Rb,Rc

label:

For example, a branchless sequence for:

Rl=MAX(Rl,R2)

is:

CMPLT Rl,R2,R3
CMOVNE R3,R2,Rl

4-40 Common Architecture (I)

R3=1 if Rl<R2
Move R2 to Rl if Rl<R2

4.5.3 Shift Logical

Format:

SxL

SxL

Operation:

Ra.rq,Rb.rq,Rc.wq

Ra.rq,#b.ib,Rc.wq

!Operate format

!Operate format

Rc +- LEFT_SHIFT (Rav, Rbv<5:0» !SLL
Rc +- RIGHT_SHIFT (Rav, Rbv<5:0» !SRL

Exceptions:

None

Instruction mnemonics:

SLL

SRL

Qualifiers:

None

Shift Left Logical

Shift Right Logical

•
Description:

Register Ra is shifted logically left or right 0 to 63 bits by the count in register Rb
or a literal. The result is written to register Rc. Zero bits are propagated into the
vacated bit positions.

Instruction Descriptions (I) 4-41

4.5.4 Shift Arithmetic

Format:

SRA

SRA

Operation:

Ra.rq,Rb.rq,Rc.wq

Ra.rq,#b.ib,Rc.wq

!Operate format

!Operate format

Rc +- ARITH_RIGHT_SHIFT(Rav, Rbv<5:0»

Exceptions:

None

Instruction mnemonics:

SRA Shift Right Arithmetic

Qualifiers:

None

Description:

Register Ra is right shifted arithmetically 0 to 63 bits by the count in register Rb or
a literal. The result is written to register Rc. The sign bit (Rav<63» is propagated
into the vacated bit positions.

4-42 Common Architecture (I)

4.6 Byte-Manipulation Instructions

Alpha AXP provides instructions for operating on byte operands within registers.
These instructions allow full-width memory accesses in the load/store instructions
combined with powerful in-register byte manipulation.

The instructions are summarized in Table 4-7.

Table 4-7: Byte-Manipulation Instructions Summary

Mnemonic Operation

CMPBGE Compare Byte

EXTBL Extract Byte Low

EXTWL Extract Word Low

EXTLL Extract Longword Low

EXTQL Extract Quadword Low

EXTWH Extract Word High

EXTLH Extract Longword High

EXTQH Extract Quadword High

INSBL Insert Byte Low

•INSWL Insert Word Low

INSLL Insert Longword Low

INSQL Insert Quadword Low

INSWH Insert Word High

INSLH Insert Longword High

INSQH Insert Quadword High

MSKBL Mask Byte Low

MSKWL Mask Word Low

MSKLL Mask Longword Low

MSKQL Mask Quadword Low

MSKWH Mask Word High

MSKLH Mask Longword High

MSKQH Mask Quadword High

Instruction Descriptions (I) 4-43

Table 4-7 (Cont.): Byte-Manipulation Instructions Summary

Mnemonic Operation

ZAP

ZAPNOT

Zero Bytes

Zero Bytes Not

4-44 Common Architecture (I)

4.6.1 Compare Byte

Format:

CMPBGE Ra.rq,Rb.rq,Rc.wq

CMPBGE Ra.rq,#b.ib,Rc.wq

Operation:

!Operate format

!Operate format

FOR i FROM 0 TO 7

temp<8:0> +- {O I I Rav<i*8+7:i*8>} +
{oj I NOT Rbv<i*8+7:i*8>} + 1

Rc<i> +- temp<8>
END
Rc<63 : 8> +- 0

Exceptions:

None

Instruction mnemonics:

CMPBGE Compare Byte

Qualifiers:

None

Description:

CMPBGE does eight parallel unsigned byte comparisons between corresponding
bytes of Rav and Rbv, storing the eight results in the low eight bits of Re. The
high 56 bits of Rc are set to zero. Bit 0 of Rc corresponds to byte 0, bit 1 of Rc
corresponds to byte 1, and so forth. A result bit is set in Rc if the corresponding byte
of Rav is greater than or equal to Rbv (unsigned).

Instruction Descriptions (I) 4-45

•

Notes:
The result of CMPBGE can be used as an input to ZAP and ZAPNOT.

To scan for a byte of zeros in a character string:

LOOP:
<initialize Rl to aligned QW address of string>

LDQ
LDA
CMPBGE
BEQ

R2,O(Rl)
Rl,8(Rl)
R31,R2,R3
R3,LOOP

Pick up 8 bytes
Increment string pointer
If NO bytes of 'zero, R3<7:0>=O
Loop if no terminator byte found
At this point, R3 can be used to
determine which byte terminated

To compare two character strings for greater/less:

LOOP:

<initialize Rl to aligned QW address of stringl>
<initialize R2 to aligned QW address of string2>

LDQ
LDA
LDQ
LDA
XOR
BEQ
CMPBGE

R3,O(Rl)
Rl,8(Rl)
R4,O(R2)
R2,8(R2)
R3,R4,R5
R5,LOOP
R31,R5,R5

pick up 8 bytes of stringl
Increment stringl pointer
Pick up 8 bytes of string2
Increment string2 pointer
Test for all equal bytes
Loop if all equal

At this point, R5 can be used to
determine the first not-equal
byte position.

To range-check a string of characters in Rl for '0'..'9':

LDQ R2,litOs pick up 8 bytes of the character
BELOW '0 ' '11111111'

LDQ R3,lit9s Pick up 8 bytes of the character
ABOVE '9 ' \:::::::: '

CMPBGE R2,Rl,R4 Some R4<i>=1 if character is LT '0 '
CMPBGE Rl,R3,R5 Some R5<i>=1 if character is GT ' 9'
BNE R4,ERROR Branch if some char too low
BNE R5,ERROR Branch if some char too high

4-46 Common Architecture (I)

4.6.2 Extract Byte

Format:

EXTxx

EXTxx

Operation:

Ra.rq,Rb.rq,Rc.wq

Ra.rq,#b.ib,Rc.wq

!Operate format

!Operate format

CASE
bi9_endian_data: Rbv' +- Rbv XOR 1112
little_endian_data: Rbv' +- Rbv

ENDCASE

CASE

EXTBL: byte_mask +- 0000 0001 2
EXTWx: byte_mask +- 0000 0011 2
EXTLx: byte_mask +- 0000 11112
EXTQx: byte_mask +- 1111 11112

ENDCASE

CASE

EXTxL:
byte_loc +- Rbv' <2: 0>*8
temp +- RIGHT_SHIFT (Rav, byte_Ioc<5:0»
Rc +- BYTE_ZAP (temp, NOT (byte_mask)

EXTxH:
byte_Ioc +- 64 - Rbv'<2:0>*8
temp +- LEFT_SHIFT (Rav, byte_Ioc<5:0»
Rc +- BYTE_ZAP (temp, NOT (byte_mask))

ENDCASE

Exceptions:

None

Instruction mnemonics:

•

EXTBL

EXTWL

EXTLL

EXTQL

EXTWH

EXTLH

Extract Byte Low

Extract Word Low

Extract Longword Low

Extract Quadword Low

Extract Word High

Extract Longword High

Instruction Descriptions (I) 4-47

EXTQH

Qualifiers:

None

Description:

Extract Quadword High

EXTxL shifts register Ra right by 0 to 7 bytes, inserts zeros into vacated bit positions,
and then extracts 1, 2, 4, or 8 bytes into register Rc. EXTxH shifts register Ra left
by 0 to 7 bytes, inserts zeros into vacated bit positions, and then extracts 2, 4, or 8
bytes into register Rc. The number of bytes to shift is specified by Rbv'<2:0>. The
number of bytes to extract is specified in the function code. Remaining bytes are
filled with zeros.

Notes:
The comments in the examples below assume that the effective address (ea) of
X(Rll) is such that (ea mod 8) =5, the value of the aligned quadword containing
X(Rll) is CBAx xxxx, and the value of the aligned quadword containing X+7(Rll) is
yyyH GFED, and the datum is little-endian.

The examples below are the most general case unless otherwise noted; if more
information is known about the value or intended alignment of X, shorter sequences
can be used.

The intended sequence for loading a quadword from unaligned address X(Rl1) is:

LDQ_U
LDQ_U
LDA
EXTQL
EXTQH
OR

Rl,X(Rll)
R2,X+7(Rll)
R3,X(Rll)
Rl,R3,Rl
R2,R3,R2
R2,Rl,Rl

Ignores va<2:0>, Rl
Ignores va<2:0>, R2
R3<2:0> = (X mod 8)
Rl 0000 OCBA
R2 = HGFE DOOO
Rl = HGFE DCBA

CBAx xxxx
yyyH GFED
5

The intended sequence for loading and zero-extending a longword from unaligned
address X is:

LDQ_U Rl,X(Rll) Ignores va<2:0>, Rl CBAx xxxx
LDQ_U R2,X+3(Rll) Ignores va<2:0>, R2 yyyy yyyD
LDA R3,X(Rll) R3<2:0> = (X mod 8) 5
EXTLL Rl,R3,Rl Rl 0000 OCBA
EXTLH R2,R3,R2 R2 = 0000 DOOO
OR R2,Rl,Rl Rl = 0000 DCBA

The intended sequence for loading and sign-extending a longword from unaligned
address X is:

4-48 Common Architecture (I)

LDQ_U R1,X(R11) Ignores va<2:0>, R1 CBAx xxxx
LDQ_U R2,X+3(R11) Ignores va<2:0>, R2 yyyy yyyD
LDA R3,X(R11) R3<2:0> (X mod 8) 5
EXTLL R1,R3,R1 R1 0000 OCBA
EXTLH R2,R3,R2 R2 0000 DODO
OR R2,R1,R1 R1 0000 DCBA
ADDL R31,R1,R1 R1 ssss DCBA

The intended sequence for loading and zero-extending a word from unaligned address
X is:

LDQ_U R1,X(R11) Ignores va<2:0>, R1 yBAx xxxx
LDQ_U R2,X+1(R11) Ignores va<2:0>, R2 yBAx xxxx
LDA R3, X (R11) R3<2:0> (X mod 8) 5
EXTWL R1,R3,R1 Rl 0000 OOBA
EXTWH R2,R3,R2 R2 = 0000 0000
OR R2,R1,R1 R1 = 0000 OOBA

The intended sequence for loading and sign-extending a word from unaligned address
X is:

The intended sequence for loading and zero-extending a byte from address X is:

LDQ_U
LDQ_U
LDA
EXTQL
EXTQH
OR
SRA

LDQ_U
LDA
EXTBL

R1,X(R11)
R2,X+1(Rl1)
R3,X+1+1(R11)
R1,R3,R1
R2,R3,R2
R2,R1,R1
R1,#48,R1

Rl,X(R11)
R3,X(R11)
R1,R3,R1

Ignores va<2:0>, R1
Ignores va<2:0>, R2
R3<2:0> 5+1+1 = 7
R1 0000 OOOy
R2 BAxx xxxO
R1 BAxx xxxy
R1 ssss ssBA

Ignores va<2:0>, R1
R3<2:0> = (X mod 8)
R1 = 0000 OOOA

yBAx xxxx
yBAx xxxx

yyAx xxxx
5

I
The intended sequence for loading and sign-extending a byte from address X is:

EXTQH

SRA

R1, X(Rll)
R3, X+l(Rl1)

Rl, R3, R1

R1, #56, Rl

Ignores va<2:0>, Rl = yyAx xxxx
R3<2:0> = (X + 1) mod 8, i.e.,
convert byte position within
quadword to one-origin based
Places the desired byte into byte 7
of R1.final by left shifting
R1.initial by (8 - R3<2:0>) byte
positions
Arithmetic Shift of byte 7 down
into byte 0,

Optimized examples:

Assume that a word fetch is needed from lO(R3), where R3 is intended to contain
a longword-aligned address. The optimized sequences below take advantage of the
known constant offset, and the longword alignment (hence a single aligned longword
contains the entire word). The sequences generate a Data Alignment Fault ifR3 does
not contain a longword-aligned address.

Instruction Descriptions (I) 4-49

The intended sequence for loading and zero-extending an aligned word from lO(R3)
is:

LDL Rl,8(R3)

EXTWL Rl,#2,Rl

Rl = ssss BAxx
Faults if R3 is not longword aligned
Rl = 0000 OOBA

The intended sequence for loading and sign-extending an aligned word from lO(R3)
is:

LDL

8RA

Rl,8(R3)

Rl,#16,Rl

Rl = ssss BAxx
Faults if R3 is not longword aligned
Rl = ssss ssBA

Big-endian examples:

The intended sequence for loading and zero-extending a byte from address X is:

LDQ_U
LDA
EXTBL

Rl,X(Rll)
R3,X(Rll)
Rl,R3,Rl

Ignores va<2:0>, Rl = xxxx xAyy
R3<2:0> = 5, shift will be 2 bytes
Rl = 0000 OOGA

The intended sequence for loading a quadword from unaligned address X(Rll) is:

LDQ_U Rl,X(Rll)
LDQ_U R2,X+7(Rll)
LDA R3,X+7(Rll)
EXTQH Rl,R3,Rl
EXTQL R2,R3,R2
OR Rl,R2,Rl

Ignores va<2:0>, Rl = xxxxxABC
Ignores va<2:0>, R2 = DEFGHyyy
R3<2:0> = 4, shift will be 3 bytes
Rl ABeD 0000
R2 = DODD EFGH
Rl = ABCD EFGH

Note that the address in the LDA instruction for big-endian quadwords is X+7, for
longwords is X+3, and for words is X+l; for little-endian, these are all just X. Also
note that the EXTQH and EXTQL instructions are reversed with respect to the
little-endian sequence.

4-50 Common Architecture (I)

4.6.3 Byte Insert

Format:

INSxx

INSxx

Operation:

Ra.rq,Rb.rq,Rc.wq

Ra.rq,#b.ib,Rc.wq

!Operate format

!Operate format

CASE
big_endian_data: Rbv' +- Rbv XOR 1112
little_endian_data: Rbv' +- Rbv

ENDCASE

CASE
INSBL: byte_mask +- 0000 0000 0000 0001 2
INSWx: byte_mask +- 0000 0000 0000 0011 2
INSLx: byte_mask +- 0000 0000 0000 11112
INSQx: byte_mask +- 0000 0000 1111 11112

ENDCASE
byte_mask +- LEFT_SHIFT (byte_mask, Rbv' <2: 0»

CASE

INSxL:
byte_Ioc +- Rbv'<2:0>*8
temp +- LEFT_SHIFT (Rav, byte_Ioc<5:0»
Rc +- BYTE_ZAP (temp, NOT(byte_mask<7:0»)

INSxH:
byte_Ioc +- 64 - Rbv'<2:0>*8
temp +- RIGHT_SHIFT (Rav, byte_Ioc<5:0»
Rc +- BYTE_ZAP (temp, NOT(byte_mask<15:8»)

ENDCASE

Exceptions:

None

Instruction mnemonics:

I

INSBL

INSWL

INSLL

INSQL

INSWH

INSLH

Insert Byte Low

Insert Word Low

Insert Longword Low

Insert Quadword Low

Insert Word High

Insert Longword High

Instruction Descriptions (I) 4-51

INSQH

Qualifiers:

None

Insert Quadword High

Description:

INSxL and INSxH shift bytes from register Ra and insert them into a field of zeros,
storing the result in register Rc. Register Rbv'<2:0> selects the shift amount, and the
function code selects the maximum field width: 1, 2, 4, or 8 bytes. The instructions
can generate a byte, word, longword, or quadword datum that is spread across two
registers at an arbitrary byte alignment.

4-52 Common Architecture (I)

4.6.4 Byte Mask

Format:

MSKxx

MSKxx

Operation:

Ra.rq,Rb.rq,Rc.wq

Ra.rq,#b.ib,Rc.wq

!Operate format

!Operate format

CASE
big_endian_data: Rbv'+- Rbv XOR 1112
little_endian_data: Rbv'+- Rbv

ENDCASE

CASE
MSKBL: byte_mask +- 0000 0000 0000 0001 2
MSKWx: byte_mask +- 0000 0000 0000 0011 2
MSKLx: byte_mask +- 0000 0000 0000 11112
MSKQx: byte_mask +- 0000 0000 1111 11112

ENDCASE
byte_mask +- LEFT_SHIFT (byte_mask, Rbv' <2: 0»

CASE
MSKxL:

Rc +- BYTE_ZAP (Rav, byte_mask<7:0»

MSKxH:
Rc +- BYTE_ZAP (Rav, byte_mask<15:8»

ENDCASE

Exceptions:

None

Instruction mnemonics:

•
MSKBL

MSKWL

MSKLL

MSKQL

MSKWH

MSKLH

MSKQH

Mask Byte Low

Mask Word Low

Mask Longword Low

Mask Quadword Low

Mask Word High

Mask Longword High

Mask Quadword High

Instruction Descriptions (I) 4-53

Qualifiers:

None

Description:

MSKxL and MSKxH set selected bytes of register Ra to zero, storing the result
in register Rc. Register Rbv'<2:0> selects the starting position of the field of zero
bytes, and the function code selects the maximum width: 1, 2, 4, or 8 bytes. The
instructions generate a byte, word, longword, or quadword field of zeros that can
spread across two registers at an arbitrary byte alignment.

Notes:
The comments in the examples below assume that the effective address (ea) ofX(R11)
is such that (ea mod 8) = 5, the value of the aligned quadword containing X(R11) is
CBAx XXXX, the value of the aligned quadword containing X+7(R11) is yyyH GFED,
the value to be stored from R5 is HGFE DCBA, and the datum is little-endian. Slight
modifications similer to those in Section 4.6.2 apply to big-endian data.

The examples below are the most general case; if more information is known about
the value or intended alignment of X, shorter sequences can be used.

The intended sequence for storing an unaligned quadword R5 at address X(R11) is:

then low for
of aligned QW

LDA
LDQ_U
LDQ_U
INSQH
INSQL
MSKQH
MSKQL
OR
OR
STQ_U
STQ_U

R6,X(Rll)
R2,X+7(Rll)
Rl,X(Rll)
R5,R6,R4
R5,R6,R3
R2,R6,R2
Rl,R6,Rl
R2,R4,R2
Rl,R3,Rl
R2,X+7(Rll)
Rl,X(Rll)

R6<2:0> = (X mod 8)
Ignores va<2:0>, R2
Ignores va<2:0>, Rl
R4 OOOH GFED
R3 CBAO 0000
R2 yyyO 0000
Rl OOOx xxxx
R2 yyyH GFED
Rl CBAx xxxx
Must store high
degenerate case

5
yyyH GFED
CBAx xxxx

The intended sequence for storing an unaligned longword R5 at X is:

then low for
of aligned

LDA
LDQ_U
LDQ_U
INSLH
INSLL
MSKLH
MSKLL
OR
OR
STQ_U
STQ_U

R6,X(Rll)
R2,X+3(Rll)
Rl,X(Rll)
R5,R6,R4
R5,R6,R3
R2,R6,R2
Rl,R6,Rl
R2,R4,R2
Rl,R3,Rl
R2,X+3(Rll)
Rl,X(Rll)

R6<2:0> = (X mod 8)
Ignores va<2:0>, R2
Ignores va<2:0>, Rl
R4 0000 OOOD
R3 CBAO 0000
R2 yyyy yyyO
Rl OOOx xxxx
R2 yyyy yyyD
Rl CBAx xxxx
Must store high
degenerate case

5
yyyy yyyD
CBAx xxxx

4-54 Common Architecture (I)

The intended sequence for storing an unaligned word R5 at X is:

LDA R6,X(Rll) R6<2:0> = (X mod 8) 5
LDQ_U R2,X+l(Rll) Ignores va<2:0>, R2 yBAx xxxx
LDQ_U Rl,X(Rll) Ignores va<2:0>, Rl yBAx xxxx
INSWH R5,R6,R4 R4 0000 0000
INSWL R5,R6,R3 R3 OBAO 0000
MSKWH R2,R6,R2 R2 yBAx xxxx
MSKWL Rl,R6,Rl Rl yOOx xxxx
OR R2,R4,R2 R2 yBAx xxxx
OR Rl,R3,Rl Rl yBAx xxxx
STQ_U R2,X+l(Rll) Must store high then low for
STQ_U Rl, X(Rll) degenerate case of aligned

The intended sequence for storing a byte R5 at X is:

LDA R6, X(Rll) R6<2:0> = (X mod 8) 5
LDQ_U Rl,X(Rll) Ignores va<2:0>, Rl yyAx xxxx
INSBL R5,R6,R3 R3 OOAO 0000
MSKBL Rl,R6,Rl Rl yyOx xxxx
OR Rl,R3,Rl Rl yyAx xxxx
STQ_U Rl,X(Rll)

Instruction Descriptions (I) 4-55

I

4.6.5 Zero Bytes

Format:

ZAPx

ZAPx

Operation:

CASE

Ra.rq,Rb.rq,Rc.wq

Ra.rq,#b.ib,Rc.wq

!Operate format

!Operate format

ZAP:
Rc +- BYTE_ZAP (Rav, Rbv<7:0»

ZAPNOT:
Rc +- BYTE_ZAP (Rav, NOT Rbv<7:0»

ENDCASE

Exceptions:

None

Instruction mnemonics:

ZAP Zero Bytes

ZAPNOT Zero Bytes Not

Qualifiers:

None

Description:

ZAP and ZAPNOT set selected bytes of register Ra to zero, and store the result in
register Rc. Register Rb<7:0> selects the bytes to be zeroed; bit 0 ofRbv corresponds
to byte 0, bit 1 of Rbv corresponds to byte 1, and so on. A result byte is set to zero
if the corresponding bit of Rbv is a one for ZAP and a zero for ZAPNOT.

4-56 Common Architecture (I)

4.7 Floating-Point Instructions

Alpha AXP provides instructions for operating on floating-point operands in each of
four data formats:

• F_floating (VAX single)

• G_floating (VAX double, II-bit exponent)

• S_floating (IEEE single)

• T_floating (IEEE double, II-bit exponent)

Data conversion instructions are also provided to convert operands between floating
point and quadword integer formats, between double and single floating, and
between quadword and longword integers.

Note:

D_floating is a partially supported datatype; no D_floating arithmetic operations
are provided in the architecture. For backward compatibility, exact D_
floating arithmetic may be provided via software emulation. D_floating "format
compatibility," in which binary files of D_floating numbers may be processed but
without the last 3 bits of fraction precision, can be obtained via conversions to
G_floating, G arithmetic operations, then conversion back to D_floating.

The choice of data formats is encoded in each instruction. Each instruction also
encodes the choice of rounding mode and the choice of trapping mode.

All floating-point operate instructions (that is, not including loads or stores) that
yield an F_ or G_floating zero result must materialize a true zero.

4.7.1 Floating-Point Single-Precision Operations

Single-precision values (F_floating or S_floating) are stored in the floating-point
registers in canonical form, as subsets of double-precision values, with II-bit
exponents restricted to the corresponding single-precision range, and with the 29
low-order fraction bits restricted to be all zero.

Single-precision operations applied to canonical single-precision values give single
precision results. Single-precision operations applied to non-canonical operands give
UNPREDICTABLE results.

Longword integer values in floating-point registers are stored in bits <63:62,58:29>,
with bits <61:59> ignored and zeros in bits <28:0>.

4.7.2 Floating Subsets and Floating Faults

All floating-point operations may take floating disabled faults. Any subsetted
floating-point instruction may take an Illegal Instruction Trap. These faults are
not explicitly listed in the description of each instruction.

All floating-point loads and stores may take memory management faults (access
control violation, translation not valid, fault on read/write, data alignment).

Instruction Descriptions (I) 4-57

I

The floating-point enable (FEN) internal processor register (IPR) allows system
software to restrict access to the floating-point registers.

If a floating-point instruction is implemented and FEN = 0, attempts to execute the
instruction cause a floating disabled fault.

If a floating-point instruction is not implemented, attempts to execute the instruction
cause an Illegal Instruction Trap. This rule holds regardless of the value of FEN.

An Alpha AXP implementation may provide both VAX. and IEEE floating-point
operations, either, or none.

Some floating-point instructions are common to the VAX. and IEEE subsets, some
are VAX. only, and some are IEEE only. These are designated in the descriptions
that follow. If either subset is implemented, all the common instructions must be
implemented.

An implementation that includes IEEE floating-point may subset the ability
to perform rounding to plus infinity and minus infinity. If not implemented,
instructions requesting these rounding modes take Illegal Instruction Trap.

An implementation that includes IEEE floating-point may implement any subset
of the Trap Disable flags. If a flag is not implemented, it reads as zero and the
corresponding trap occurs as usual.

4.7.3 Definitions
The following definitions apply to Alpha AXP floating-point support.

Alpha AXP finite number
A floating-point number with a definite, in-range value. Specifically, all numbers in
the inclusive ranges -MAX through -MIN, zero, and +MIN through +MAX, where
MAX is the largest non-infinite representable floating-point number and MIN is the
smallest non-zero representable normalized floating-point number.

For VAX. floating-point, finites do not include reserved operands or dirty zeros (this
differs from the usual VAX. interpretation of dirty zeros as finite). For IEEE floating
point, finites do not include infinites, NaNs, or denormals, but do include minus zero.

denormal
An IEEE floating-point bit pattern that represents a number whose magnitude lies
between zero and the smallest finite number.

dirty zero
A VAX. floating-point bit pattern that represents a zero value, but not in true-zero
form.

infinity
An IEEE floating-point bit pattern that represents plus or minus infinity.

4-58 Common Architecture (I)

LSB
The least significant bit. For a positive representable number A whose fraction is
not all ones, A + 1 LSB is the next larger representable number, and A + 1/2 LSB
is exactly halfway between A and the next larger representable number.

non-finite number
An IEEE infinity, NaN, denormal number, or a VAX. dirty zero or reserved operand.

Not-a-Number
An IEEE floating-point bit pattern that represents something other than a number.
This comes in two forms: signaling NaNs (for Alpha AXP, those with an initial
fraction bit of 0) and quiet NaNs (for Alpha AXP, those with initial fraction bit of 1).

representable result
A real number that can be represented exactly as a VAX. or IEEE floating-point
number, with finite precision and bounded exponent range.

reserved operand
A VAX. floating-point bit pattern that represents an illegal value.

trap shadow
The set of instructions potentially executed after an instruction that signals an
arithmetic trap but before the trap is actually taken.

true result
The mathematically correct result of an operation, assuming that the input operand
values are exact. The true result is typically rounded to the nearest representable
result.

true zero
The value +0, represented as exactly 64 zeros in a floating-point register.

4.7.4 Encodings

Floating-point numbers are represented with three fields: sign, exponent, and
fraction. The sign is 1 bit; the exponent is 8, 11, or 15 bits; and the fraction is
23, 52, 55, or 112 bits. Some encodings represent special values:

Vax VAX IEEE IEEE
Sign Exponent Fraction Meaning Finite Meaning Finite

x All-l's Non-zero Finite Yes +1-NaN No

x AlI-l's 0 Finite Yes +I-Infinity No

0 0 Non-zero Dirty zero No +Denormal No

Instruction Descriptions (I) 4-59

I

Vax VAX IEEE IEEE
Sign Exponent Fraction Meaning Finite Meaning Finite

1 0 Non-zero Resv. operand No -Denormal No

0 0 0 True zero Yes +0 Yes

1 0 0 Resv. operand No -0 Yes

x Other x Finite Yes finite Yes

The values of MIN and MAX for each of the five floating-point data formats are:

Data
Format

F_floating

MIN

2**-127 * 0.5
(0.293873588e-38)

2**-1023 * 0.5
(0.5562684646268004e-308)

2**-126 * 1.0
(1.17549435e-38)

2**-1022 * 1.0
(2.2250738585072013e-308)

MAX

2**127 * (1.0 - 2**-24)
(1.7014117e38)

2**1023 * (1.0 - 2**-53)
(0.89884656743115785407e308)

2**127 * (2.0 - 2**-23)
(3.40282347e38)

2**1023 * (2.0 - 2**-52)
(1.7976931348623158e308)

2**-16382 * 1.0 2**16383 * (2.0 - 2**-112)
(3.36210314311209350626267781732175260e-4932) (1.18973149535723176508575932662800702e4932)

4.7.5 Floating-Point Rounding Modes

All rounding modes map a true result that is exactly representable to that
representable value.

VAX Rounding Modes
For VAX floating-point operations, two rounding modes are provided and are
specified in each instruction: normal (biased) rounding and chopped rounding.

Normal VAX rounding maps the true result to the nearest of two representable
results, with true results exactly halfway between mapped to the larger in absolute
value (sometimes called biased rounding away from zero); maps true results
~ MAX + 1/2 LSB in magnitude to an overflow; maps true results < MIN - 1/2 LSB
in magnitude to an underflow.

Chopped. VAX rounding maps the true result to the smaller in magnitude of two
surrounding representable results; maps true results ~ MAX + 1 LSB in magnitude
to an overflow; maps true results < MIN in magnitude to an underflow.

IEEE Rounding Modes
For IEEE floating-point operations, four rounding modes are provided: normal
rounding (unbiased round to nearest), rounding toward minus infinity, round toward
zero, and rounding toward plus infinity. The first three can be specified in the

4-60 Common Architecture (I)

instruction. Rounding toward plus infinity can be obtained by setting the Floating
point Control Register (FPCR) to select it and then specifying dynamic rounding
mode in the instruction (See Section 4.7.7). Alpha AXP IEEE arithmetic does
rounding before detecting overflow/underflow.

Normal IEEE rounding maps the true result to the nearest of two representable
results, with true results exactly halfway between mapped to the one whose
fraction ends in 0 (sometimes called unbiased rounding to even); maps true results
~ MAX + 1/2 LSB in magnitude to an overflow; maps true results < MIN - 1/2 LSB
in magnitude to an underflow.

Plus infinity IEEE rounding maps the true result to the larger of two surrounding
representable results; maps true results> MAX in magnitude to an overflow; maps
positive true results ~ +MIN - 1 LSB to an underflow; and maps negative true
results> -MIN to an underflow.

Minus infinity IEEE rounding maps the true result to the smaller of two surrounding
representable results; maps true results> MAX in magnitude to an overflow; maps
positive true results < +MIN to an underflow; and maps negative true results
~ -MIN + 1 LSB to an underflow.

Chopped IEEE rounding maps the true result to the smaller in magnitude of two
surrounding representable results; maps true results ~ MAX + 1 LSB in magnitude
to an overflow; and maps non-zero true results < MIN in magnitude to an underflow.

Dynamic rounding mode uses the IEEE rounding mode selected by the FPCR register
and is described in more detail in Section 4.7.7.

The following tables summarize the floating-point rounding modes: I
VAX Rounding Mode

Normal rounding

Chopped

IEEE Rounding Mode

Normal rounding

Dynamic rounding

Plus infinity

Minus infinity

Chopped

Instruction Notation

(No modifier)

/C

Instruction Notation

(N0 modifier)

/D

/D and ensure that FPCR<DYN> = '11'

1M

/C

Instruction Descriptions (I) 4-61

4.7.6 Floating-Point Trapping Modes

There are six exceptions that can be generated by floating-point operate instructions,
all signaled by an arithmetic exception trap. These exceptions are:

• Invalid operation

• Division by zero

• Overflow

• Underflow, may be disabled

• Inexact result, may be disabled

• Integer overflow (conversion to integer only), may be disabled

For more detail on the information passed to an arithmetic exception handler, see
Part II, Operating Systems.

VAX Trapping Modes
For VAX floating-point operations other than CVTxQ, four trapping modes are
provided. They specify software completion and whether traps are enabled for
underflow.

For VAX conversions from floating-point to integer, four trapping modes are provided.
They specify software completion and whether traps are enabled for integer overflow.

IEEE Trapping Modes
For IEEE floating-point operations other than CVTxQ, four trapping modes are
provided. They specify software completion and whether traps are enabled for
underflow and inexact results. -

For IEEE conversions from floating-point to integer, four trapping modes are
provided. They specify software completion, and whether traps are enabled for
integer overflow and inexact results.

The modes and instruction notation are:

VAX Trap Mode

Imprecise, underflow disabled

Imprecise, underflow enabled

Software, underflow disabled

Software, underflow enabled

VAX Convert-to-Integer Trap Mode

Imprecise, integer overflow disabled

4-62 Common Architecture (I)

Instruction Notation

(No modifier)

IU

/S

/SU

Instruction Notation

(N0 modifier)

4.7.6.1 Imprecise ISoftware Completion Trap Modes

Floating-point instructions may be pipelined, and all hardware exceptions are
imprecise traps:

• For the floating overflow, divide by zero, and invalid operation exceptions, the
trapping instruction may write an UNPREDICTABLE result value.

• The trap PC is an arbitrary number of instructions past the one triggering
the trap. The trigger instruction plus all intervening executed instructions are
collectively referred to as the trap shadow of the trigger instruction.

• The extent of the trap shadow is bounded only by an EXCB or TRAPB instruction
(or the implicit TRAPB within a CALL_PAL instruction).

• Input operand values may have been overwritten in the trap shadow.

• Result values may have been overwritten in the trap shadow.

• An UNPREDICTABLE result value may have been used as an input operand in
the trap shadow.

• Additional traps may occur in the trap shadow.

• In general, it is not feasible to fix up the result value or to continue from the
trap.

VAX Convert-to-Integer Trap Mode

Imprecise, integer overflow enabled

Software, integer overflow disabled

Software, integer overflow enabled

IEEE Trap Mode

Imprecise, unfl disabled, inexact disabled

Imprecise, unfl enabled, inexact disabled

Software, unfl enabled, inexact disabled

Software, unfl enabled, inexact enabled

IEEE Convert-to-Integer Trap Mode

Imprecise, int.ovfl disabled, inexact disabled

Imprecise, int.ovfi enabled, inexact disabled

Software, int.ovfl enabled, inexact disabled

Software, int.ovfl enabled, inexact enabled

Instruction Notation

N

IS

ISV

Instruction Notation

(No modifier)

/U

ISU

ISUI

Instruction Notation

(N0 modifier)

N

ISV

ISVI

I

Instruction Descriptions (I) 4-63

This behavior is ideal for operations on finite operands that give finite results. For
programs that deliberately operate outside the overflow/underflow range, or use
IEEE NaNs, software assistance is required to complete floating-point operations
correctly. This assistance can be provided by a software arithmetic trap handler,
plus constraints on the instructions surrounding the trap.

For a trap handler to complete non-finite arithmetic, the conditions described below
must hold:

• Conditions 1-3 allow a software trap handler to emulate the trigger instruction
with its original input operand values and then to reexecute the rest of the trap
shadow.

• Condition 4 prevents memory accesses at UNPREDICTABLE addresses.

• Conditions 5-7 make it possible for a software trap handler to find the trigger
instruction via a linear scan backwards from the trap PC.

Conditions

1. If the value in a register or memory location is used as input to some instruction
in the trap shadow, then either the following condition a or condition b must be
met.

a. The register or memory location is not modified by the instruction that uses
it or by any subsequent instruction in the trap shadow.

b. The value was produced by an earlier instruction in the trap shadow,
and no trapping instruction appears between the producing and consuming
instructions.

Condition a ensures that if the instruction is reexecuted, its inputs are
unchanged. If condition a cannot be ensured, then condition b requires that the
input values be created and hence valid when reexecution starts at the trigger
instruction.

2. If a conditional move (CMOVxx or FCMOVxx) instruction appears in the trap
shadow, then the RafFa and Rb/Fb operands of the instruction must satisfy
condition 1 above and either the following condition a or condition b must be
met.

a. The RafFa operand of the conditional move does not depend on any value
produced earlier in the trap shadow by an instruction that might trap.

b. The Rc/Fc operand ofthe instruction was produced by an earlier instruction in
the trap shadow, and no trapping instruction appears between the producing
instruction and the conditional move.

Condition a ensures that the conditional move instruction will be reexecuted with
the same condition in RafFa. If condition a cannot be ensured, then condition
b requires that the value that might be overlaid is valid when the conditional
move is reexecuted.

4-64 Common Architecture (I)

3. If a value is produced in the trap shadow as the result of a floating-point
instruction that might trap, that value may not contribute to any value that
is subsequently used in the trap shadow as the input to an integer instruction
that has the N modifier.

4. Within the trap shadow, the computation of the base register for a memory load
or store instruction may not involve using the result of an instruction that might
generate an UNPREDICTABLE result.

5. Within the trap shadow, if a register is used as the destination register of an
instruction that might cause a floating-point exception (and thus set a bit in
the software implementation's exception summary), it may not be used as the
destination of any other instruction in the trap shadow.

6. The trap shadow may not include any branch instructions.

7. Each floating-point instruction to be completed must be so marked, by specifying
the /S software completion modifier. The /S modifier must not be used on any
floating-point instruction that is not in a trap shadow that meets these conditions.

Note:

The /S modifier does not affect instruction operation or trap behavior; it is an
informational bit passed to a software trap handler. It allows a trap handler
to test easily whether an instruction is intended to be completed. (The /S
bits of instructions signaling traps are carried into a software implementation's
exception summary. The handler may then assume that the other conditions are
met without examining the code stream.

If a software trap handler is provided, it must handle the completion of all floating
point operations marked /S that follow the rules above. In effect, one TRAPB
instruction per basic block can be used.

4.7.6.2 Invalid Operation (INV) Arithmetic Trap

An invalid operation arithmetic trap is signaled if an operand is invalid for the
operation to be performed. Invalid operations are:

• Any operation on a signaling NaN.

• Addition of unlike-signed infinities or subtraction of like-signed infinities, such
as (+infinity + -infinity) or (+infinity - +infinity).

• Multiplication of O*infinity.

• Division of % or infinityjinfinity.

• Conversion of an infinity or NaN to an integer.

• CMPTLE or CMPTLT when either operand is a NaN.

An implementation may also choose to signal an invalid operation when it encounters
an operand that is non-finite. However, CMPTxy does not trap on plus or minus
infinity.

Instruction Descriptions (I) 4-65

I

The instruction cannot disable the trap. If the trap occurs, an UNPREDICTABLE
value is stored in the result register.

IEEE-compliant system software must also supply an invalid operation indication to
the user for SQRT of a negative non-zero number, for x REM 0, and for conversions
to integer that take an integer overflow trap. If an implementation does not support
the division by zero disable bit (DZED), it may respond to the division of % by
delivering a division by zero trap to the operating system, which IEEE compliant
software must change to an invalid operation trap for the user.

4.7.6.3 Division by Zero (DZE) Arithmetic Trap

A division by zero arithmetic trap is taken if the numerator does not cause an invalid
operation trap and the denominator is zero.

The instruction cannot disable the trap. If the trap occurs, an UNPREDICTABLE
value is stored in the result register.

Ifan implementation does not support the division by zero disable bit (DZED), it may
respond to the division of % by delivering a division by zero trap to the operating
system, which IEEE compliant software must change to an invalid operation trap
for the user.

4.7.6.4 Overflow (OVF) Arithmetic Trap

An overflow arithmetic trap is signaled if the rounded result exceeds in magnitude
the largest finite number of the destination format.

The instruction cannot disable the trap. If the trap occurs, an UNPREDICTABLE
value is stored in the result register.

4.7.6.5 Underflow (UNF) Arithmetic Trap

An underflow occurs if the rounded result is smaller in magnitude than the smallest
finite number of the destination format.

If an underflow occurs, a true zero (64 bits of zero) is always stored in the result
register, even if the proper IEEE result would have been -0 (underflow below the
negative denormal range).

If an underflow occurs and underflow traps are enabled by the instruction, an
underflow arithmetic trap is signaled.

4.7.6.6 Inexact Result (INE) Arithmetic Trap

An inexact result occurs if the infinitely precise result differs from the rounded
result.

If an inexact result occurs, the normal rounded result is still stored in the result
register.

If an inexact result occurs and inexact result traps are enabled by the instruction,
an inexact result arithmetic trap is signaled.

4-66 Common Architecture (I)

4.7.6.7 Integer Overflow (IOV) Arithmetic Trap

In conversions from floating to quadword integer, an integer overflow occurs if the
rounded result is outside the range -2**63..2**63-1. In conversions from quadword
integer to longword integer, an integer overflow occurs if the result is outside the
range -2**31..2**31-1.

If an integer overflow occurs in CVTxQ or CVTQL, the true result truncated to the
low-order 64 or 32 bits respectively is stored in the result register.

If an integer overflow occurs and integer overflow traps are enabled by the
instruction, an integer overflow arithmetic trap is signaled.

4.7.6.8 Floating-Point Trap Disable Bits

In the case of IEEE software completion trap modes, any of the traps described
in Sections 4.7.6.2 through 4.7.6.7 may be disabled by setting the corresponding
trap disable bit in the FPCR. The trap disable bits only affect the corresponding
IEEE trap modes when the instruction is coupled with the /S (software completion)
qualifier. The trap disable bits do not affect any of the VAX trap modes.

If a trap disable bit is set and the corresponding trap condition occurs, the hardware
implementation sets the result of the operation to the nontrapping result value as
specified in the IEEE standard and Section 4.7.10 and modified by the underflow to
zero (UNDZ) bit. If the implementation is unable to calculate the required result, it
ignores the trap disable bit and signals a trap as usual. (When an implementation
supports both the underflow disable bit and the underflow to zero bit, and both bits I
are set in the FPCR, the implementation sets the result of an underflow operation
to an appropriately signed true zero value.)

Note that a hardware implementation may choose to support any subset of the trap
disable bits, including the empty subset.

4.7.7 FPCR Register and Dynamic Rounding Mode

When an IEEE floating-point operate instruction specifies dynamic mode (/D) in its
function field (function field bits <12:11> = 11), the rounding mode to be used for
the instruction is derived from the FPCR register. The layout of the rounding mode
bits and their assignments matches exactly the format used in the II-bit function
field of the floating-point operate instructions. The function field is described in
Section 4.7.9.

In addition, the FPCR gives a summary of each exception type for the exception
conditions detected by all IEEE floating-point operates thus far, as well as an
overall summary bit that indicates whether any of these exception conditions has
been detected. The individual exception bits match exactly in purpose and order
the exceptions bits found in the exception summary quadword that is pushed for
arithmetic traps. However, for each instruction, these exceptions bits are set
independent of the trapping mode specified for the instruction. Therefore, even
though trapping may be disabled for a certain exceptional condition, the fact that
the exceptional condition was encountered by an instruction will still be recorded in
the FPCR.

Instruction Descriptions (I) 4-67

Floating-point operates that belong to the IEEE subset and CVTQL, which belongs
to both VAX. and IEEE subsets, appropriately set the FPCR exception bits. It is
UNPREDICTABLE whether floating-point operates that belong only to the VAX.
floating-point subset set the FPCR exception bits.

Alpha AXP floating-point hardware only transitions these exception bits from zero
to one. Once set to one, these exception bits are only cleared when software writes
zero into these bits by writing a new value into the FPCR.

The five trap disable bits may be subsetted in the hardware implementation. Any
unimplemented bits are read as zero and ignored when set; the hardware behaves
as if unimplemented bits are zero. In addition:

• If the UNFD bit is not implemented, the hardware may not implement the UNDZ
bit.

• If the DZED bit is implemented, division of % must be treated as an invalid
operation instead of a division by zero.

The format of the FPCR is shown in Figure 4-1 and described in Table 4-8.

Figure 4-1: Floating-Point Control Register (FPCR) Format

6362616059 5857565554535251504948

51 UU 1 1 UO 01 001
UN NN OYN ON NV ZN VZN RAZlIGN
ME FO _RM VE FF EV FEV

0 OZ 000

Table 4-8: Floating-Point Control Register (FPCR) Bit Descriptions

Bit Description (Meaning When Set)

63 Summary Bit (SUM). Records bitwise OR of FPCR exception bits. Equal to
FPCR<57 I 56 I 55 I 54 I 53 I 52>.

62 Inexact Disable (INED). Suppress INE trap and place correct IEEE nontrapping
result in the destination register.

61 Underflow Disable (UNFD). Suppress UNF trap and place correct IEEE
nontrapping result in the destination register if the implementation is capable
of producing correct IEEE nontrapping result. The correct result value is
determined according to the value of the UNDZ bit.

60 Underflow to Zero (UNDZ). When set together with UNFD, on underflow the
hardware places a true zero (64 bits of zero) in the destination register rather
than the denormal number specified by the IEEE standard.

4-68 Common Architecture (I)

Table 4-8 (Cont.): Floating-Point Control Register (FPCR) Bit Descriptions

Bit Description (Meaning When Set)

59-58 Dynamic Rounding Mode (DYN). Indicates the rounding mode to be used by
an IEEE floating-point operate instruction when the instruction's function field
specifies dynamic mode (ID). Assignments are:

DYN IEEE Rounding Mode Selected

00 Chopped rounding mode

01 Minus infinity

10 Normal rounding

11 Plus infinity

53

54

57

56

I

Integer Overflow (IOV). An integer arithmetic operation or a conversion from
floating to integer overflowed the destination precision.

Inexact Result (INE). A floating arithmetic or conversion operation gave a result
that differed from the mathematically exact result.

Underflow (UNF). A floating arithmetic or conversion operation underflowed the
destination exponent.

Overflow (OVF). A floating arithmetic or conversion operation overflowed the
destination exponent.

Division by Zero (DZE). An attempt was made to perform a floating divide
operation with a divisor of zero.

52 Invalid Operation (INV). An attempt was made to perform a floating arithmetic,
conversion, or comparison operation, and one or more of the operand values were
illegal.

51 Overflow Disable (OVFD). Suppress OVF trap and place correct IEEE
nontrapping result in the destination register if the implementation is capable
of producing correct IEEE nontrapping result.

50 Division by Zero Disable (DZED). Suppress DZE trap and place correct IEEE
nontrapping result in the destination register if the implementation is capable
of producing correct IEEE nontrapping result.

49 Invalid Operation Disable (INVD). Suppress INV trap and place correct IEEE
nontrapping result in the destination register if the implementation is capable
of producing correct IEEE nontrapping result.

48-0 Reserved. Read As Zero; Ignored when written.

55

FPCR is read from and written to the floating-point registers by the MT_FPCR and
MF_FPCR instructions respectively, which are described in Section 4.7.7.1.

FPCR and the instructions to access it are required for an implementation that
supports floating-point (see Section 4.7.7). On implementations that do not support

Instruction Descriptions (I) 4-69

floating-point, the instructions that access FPCR (MF_FPCR and MT_FPCR) take
an Illegal Instruction Trap.

Software Note:

Support for FPCR is required on a system that supports the OpenVMS AXP
operating system even if that system does not support floating-point.

4.7.7.1 Accessing the FPCR

Because Alpha AXP floating-point hardware can overlap the execution of a number
of floating-point instructions, accessing the FPCR must be synchronized with other
floating-point instructions. An EXCB instruction must be issued both prior to
and after accessing the FPCR to ensure that the FPCR access is synchronized
with the execution of previous and subsequent floating-point instructions; otherwise
synchronization is not ensured.

Issuing an EXCB followed by an MT_FPCR followed by another EXCB ensures that
only floating-point instructions issued after the second EXCB are affected by and
affect the new value of the FPCR. Issuing an EXCB followed by an MF_FPCR
followed by another EXCB ensures that the value read from the FPCR only records
the exception information for floating-point instructions issued prior to the first
EXCB.

Consider the following example:

ADDT/D
EXCB ;1
MT_FPCR F1,F1,F1
EXCB ;2
SUBT/D

Without the first EXCB, it is possible in an implementation for the ADDTID to
execute in parallel with the MT_FPCR. Thus, it would be UNPREDICTABLE
whether the ADDTID was affected by the new rounding mode set by the MT_
FPCR and whether fields cleared by the MT_FPCR in the exception summary were
subsequently set by the ADDTID.

Without the second EXCB, it is possible in an implementation for the MT_FPCR to
execute in parallel with the SUBTID. Thus, it would be UNPREDICTABLE whether
the SUBTID was affected by the new rounding mode set by the MT_FPCR and
whether fields cleared by the MT_FPCR in the exception summary field of FPCR
were previously set by the SUBTID.

Specifically, code should issue an EXCB before and after it accesses the FPCR if that
code needs to see valid values in FPCR bits <63> and <57:52>. An EXCB should
be issued before attempting to write the FPCR if the code expects changes to bits
<59:52> not to have dependencies with prior instructions. An EXCB should be issued
after attempting to write the FPCR if the code expects subsequent instructions to
have dependencies with changes to bits <59:52>.

4-70 Common Architecture (I)

4.7.7.2 Default Values of the FPCR

Processor initialization leaves the value of FPCR UNPREDICTABLE.

Software Note:

Digital software should initialize FPCR<DYN> = 10 during program activation.
Using this default, a program can be coded to use only dynamic rounding without
the need to explicitly set the rounding mode to normal rounding in its start-up
code.

Program activation normally clears all other fields in the FPCR. However, this
behavior may depend on the operating system.

4.7.7.3 Saving and Restoring the FPCR

The FPCR must be saved and restored across context switches so that the FPCR
value of one process does not affect the rounding behavior and exception summary
of another process.

The dynamic rounding mode put into effect by the programmer (or initialized by
image activation) is valid for the entirety of the program and remains in effect until
subsequently changed by the programmer or until image run-down occurs.

Software Notes:

The following software notes apply to saving and restoring the FPCR:

1. The IEEE standard precludes saving and restoring the FPCR across
subroutine calls.

2. The IEEE standard requires that an implementation provide status flags
that are set whenever the corresponding conditions occur and are reset
only at the user's request. The exception bits in the FPCR do not satisfy
that requirement, because they can be spuriously set by instructions in a
trap shadow that should not have been executed had the trap been taken
synchronously.

The IEEE status flags can be provided by software (as software status bits)
as follows:

Trap interface software (usually the operating system) keeps a set of
software status bits and a mask of the traps that the user wants to
receive. Code is generated with the /SUI modifiers. For a particular
exception, the software clears the corresponding trap disable bit if either
the corresponding software status bit is 0 or if the user wants to receive
such traps. If a trap occurs, the software locates the offending instruction
in the trap shadow, simulates it and sets any of the software status bits
that are appropriate. Then, the software either delivers the trap to the
user program or disables further delivery of such traps. The user program
must interface to this trap interface software to set or clear any of the
software status bits or to enable or disable floating-point traps.

Instruction Descriptions (I) 4-71

I

When such a scheme is being used, the trap disable bits should be modified
only by the trap interface software. If the disable bits are spuriously cleared,
unnecessary traps may occur. If they are spuriously set, the software may
fail to set the correct values in the software status bits. Programs should call
routines in the trap interface software to set or clear bits in the FPCR.

Digital software may choose to initialize the software status bits and the
trap disable bits to all 1's to avoid any initial trapping when an exception
condition first occurs. Or, software may choose to initialize those bits to all
O's in order to provide a summary of the exception behavior when the program
terminates.

In any event, the exception bits in the FPCR are still useful to programs. A
program can clear all of the exception bits in the FPCR, execute a single
floating-point instruction, and then examine the status bits to determine
which hardware-defined exceptions the instruction encountered. For this
operation to work in the presence of various implementation options, the
single instruction should be followed by a TRAPB or EXCB instruction, and
software completion by the system software should save and restore the FPCR
registers without other modifications.

3. Because of the way the LDS and STS instructions manipulate bits <61:59> of
floating-point registers, they should not be used to manipulate FPCR values.

4.7.8 Floating-Point Computational Models

There are three models of arithmetic available with the IEEE floating-point subset
in the Alpha AXP architecture:

• IEEE compliant arithmetic

• IEEE compliant arithmetic without inexact exception

• High-performance IEEE-format arithmetic

IEEE Compliant Arithmetic
This model provides floating-point arithmetic that fully complies with the IEEE
standard. It provides all of the exception status flags that are in the standard and
allows the user to specify which exceptional conditions should trap and which should
proceed without trapping.

This model is implemented in a program by using IEEE floating-point operates with
the /SUI modifiers, with the help of the trap interface software described in Software
Note 2 in Section 4.7.7.3. It provides acceptable performance on implementations
of the Alpha AXP architecture that implement the inexact disable (INED) bit in
the FPCR, as long as such programs do not turn on traps for the inexact condition.
Performance under this model may be slow if the INED bit is not implemented.

IEEE Compliant Arithmetic Without Inexact Exception
This is similar to the previous model, but it does not provide the inexact exception
status bit, nor does it allow a program to request traps when an inexact operation
occurs.

4-72 Common Architecture (I)

This model is implemented in a program by using IEEE floating-point operates with
the ISU modifiers, with the help of the trap interface software.

High-Performance IEEE-Format Arithmetic
This model provides arithmetic operations on IEEE format numbers, but does not
allow operations on or generation of non-finite numbers. Any attempt to operate
on a non-finite number may cause an unrecoverable trap, and any operation except
underflow that would generate a non-finite number (according to the IEEE standard)
may also cause an unrecoverable trap. Underflow results are set to zero. There are
no reliable IEEE exception status flags available.

This model is implemented in a program by using IEEE floating-point operates
without the ISU or ISUI modifiers. It is the fastest of the three models.

4.7.9 Floating-Point Instruction Function Field Format

Bits <15..5> in floating-point instructions contain the function field, as shown in
Figure 4-2 and described for IEEE floating-point in Table 4-9 and for VAX floating
point in Table 4-10. The function field contains subfields that specify the trapping
and rounding modes that are enabled for the instruction, the source datatype, and
the instruction class.

Figure 4-2: Floating-Point Instruction Function Field

31 2625 2120 1615 131211109 8 5 4

I
Table 4-9: IEEE Floating-Point Function Field Bit Summary

Bits Field Meaning

15-13 TRP Trapping modes:

000 Imprecise (default)
001 Underflow enable (IU) - floating-point output

Integer overflow enable (N) - integer output
010 Unsupported
011 Unsupported
100 Software completion enable (IS)
101 ISU - floating-point output

ISV - integer output
110 Unsupported
111 ISUI - floating-point output

ISVI - integer output

Instruction Descriptions (I) 4-73

Table 4-9 (Cont.): IEEE Floating-Point Function Field Bit Summary

Bits Field Meaning

12-11 RND Rounding modes:

10-9

8-5

SRC

FNC

00 Chopped (/C)

01 Minus infinity (1M)
10 Normal (default)
11 Dynamic (/D)

Source datatype:

00 S_floating
01 Reserved
10 T_floating
11 Q_fixed

Instruction class:

0000 ADDx
0001 SUBx
0010 MULx
0011 DIVx
0100 CMPxUN
0101 CMPxEQ
0110 CMPxLT
0111 CMPxLE
1000 Reserved
1001 Reserved
1010 Reserved
1011 Reserved
1100 CVTxS
1101 Reserved
1110 CVTxT
1111 CVTxQ

4-74 Common Architecture (I)

Table 4-10: VAX Floating-Point Function Field Bit Summary

Bits Field Meaning

15-13 TRP Trapping modes:

000 Imprecise (default)
001 Underflow enable (IU) - floating-point output

Integer overflow enable (IV) - integer output
010 Unsupported
011 Unsupported
100 Software completion enable (IS)
101 ISU - floating-point output

ISV - integer output
110 Unsupported
111 Unsupported

12-11 RND Rounding modes:

00 Chopped (/C)

01 Unsupported
10 Normal (default)
11 Unsupported

10-9 SRC Source datatype:

00 F_floating I01 D_floating
10 G_floating
11 (Lfixed

Instruction Descriptions (I) 4-75

Table 4-10 (Cont.): VAX Floating-Point Function Field Bit Summary
Bits Field Meaning

8-5 FNC Instruction class:

0000 ADDx
0001 SUBx
0010 MULx
0011 DIVx
0100 CMPxUN
0101 CMPxEQ
0110 CMPxLT
0111 CMPxLE
1000 Reserved
1001 Reserved
1010 Reserved
1011 Reserved
1100 CVTxF
1101 CVTxD
1110 CVTxG
1111 CVTxQ

4.7.10 IEEE Standard

The IEEE Standard for Binary Floating-Point Arithmetic (ANSIIIEEE Standard 754
1985) is included by reference.

This standard leaves certain operations as implementation dependent. The
remainder of this section specifies the behavior of the Alpha AXP architecture in
these situations. Note that this behavior may be supplied by either hardware (if the
invalid operation disable, or INVD, bit is implemented) or by software. See Sections
4.7.6.8,4.7.7, and 4.7.7.3.

4.7.10.1 Conversion of NaN and Infinity Values

Conversion of a NaN or an Infinity value to an integer gives a result of zero.

Conversion of a NaN value from S_floating to T_floating gives a result identical to
the input, except that the most significant fraction bit (bit 51) is set to indicate a
quiet NaN.

Conversion of a NaN value from T_floating to S_floating gives a result identical to
the input, except that the most significant fraction bit (bit 51) is set to indicate a
quiet NaN, and bits <28:0> are cleared to zero.

4-76 Common Architecture (I)

4.7.10.2 Copying NaN Values

Copying a NaN value without changing its precision does not cause an invalid
operation exception.

4.7.10.3 Generating NaN Values

When an operation is required to produce a NaN and none of its inputs are NaN
values, the result of the operation is the quiet NaN value that has the sign bit set
to one, all exponent bits set to one (to indicate a NaN), the most significant fraction
bit set to one (to indicate that the NaN is quiet), and all other fraction bits cleared
to zero. This value is referred to as the "canonical quiet NaN."

4.7.10.4 Propagating NaN Values

When an operation is required to produce a NaN and one or both of its inputs are
NaN values, the IEEE standard requires that quiet NaN values be propagated when
possible. With the Alpha AXP architecture, the result of such an operation is a NaN
generated according to the first of the following rules that is applicable:

1. If the operand in the Fb register of the operation is a quiet NaN, that value is
used as the result.

2. If the operand in the Fb register of the operation is a signaling NaN, the result is
the quiet NaN formed from the Fb value by setting the most significant fraction
bit (bit 51) to a one bit.

3. If the operation uses its Fa operand and the value in the Fa register is a quiet
NaN, that value is used as the result.

4. If the operation uses its Fa operand and the value in the Fa register is a signaling
NaN, the result is the quiet NaN formed from the Fa value by setting the most
significant fraction bit (bit 51) to a one bit.

5. The result is the canonical quiet NaN.

Instruction Descriptions (I) 4-77

•

4.8 Memory Format Floating-Point Instructions

The instructions in this section move data between the floating-point registers and
memory. They use the Memory instruction format. They do not interpret the bits
moved in any way; specifically, they do not trap on non-finite values.

The instructions are summarized in Table 4-11.

Table 4-11: Memory Format Floating-Point Instructions Summary

Mnemonic Operation Subset

LDF

LDG

LDS

LDT

STF

STG

STS

STT

Load F_floating

Load G_floating (Load D_floating)

Load S_floating (Load Longword Integer)

Load T_floating (Load Quadword Integer)

Store F_floating

Store G_floating (Store D_floating)

Store S_floating (Store Longword Integer)

Store T_floating (Store Quadword Integer)

VAX.

VAX.

Both

Both

VAX.

VAX.

Both

Both

4-78 Common Architecture (I)

4.8.1 Load F_floating

Format:

LDF

Operation:

Fa.wf,disp.ab(Rb.ab) !Memory format

va +- {Rbv + SEXT(disp)}

CASE
big_endian_data: va' +- va XOR 1002
little_endian_data: va' +- va

ENDCASE

Fa +- (va')<15> II MAP_F((va')<14:7» II
(va')<6:0> II (va')<31:16> II 0<28:0>

Exceptions:

Access Violation
Fault on Read
Alignment
Translation Not Valid

Instruction mnemonics:

LDF Load F_floating

Qualifiers:

None

Description:

LDF fetches an F_floating datum from memory and writes it to register Fa. If the
data is not naturally aligned, an alignment exception is generated.

The MAP_F function causes the 8-bit memory-format exponent to be expanded to an
11-bit register-format exponent according to Table 2-1.

The virtual address is computed by adding register Rb to the sign-extended 16-bit
displacement. For a big-endian longword access, va<2> (bit 2 of the virtual address)
is inverted, and any memory management fault is reported for va (not va'). The
source operand is fetched from memory and the bytes are reordered to conform to
the F_floating register format. The result is then zero-extended in the low-order
longword and written to register Fa.

Instruction Descriptions (I) 4-79

•

4.8.2 Load G_floating

Format:

LDG

Operation:

Fa.wg,disp.ab(Rb.ab) !Memory format

va +- {Rbv + SEXT(disp)}

Fa +- (va) <15: 0> II (va) <31: 16> II
(va)<47:32> II (va)<63:48>

Exceptions:

Access Violation
Fault on Read
Alignment
Translation Not Valid

Instruction mnemonics:

LDG Load G_floating (Load D_floating)

Qualifiers:

None

Description:

LDG fetches a G_floating (or D_floating) datum from memory and writes it to register
Fa. If the data is not naturally aligned, an alignment exception is generated.

The virtual address is computed by adding register Rb to the sign-extended I6-bit
displacement. The source operand is fetched from memory, the bytes are reordered to
conform to the G_floating register format (also conforming to the D_floating register
format), and the result is then written to register Fa.

4-80 Common Architecture (I)

4.8.3 Load S_floating

Format:

LD8

Operation:

Fa.ws,disp.ab(Rb.ab) !Memory format

va +- {Rbv + SEXT(disp)}

CASE
big_endian_data: va' +- va XOR 1002
little_endian_data: va' +- va

ENDCASE

Fa +- (va')<31> II MAP_S((va')<30:23» II
(va')<22:0> II 0<28:0>

Exceptions:

Access Violation
Fault on Read
Alignment
Translation Not Valid

Instruction mnemonics:

LD8 Load S_floating (Load Longword Integer)

Qualifiers:

None

Description:

LD8 fetches a longword (integer or S_fioating) from memory and writes it to register
Fa. If the data is not naturally aligned, an alignment exception is generated. The
MAP_8 function causes the 8-bit memory-format exponent to be expanded to an
11-bit register-format exponent according to Table 2-2.

The virtual address is computed by adding register Rb to the sign-extended 16-bit
displacement. For a big-endian longword access, va<2> (bit 2 of the virtual address)
is inverted, and any memory management fault is reported for va (not va'). The
source operand is fetched from memory, is zero-extended in the low-order longword,
and then written to register Fa. Longword integers in floating registers are stored
in bits <63:62,58:29>, with bits <61:59> ignored and zeros in bits <28:0>.

Instruction Descriptions (I) 4-81

•

4.8.4 Load T_floating

Format:

LDT

Operation:

Fa.wt,disp.ab(Rb.ab) !Memory format

va +- {Rbv + SEXT(disp)}

Fa +- (va) <63 : 0>

Exceptions:

Access Violation
Fault on Read
Alignment
Translation Not Valid

Instruction mnemonics:

LDT Load T_floating (Load Quadword Integer)

Qualifiers:

None

Description:

LDT fetches a quadword (integer or T_floating) from memory and writes it to register
Fa. If the data is not naturally aligned, an alignment exception is generated.

The virtual address is computed by adding register Rb to the sign-extended 16-bit
displacement. The source operand is fetched from memory and written to register
Fa. .

4-82 Common Architecture (I)

4.8.5 Store F_floating

Format:

STF

Operation:

Fa.rf,disp.ab(Rb.ab) !Memory format

va +- {Rbv + SEXT(disp)}

CASE
big_endian_data: va' +- va XOR 1002
little_endian_data: va' +- va

ENDCASE

(va')<31:0> +- Fav<44:29> I I Fav<63:62>1 I Fav<58:45>

Exceptions:

Access Violation
Fault on Write
Alignment
Translation Not Valid

Instruction mnemonics:

STF Store F_floating

Qualifiers:

None

Description:

STF stores an F_floating datum from Fa to memory. If the data is not naturally
aligned, an alignment exception is generated.

The virtual address is computed by adding register Rb to the sign-extended 16-bit
displacement. For a big-endian longword access, va<2> (bit 2 of the virtual address)
is inverted, and any memory management fault is reported for va (not va'). The bits
of the source operand are fetched from register Fa, the bits are reordered to conform
to F_floating memory format, and the result is then written to memory. Bits <61:59>
and <28:0> of Fa are ignored. No checking is done.

Instruction Descriptions (I) 4-83

•

4.8.6 Store G_floating

Format:

STG

Operation:

Fa.rg,disp.ab(Rb.ab) !Memory format

va +- {Rbv + SEXT(disp)}

(va)<63:0> +- Fav<15:0> I I Fav<31:16> I I
Fav<47:32> I I Fav<63:48>

Exceptions:

Access Violation
Fault on Write
Alignment
Translation Not Valid

Instruction mnemonics:

STG Store G_floating (Store D_floating)

Qualifiers:

None

Description:

STG stores a G_floating (or D_floating) datum from Fa to memory. If the data is not
naturally aligned, an alignment exception is generated.

The virtual address is computed by adding register Rb to the sign-extended 16
bit displacement. The source operand is fetched from register Fa, the bytes are
reordered to conform to the G_floating memory format (also conforming to the D_
floating memory format), and the result is then written to memory.

4-84 Common Architecture (I)

4.8.7 Store S_floating

Format:

STS

Operation:

Fa.rs,disp.ab(Rb.ab) !Memory format

va +- {Rbv + SEXT(disp}}

CASE
big_endian_data: va' +- va XOR 1002
little_endian_data: va' +- va

ENDCASE

(va'}<31:0> +- Fav<63:62>\ \Fav<S8:29>

Exceptions:

Access Violation
Fault on Write
Alignment
Translation Not Valid

Instruction mnemonics:

STS Store S_floating (Store Longword Integer)

Qualifiers:

None

Description:

STS stores a longword (integer or S_floating) datum from Fa to memory. If the data
is not naturally aligned, an alignment exception is generated.

The virtual address is computed by adding register Rb to the sign-extended 16-bit
displacement. For a big-endian longword access, va<2> (bit 2 of the virtual address)
is inverted, and any memory management fault is reported for va (not va'). The bits
of the source operand are fetched from register Fa, the bits are reordered to conform
to S_floating memory format, and the result is then written to memory. Bits <61:59>
and <28:0> of Fa are ignored. No checking is done.

Instruction Descriptions (I) 4-85

•

4.8.8 Store T_floating

Format:

STT

Operation:

Fa.rt,disp.ab(Rb.ab) !Memory format

va +- {Rbv + SEXT(disp)}

(va)<63:0> +- Fav<63:0>

Exceptions:

Access Violation
Fault on Write
Alignment
Translation Not Valid

Instruction mnemonics:

STT Store T_fioating (Store Quadword Integer)

Qualifiers:

None

Description:

STT stores a quadword (integer or T_floating) datum from Fa to memory. If the data
is not naturally aligned, an alignment exception is generated.

The virtual address is computed by adding register Rb to the sign-extended 16-bit
displacement. The source operand is fetched from register Fa and written to memory.

4-86 Common Architecture (I)

4.9 Branch Format Floating-Point Instructions

Alpha AXP provides six floating conditional branch instructions. These branch
format instructions test the value of a floating-point register and conditionally
change the PC.

They do not interpret the bits tested in any way; specifically, they do not trap on
non-finite values.

The test is based on the sign bit and whether the rest of the register is all zero bits.
All 64 bits of the register are tested. The test is independent of the format of the
operand in the register. Both plus and minus zero are equal to zero. A non-zero
value with a sign of zero is greater than zero. A non-zero value with a sign of one
is less than zero. No reserved operand or non-finite checking is done.

The floating-point branch operations are summarized in Table 4-12.

Table 4-12: Floating-Point Branch Instructions Summary

Mnemonic Operation Subset

FBEQ

FBGE

FBGT

FBLE

FBLT

FBNE

Floating Branch Equal

Floating Branch Greater Than or Equal

Floating Branch Greater Than

Floating Branch Less Than or Equal

Floating Branch Less Than

Floating Branch Not Equal

Both

Both

Both

Both

Both

Both

Instruction Descriptions (I) 4-87

•

4.9.1 Conditional Branch

Format:

FBxx

Operation:

Fa.rq,disp.al !Branch format

{update PC}
va +- PC + {4*SEXT(disp)}
IF TEST (Fav, Condition_based_on_Opcode) THEN

PC +- va

Exceptions:

None

Instruction mnemonics:

FBEQ

FBGE

FBGT

FBLE

FBLT

FBNE

Qualifiers:

None

Floating Branch Equal

Floating Branch Greater Than or Equal

Floating Branch Greater Than

Floating Branch Less Than or Equal

Floating Branch Less Than

Floating Branch Not Equal

Description:

Register Fa is tested. If the specified relationship is true, the PC is loaded with
the target virtual address; otherwise, execution continues with the next sequential
instruction.

The displacement is treated as a signed longword offset. This means it is shifted
left two bits (to address a longword boundary), sign-extended to 64 bits, and added
to the updated PC to form the target virtual address.

The conditional branch instructions are PC-relative only. The 21-bit signed
displacement gives a forward/backward branch distance of +/- 1M instructions.

4-88 Common Architecture (I)

Notes:

• To branch properly on non-finite operands, compare to F31, then branch on the
result of the compare.

• The largest negative integer (8000 0000 0000 000016) is the same bit pattern as
floating minus zero, so it is treated as equal to zero by the branch instructions.
To branch properly on the largest negative integer, convert it to floating or move
it to an integer register and do an integer branch.

Instruction Descriptions (I) 4-89

•

4.10 Floating-Point Operate Format Instructions

The floating-point bit-operate instructions perform copy and integer convert
operations on 64-bit register values. The bit-operate instructions do not interpret
the bits moved in any way; specifically, they do not trap on non-finite values.

The floating-point arithmetic-operate instructions perform add, subtract, multiply,
divide, compare, and floating convert operations on 64-bit register values in one of
the four specified floating formats.

Each instruction specifies the source and destination formats of the values, as well
as the rounding mode and trapping mode to be used. These instructions use the
Floating-point Operate format.

The floating-point operate instructions are summarized in Table 4--13.

Table 4-13: Floating-Point Operate Instructions Summary

Mnemonic Operation Subset

Bit and FPCR Operations

CPYS Copy Sign Both

CPYSE Copy Sign and Exponent Both

CPYSN Copy Sign Negate Both

CVTLQ Convert Longword to Quadword Both

CVTQL Convert Quadword to Longword Both

FCMOVxx Floating Conditional Move Both

MF_FPCR Move from Floating-point Control Register Both

MT_FPCR Move to Floating-point Control Register Both

4-90 Common Architecture (I)

Table 4-13 (Cont.): Floating-Point Operate Instructions Summary

Mnemonic Operation Subset

Arithmetic Operations

ADDF Add F_floating VAX
ADDG Add G_floating VAX
ADDS Add S_floating IEEE

ADDT Add T_floating IEEE

CMPGxx Compare G_floating VAX
CMPTxx Compare T_floating IEEE

CVTDG Convert D_floating to G_floating VAX
CVTGD Convert G_floating to D_floating VAX
CVTGF Convert G_floating to F_floating VAX
CVTGQ Convert G_floating to Quadword VAX
CVTQF Convert Quadword to F_floating VAX
CVTQG Convert Quadword to G_floating VAX

•CVTQS Convert Quadword to S_floating IEEE

CVTQT Convert Quadword to T_floating IEEE

CVTST Convert S_floating to T_floating IEEE

CVTTQ Convert T_floating to Quadword IEEE

CVTTS Convert T_floating to S_floating IEEE

DIVF Divide F_floating VAX
DIVG Divide G_floating VAX
DIVS Divide S_floating IEEE

DIVT Divide T_floating IEEE

MULF Multiply F_floating VAX
MULG Multiply G_floating VAX
MULS Multiply S_floating IEEE

MULT Multiply T_floating IEEE

Instruction Descriptions (I) 4-91

Table 4-13 (Cont.): Floating-Point Operate Instructions Summary
Mnemonic Operation Subset

Arithmetic Operations

SUBF

SUBG

SUBS

SUBT

Subtract F_floating

Subtract G_floating

Subtract S_floating

Subtract T_floating

VAX

VAX

IEEE

IEEE

4-92 Common Architecture (I)

4.10.1 Copy Sign

Format:

CPYSy

Operation:

Fa.rq,Fb.rq,Fc.wq !Floating-point Operate format

CASE
CPYS:
CPYSN:
CPYSE:

ENDCASE

Exceptions:

None

Fe +- Fav<63> I I Fbv<62:0>
Fe +- NOT (Fav<63» I I Fbv<62:0>
Fe +- Fav<63:52> I I Fbv<51:0>

Instruction mnemonics:

CPYS

CPYSE

CPYSN

Qualifiers:

None

Copy Sign

Copy Sign and Exponent

Copy Sign Negate •
Description:

For CPYS and CPYSN, the sign bit of Fa is fetched (and complemented in the case
of CPYSN) and concatenated with the exponent and fraction bits from Fb; the result
is stored in Fc.

For CPYSE, the sign and exponent bits from Fa are fetched and concatenated with
the fraction bits from Fb; the result is stored in Fe.

No checking of the operands is performed.

Notes:

• Register moves can be performed using CPYS Fx,Fx,Fy. Floating-point absolute
value can be done using CPYS F31,Fx,Fy. Floating-point negation can be done
using CPYSN Fx,Fx,Fy. Floating values can be scaled to a known range by using
CPYSE.

Instruction Descriptions (I) 4-93

4.10.2 Convert Integer to Integer

Format:

CVTxy

Operation:

CASE

Fb.rq,Fc.wx !Floating-point Operate format

CVTQL: Fe +- Fbv<31:30> I I 0<2:0> I I
Fbv<29:0> I I 0<28:0>

CVTLQ: Fe +- SEXT(Fbv<63:62> I I Fbv<58:29»
ENDCASE

Exceptions:

Integer Overflow, CVTQL only

Instruction mnemonics:

CVTLQ

CVTQL

Qualifiers:

Trapping:

Description:

Convert Longword to Quadword

Convert Quadword to Longword

Software (IS) (CVTQL only)

Integer Overflow Enable (N) (CVTQL only)

The two's-complement operand in register Fb is converted to a two's-complement
result and written to register Fc. Register Fa must be F31.

The conversion from quadword to longword is a repositioning of the low 32 bits of
the operand, with zero fill and optional integer overflow checking. Integer overflow
occurs if Fb is outside the range -2**31..2**31-1. If integer overflow occurs, the
truncated result is stored in Fc, and an arithmetic trap is taken if enabled.

The conversion from longword to quadword is a repositioning of 32 bits of the
operand, with sign extension.

4-94 Common Architecture (I)

4.10.3 Floating-Point Conditional Move

Format:

FCMOVxx Fa.rq,Fb.rq,Fc.wq

Operation:

!Floating-point Operate format

IF TEST (Fav, Condition_based_on_Opeode) THEN

Fe +- Fbv

Exceptions:

None

Instruction mnemonics:

FCMOVEQ

FCMOVGE

FCMOVGT

FCMOVLE

FCMOVLT

FCMOVNE

Qualifiers:

None

FCMOVE if Register Equal to Zero

FCMOVE if Register Greater Than or Equal to Zero

FCMOVE if Register Greater Than Zero

FCMOVE if Register Less Than or Equal to Zero

FCMOVE if Register Less Than Zero

FCMOVE if Register Not Equal to Zero •
Description:

Register Fa is tested. If the specified relationship is true, register Fb is written to
register Fc; otherwise, the move is suppressed and register Fc is unchanged. The
test is based on the sign bit and whether the rest of the register is all zero bits, as
described for floating branches in Section 4.9.

Instruction Descriptions (I) 4-95

Notes:
Except that it is likely in many implementations to be substantially faster, the
instruction:

FCMOVxx Fa,Fb,Fc

is exactly equivalent to:

FByy Fa, label
CPYS Fb,Fb,Fc

label:

yy NOT xx

For example, a branchless sequence for:

Fl=MAX(Fl,F2)

is:

CMPxLT Fl,F2,F3
FCMOVNE F3,F2,Fl

4-96 Common Architecture (I)

F3=one if Fl<F2; x=F/G/S/T
Move F2 to Fl if Fl<F2

4.10.4 Move from/to Floating-Point Control Register

Format:

Mx_FPCR Fa.rq,Fa.rq,Fa.wq

Operation:

CASE
MT_FPCR: FPCR ~ Fav
MF_FPCR: Fa ~ FPCR

ENDCASE

Exceptions:

None

Instruction mnemonics:

!Floating-point Operate format

MF_FPCR Move from Floating-point Control Register

MT_FPCR Move to Floating-point Control Register

Qualifiers:

None

Description:

The Floating-point Control Register (FPCR) is read from (MF_FPCR) or written
to (MT_FPCR), a floating-point register. The floating-point register to be used is
specified by the Fa, Fb, and Fe fields all pointing to the same floating-point register.
If the Fa, Fb, and Fe fields do not all point to the same floating-point register, then
it is UNPREDICTABLE which register is used. If the Fa, Fb, and Fe fields do not
all point to the same floating-point register, the resulting values in the Fe register
and in FPCR are UNPREDICTABLE.

If the Fe field is F31 in the case of MT_FPCR, the resulting value in FPCR is
UNPREDICTABLE.

The use of these instructions and the FPCR are described in Section 4.7.7.

Instruction Descriptions (I) 4-97

•

4.10.5 VAX Floating Add

Format:

ADDx

Operation:

Fa.rx,Fb.rx,Fc.wx !Floating-point Operate format

Fc ~ Fav + Fbv

Exceptions:

Invalid Operation
Overflow
Underflow

Instruction mnemonics:

ADDF
ADDG

Qualifiers:

Rounding:

Trapping:

Add F_floating

Add G_floating

Chopped (/C)

Software (/S)

Underflow Enable (IU)

Description:

Register Fa is added to register Fb, and the sum is written to register Fc.

The sum is rounded or chopped to the specified precision, and then the corresponding
range is checked for overflow/underflow. The single-precision operation on canonical
single-precision values produces a canonical single-precision result.

An invalid operation trap is signaled if either operand has exp=O and is not a true
zero (that is, VAX reserved operands and dirty zeros trap). The contents of Fc are
UNPREDICTABLE if this occurs. See Section 4.7.6 for details of the stored result
on overflow or underflow.

4-98 Common Architecture (I)

4.10.6 IEEE Floating Add

Format:

ADDx

Operation:

Fa.rx,Fb.rx,Fc.wx !Floating-point Operate format

Fe ~ Fav + Fbv

Exceptions:

Invalid Operation
Overflow
Underflow
Inexact Result

Instruction mnemonics:

ADDS

ADDT

Qualifiers:

Rounding:

Trapping:

Description:

Add S_floating

Add T_floating

Dynamic (/0)

Minus infinity (1M)

Chopped (/C)

Software (/S)

Underflow Enable (IU)

Inexact Enable (/I)

•

Register Fa is added to register Fb, and the sum is written to register Fc.

The sum is rounded to the specified precision, and then the corresponding range is
checked for overflow/underflow. The single-precision operation on canonical single
precision values produces a canonical single-precision result.

See Section 4.7.6 for details of the stored result on overflow, underflow, or inexact
result.

Instruction Descriptions (I) 4-99

4.10.7 VAX Floating Compare

Format:

CMPGyy Fa.rg,Fb.rg,Fc.wq

Operation:

IF Fav SIGNED_RELATION Fbv THEN
Fe +- 4000 0000 0000 000016

ELSE
Fe +- 0000 0000 0000 000016

Exceptions:

Invalid Operation

Instruction mnemonics:

!Floating-point Operate format

CMPGEQ

CMPGLE

CMPGLT

Qualifiers:

Trapping:

Compare G_floating Equal

Compare G_floating Less Than or Equal

Compare G_floating Less Than

Software (IS)

Description:

The two operands in Fa and Fb are compared. If the relationship specified by the
qualifier is true, a non-zero floating value (0.5) is written to register Fc; otherwise,
a true zero is written to Fc.

Comparisons are exact and never overflow or underflow. Three mutually exclusive
relations are possible: less than, equal, and greater than.

An invalid operation trap is signaled if either operand has exp=O and is not a true
zero (that is, VAX. reserved operands and dirty zeros trap). The contents of Fc are
UNPREDICTABLE if this occurs.

Notes:

• Compare Less Than A,B is the same as Compare Greater Than B,A; Compare
Less Than or Equal A,B is the same as Compare Greater Than or Equal B,A.
Therefore, only the less-than operations are included.

4-100 Common Architecture (I)

4.10.8 IEEE Floating Compare

Format:

CMPTyy Fa.rx,Fb.rx,Fc.wq

Operation:

IF Fav SIGNED_RELATION Fbv THEN
Fc +- 4000 0000 0000 000016

ELSE
Fc +- 0000 0000 0000 000016

Exceptions:

Invalid Operation

!Floating-point Operate format

Instruction mnemonics:

CMPTEQ

CMPTLE

CMPTLT

CMPTUN

Qualifiers:

Trapping:

Compare T_floating Equal

Compare T_floating Less Than or Equal

Compare T_floating Less Than

Compare T_floating Unordered

Software (IS)

•
Description:

The two operands in Fa and Fb are compared. If the relationship specified by the
qualifier is true, a non-zero floating value (2.0) is written to register Fc; otherwise,
a true zero is written to Fc.

Comparisons are exact and never overflow or underflow. Four mutually exclusive
relations are possible: less than, equal, greater than, and unordered. The unordered
relation is true if one or both operands are NaN. (This behavior must be provided
by a software trap handler, since NaNs trap.) Comparisons ignore the sign of zero,
so +0 = -0.

Comparisons with plus and minus infinity execute normally and do not take an
invalid operation trap.

Instruction Descriptions (I) 4-101

Notes:

• Compare Less Than A,B is the same as Compare Greater Than B,A; Compare
Less Than or Equal A,B is the same as Compare Greater Than or Equal B,A.
Therefore, only the less-than operations are included.

4-102 Common Architecture (I) .

4.10.9 Convert VAX Floating to Integer

Format:

CVTGQ

Operation:

Fb.rx,Fc.wq !Floating-point Operate format

Fc +- {conversion of Fbv}

Exceptions:

Invalid Operation
Integer Overflow

Instruction mnemonics:

CVTGQ

Qualifiers:

Rounding:

Trapping:

Convert G_floating to Quadword

Chopped (/C)

Software (IS)

Integer Overflow Enable (N) I
Description:

The floating operand in register Fb is converted to a two's-complement quadword
number and written to register Fe. The conversion aligns the operand fraction with
the binary point just to the right of bit zero, rounds as specified, and complements
the result if negative. Register Fa must be F31.

An invalid operation trap is signaled if the operand has exp=O and is not a true
zero (that is, VAX reserved operands and dirty zeros trap). The contents of Fc are
UNPREDICTABLE if this occurs.

See Section 4.7.6 for details of the stored result on integer overflow.

Instruction Descriptions (I) 4-103

4.10.10 Convert Integer to VAX Floating

Format:

CVTQy

Operation:

Fb.rq,Fc.wx !Floating-point Operate format

Fc +- {conversion of Fbv<63:0>}

Exceptions:

None

Instruction mnemonics:

CVTQF

CVTQG

Qualifiers:

Rounding:

Description:

Convert Quadword to F_floating

Convert Quadword to G_ftoating

Chopped (/C)

The two's-complement quadword operand in register Fb is converted to a single
or double-precision floating result and written to register Fc. The conversion
complements a number if negative, normalizes it, rounds to the target precision,
and packs the result with an appropriate sign and exponent field. Register Fa must
be F31.

4-104 Common Architecture (I)

4.10.11 Convert VAX Floating to VAX Floating

Format:

CVTxy

Operation:

Fb.rx,Fc.wx !Floating-point Operate format

Fc +- {conversion of Fbv}

Exceptions:

Invalid Operation
Overflow
Underflow

Instruction mnemonics:

CVTDG

CVTGD

CVTGF

Qualifiers:

Rounding:

Trapping:

Convert D_floating to G_floating

Convert G_floating to D_floating

Convert G_floating to F_floating

Chopped (/C)

Software (IS)

Underflow Enable (/U)

I
Description:

The floating operand in register Fb is converted to the specified alternate floating
format and written to register Fc. Register Fa must be F31.

An invalid operation trap is signaled if the operand has exp=O and is not a true
zero (that is, VAX reserved operands and dirty zeros trap). The contents of Fc are
UNPREDICTABLE if this occurs.

See Section 4.7.6 for details of the stored result on overflow or underflow.

Instruction Descriptions (I) 4-105

Notes:

• The only arithmetic operations on D_floating values are conversions to and from
G_floating. The conversion to G_fioating rounds or chops as specified, removing
three fraction bits. The conversion from G_floating to D_fioating adds three low
order zeros as fraction bits, then the 8-bit exponent range is checked for overflow
lunderflow.

• The conversion from G_floating to F_floating rounds or chops to single precision,
then the 8-bit exponent range is checked for overflow/underflow.

• No conversion from F_floating to G_floating is required, since F_floating values
are always stored in registers as equivalent G_fioating values.

4-106 Common Architecture (I)

4.10.12 Convert IEEE Floating to Integer

Format:

CVTTQ

Operation:

Fb.rx,Fc.wq !Floating-point Operate format

Fc +- {conversion of Fbv}

Exceptions:

Invalid Operation
Inexact Result
Integer Overflow

Instruction mnemonics:

CVTTQ

Qualifiers:

Rounding:

Trapping:

Description:

Convert T_floating to Quadword

Dynamic (ID)

Minus infinity (1M)

Chopped (/C)

Software (IS)

Integer Overflow Enable (N)

Inexact Enable (II)

I

The floating operand in register Fb is converted to a two's-complement number and
written to register Fc. The conversion aligns the operand fraction with the binary
point just to the right of bit zero, rounds as specified, and complements the result if
negative. Register Fa must be F31.

See Section 4.7.6 for details of the stored result on integer overflow and inexact
result.

Instruction Descriptions (I) 4-107

4.10.13 Convert Integer to IEEE Floating

Format:

CVTQy

Operation:

Fb.rq,Fc.wx !Floating-point Operate format

Fc +- {conversion of Fbv<63:0>}

Exceptions:

Inexact Result

Instruction mnemonics:

CVTQS

CVTQT

Qualifiers:

Rounding:

Trapping:

Description:

Convert Quadword to S_fioating

Convert Quadword to T_floating

Dynamic (/D)

Minus infinity (1M)

Chopped (/C)

Software (IS)

Inexact Enable (II)

The two's-complement operand in register Fb is converted to a single- or double
precision floating result and written to register Fc. The conversion complements
a number if negative, normalizes it, rounds to the target precision, and packs the
result with an appropriate sign and exponent field. Register Fa must be F31.

See Section 4.7.6 for details of the stored result on inexact result.

4-108 Common Architecture (I)

4.10.14 Convert IEEE S_Floating to IEEE T_Floating

Format:

CVTST

Operation:

Fb.rx,Fc.wx ! Floating-point Operate format

Fe <- {conversion of Fbv}

Exceptions:

Invalid Operation

Instruction mnemonics:

Description:

The S_floating operand in register Fb is converted to T_floating format and written
to register Fc. Register Fa must be F31.

CVTST

Qualifiers:

Trapping:

Convert S_floating to T_floating

Software (IS)

I
Notes:

• The conversion from S_floating to T_floating is exact. No rounding occurs. No
underflow, overflow, or inexact result can occur. In fact, the conversion for finite
values is the identity transformation.

• A trap handler can convert an S_floating denormal value into the corresponding
T_floating finite value by adding 896 to the exponent and normalizing.

Instruction Descriptions (I) 4-109

4.10.15 Convert IEEE T_Floating to IEEE S_Floating

Format:

CVTTS

Operation:

Fb.rx,Fc.wx !Floating-point Operate format

Fc +- {conversion of Fbv}

Exceptions:

Invalid Operation
Overflow
Underflow
Inexact Result

Instruction mnemonics:

CVTTS

Qualifiers:

Rounding:

Trapping:

Convert T_fioating to S_fioating

Dynamic (/D)

Minus infinity (1M)

Chopped (/C)

Software (IS)

Underflow Enable (IU)

Inexact Enable (/I)

Description:

The T_floating operand in register Fb is converted to S_floating format and written
to register Fc. Register Fa must be F31.

See Section 4.7.6 for details of the stored result on overflow, underflow, or inexact
result.

4-110 Common Architecture (I)

4.10.16 VAX Floating Divide

Format:

DIVx

Operation:

Fa.rx,Fb.rx,Fc.wx !Floating-point Operate format

Fe '4- Fav / Fbv

Exceptions:

Invalid Operation
Division by Zero
Overflow
Underflow

Instruction mnemonics:

DIVF

DIVG

Qualifiers:

Rounding:

Trapping:

Divide F_floating

Divide G_floating

Chopped (/C)

Software (/S)

Underflow Enable (IU)

I
Description:

The dividend operand in register Fa is divided by the divisor operand in register Fb,
and the quotient is written to register Fe.

The quotient is rounded or chopped to the specified precision and then the
corresponding range is checked for overflow/underflow. The single-precision
operation on canonical single-precision values produces a canonical single-precision
result.

Instruction Descriptions (I) 4-111

An invalid operation trap is signaled if either operand has exp=O and is not a true
zero (that is, VAX reserved operands and dirty zeros trap). The contents of Fc are
UNPREDICTABLE if this occurs.

A division by zero trap is signaled if Fbv is zero. The contents of Fc are
UNPREDICTABLE if this occurs.

See Section 4.7.6 for details of the stored result on overflow or underflow.

4-112 Common Architecture (I)

4.10.17 IEEE Floating Divide

Format:

DIVx

Operation:

Fa.rx,Fb.rx,Fc.wx !Floating-point Operate format

Fe ~ Fav / Fbv

Exceptions:

Invalid Operation
Division by Zero
Overflow
Underflow
Inexact Result

Instruction mnemonics:

DIVS

DIVT

Qualifiers:

Rounding:

Trapping:

Divide S_floating

Divide T_floating

Dynamic (ID)

Minus infinity (1M)

Chopped (/C)

Software (IS)

Underflow Enable (IV)

Inexact Enable (/I)

•

Description:

The dividend operand in register Fa is divided by the divisor operand in register Fb,
and the quotient is written to register Fc.

The quotient is rounded to the specified precision, and then the corresponding range
is checked for overflow/underflow. The single-precision operation on canonical single
precision values produces a canonical single-precision result.

See Section 4.7.6 for details of the stored result on overflow, underflow, or inexact
result.

Instruction Descriptions (I) 4-113

4.10.18 VAX Floating MUltiply

Format:

MULx

Operation:

Fa.rx,Fb.rx,Fc.wx !Floating-point Operate format

Fe +- Fav * Fbv

Exceptions:

Invalid Operation
Overflow
Underflow

Instruction mnemonics:

MULF

MULG

Qualifiers:

Rounding:

Trapping:

Multiply F_floating

Multiply G_floating

Chopped (/C)

Software (/S)

Underflow Enable (/U)

Description:

The multiplicand operand in register Fb is multiplied by the multiplier operand in
register Fa, and the product is written to register Fc.

The product is rounded or chopped to the specified precision, and then the
corresponding range is checked for overflow/underflow. The single-precision
operation on canonical single-precision values produces a canonical single-precision
result.

An invalid operation trap is signaled if either operand has exp=O and is not a true
zero (that is, VAX. reserved operands and dirty zeros trap). The contents of Fc are
UNPREDICTABLE if this occurs.

See Section 4.7.6 for details of the stored result on overflow or underflow.

4-114 Common Architecture (I)

4.10.19 IEEE Floating Multiply

Format:

MULx

Operation:

Fa.rx,Fb.rx,Fc.wx !Floating-point Operate format

Fe 04- Fav * Fbv

Exceptions:

Invalid Operation
Overflow
Underflow
Inexact Result

Instruction mnemonics:

MULS

MULT

Qualifiers:

Rounding:

Trapping:

Multiply S_floating

Multiply T_floating

Dynamic (/D)

Minus infinity (1M)

Chopped (/C)

Software (/S)

Underflow Enable (/U)

Inexact Enable (II)

I

Description:

The multiplicand operand in register Fb is multiplied by the multiplier operand in
register Fa, and the product is written to register Fc.

The product is rounded to the specified precision, and then the corresponding range
is checked for overflow/underflow. The single-precision operation on canonical single
precision values produces a canonical single-precision result.

See Section 4.7.6 for details of the stored result on overflow, underflow, or inexact
result.

Instruction Descriptions (I) 4-115

4.10.20 VAX Floating Subtract

Format:

SUBx

Operation:

Fa.rx,Fb.rx,Fc.wx !Floating-point Operate format

Fe ~ Fav - Fbv

Exceptions:

Invalid Operation
Overflow
Underflow

Instruction mnemonics:

SUBF

SUBG

Qualifiers:

Rounding:

Trapping:

Subtract F_floating

Subtract G_floating

Chopped (/C)

Software (IS)

Underflow Enable (IU)

Description:

The subtrahend operand in register Fb is subtracted from the minuend operand in
register Fa, and the difference is written to register Fc.

The difference is rounded or chopped to the specified precision, and then the
corresponding range is checked for overflow/underflow. The single-precision
operation on canonical single-precision values produces a canonical single-precision
result.

4-116 Common Architecture (I)

An invalid operation trap is signaled if either operand has exp=O and is not a true
zero (that is, VAX. reserved operands and dirty zeros trap). The contents of Fc are
UNPREDICTABLE if this occurs.

See Section 4.7.6 for details of the stored result on overflow or underflow.

Instruction Descriptions (I) 4-117

I

4.10.21 IEEE Floating Subtract

Format:

SUBx

Operation:

Fa.rx,Fb.rx,Fc.wx !Floating-point Operate format

Fe +- Fav - Fbv

Exceptions:

Invalid Operation
Overflow
Underflow
Inexact Result

Instruction mnemonics:

SUBS

SUBT

Qualifiers:

Rounding:

Trapping:

Subtract S_floating

Subtract T_floating

Dynamic (/D)

Minus infinity (1M)

Chopped (/C)

Software (/S)

Underflow Enable (/U)

Inexact Enable (/I)

Description:

The subtrahend operand in register Fb is subtracted from the minuend operand in
register Fa, and the difference is written to register Fe.

The difference is rounded to the specified precision, and then the corresponding
range is checked for overflow/underflow. The single-precision operation on canonical
single-precision values produces a canonical single-precision result.

See Section 4.7.6 for details of the stored result on overflow, underflow, or inexact
result.

4-118 Common Architecture (I)

4.11 Miscellaneous Instructions

Alpha AXP provides the miscellaneous instructions shown in Table 4-14.

Table 4-14: Miscellaneous Instructions Summary
Mnemonic Operation

CALL_PAL

EXCB

FETCH

FETCH_M

MB

RPCC

TRAPB

WMB

Call Privileged Architecture Library Routine

Exception Barrier

Prefetch Data

Prefetch Data, Modify Intent

Memory Barrier

Read Processor Cycle Counter

Trap Barrier

Write Memory Barrier

Instruction Descriptions (I) 4-119

•

4.11.1 Call Privileged Architecture Library

Format:

Operation:

{Stall instruction issuing until all
prior instructions are guaranteed to
complete without incurring exceptions.}
{Trap to PALcode.}

Exceptions:

None

Instruction mnemonics:

!PAL format

CALL_PAL Call Privileged Architecture Library

Qualifiers:

None

Description:

The CALL_PAL instruction is not issued until all previous instructions are
guaranteed to complete without exceptions. If an exception occurs, the continuation
PC in the exception stack frame points to the CALL_PAL instruction. The CALL_
PAL instruction causes a trap to PALcode.

4-120 Common Architecture (I)

4.11.2 Exception Barrier

Format:

EXCB

Operation:

! Memory format

{EXCB does not appear to issue until completion of all
exceptions and dependencies on the Floating-point Control
Register (FPCR) from prior instructions.}

Exceptions:

None

Instruction mnemonics:

EXCB Exception Barrier

Qualifiers:

None

Description:

The EXCB instruction allows software to guarantee that in a pipelined
implementation, all previous instructions have completed any behavior related to
exceptions or rounding modes before any instructions after the EXCB are issued.

In particular, all changes to the Floating-point Control Register (FPCR) are
guaranteed to have been made, whether or not there is an associated exception. Also,
all potential floating-point exceptions and integer overflow exceptions are guaranteed
to have been taken. EXCB is thus a superset of TRAPB.

If a floating-point exception occurs for which trapping is enabled, the EXCB
instruction acts like a fault. In this case, the value of the Program Counter reported
to the program may be the address of the EXCB instruction (or earlier), but is never
the address of an instruction following the EXCB.

The relationship between EXCB and the FPCR is described in Section 4.7.7.1.

Instruction Descriptions (I) 4-121

I

4.11.3 Prefetch Data

Format:

FETCHx O(Rb.ab)

Operation:

!Memory format

va +- {Rbv}
{Optionally prefetch aligned 512-byte block surrounding va.}

Exceptions:

None

Instruction mnemonics:

FETCH

FETCH_M

Qualifiers:

None

Prefetch Data

Prefetch Data, Modify Intent

Description:

The virtual address is given by Rbv. This address is used to designate an aligned
512-byte block of data. An implementation may optionally attempt to move all or
part of this block (or a larger surrounding block) of data to a faster-access part of
the memory hierarchy, in anticipation of subsequent Load or Store instructions that
access that data.

The FETCH instruction is a hint to the implementation that may allow faster
execution. An implementation is free to ignore the hint. If prefetching is
done in an implementation, the order of fetch within the designated block is
UNPREDICTABLE.

The FETCH_M instruction gives the additional hint that modifications (stores) to
some or all of the data block are anticipated.

No exceptions are generated by FETCHx. If a Load (or Store in the case of FETCH_
M) that uses the same address would fault, the prefetch request is ignored. It is
UNPREDICTABLE whether a TB-miss fault is ever taken by FETCHx.

4-122 Common Architecture (I)

Implementation Note:

Implementations are encouraged to take the TB-miss fault, then continue the
prefetch.

Software Note:

FETCH is intended to help software overlap memory latencies on the order of
100 cycles. FETCH is unlikely to help (or be implemented) for memory latencies
on the order of 10 cycles. Code scheduling should be used to overlap such short
latencies.

The programming model for effective use of FETCH and FETCH_M is given in
AppendixA.

Instruction Descriptions (I) 4-123

•

4.11.4 Memory Barrier

Format:

MB

Operation:

!Memory format

{Guarantee that all subsequent loads or stores
will not access memory until after all previous
loads and stores have accessed memory, as
observed by other processors.}

Exceptions:

None

Instruction mnemonics:

MB Memory Barrier

Qualifiers:

None

Description:

The use of the Memory Barrier (MB) instruction is required only in multiprocessor
systems.

In the absence of an MB instruction, loads and stores to different physical locations
are allowed to complete out of order on the issuing processor as observed by other
processors. The MB instruction allows memory accesses to be serialized on the
issuing processor as observed by other processors. See Chapter 5 for details on using
the MB instruction to serialize these accesses. Chapter 5 also details coordinating
memory accesses across processors.

Note that MB ensures serialization only; it does not necessarily accelerate the
progress of memory operations.

4-124 Common Architecture (I)

4.11.5 Read Processor Cycle Counter

Format:

RPCC

Operation:

Ra.wq !Memory format

Ra +- {cycle counter}

Exceptions:

None

Instruction mnemonics:

RPCC Read Processor Cycle Counter

Qualifiers:

None

Description:
~

Register Ra is written with the processor cycle counter (PCC). The PCC register
consists of two 32-bit fields. The low-order 32 bits (PCC<31:0» are an unsigned,
wrapping counter, PCC_CNT. The high-order 32 bits (PCC<63:32», PCC_OFF, are
operating-system dependent in their implementation.

See Section 3.1.5 for a description of the PCC.

If an operating system uses PCC_OFF to calculate the per-process or per-thread cycle
.count, that count must be derived from the 32-bit sum of PCC_OFF and PCC_CNT.
The following example computes that cycle count, modulo 2**32, and returns the
count value in RO. Notice the care taken not to cause an unwanted sign extension.

•

RPCC
SLL
ADDQ
SRL

RO
RO, #32, Rl
RO, Rl, RO
RO, #32, RO

Read the process cycle counter
Line up the offset and count fields
Do add
Zero extend the cycle count to 64 bits

The following example code returns the value ofPCC_CNT in RO<31:0> and all zeros
in RO<63:32>.

RPCC RO
ZAPNOT RO,#15,RO

Instruction Descriptions (I) 4-125

4.11.6 Trap Barrier

Format:

TRAPB

Operation:

!Memory format

{TRAPB does not appear to issue until all prior instructions
are guaranteed to complete without causing any arithmetic traps}.

Exceptions:

None

Instruction mnemonics:

TRAPB

Qualifiers:

None

Trap Barrier

Description:

The TRAPB instruction allows software to guarantee that in a pipelined
implementation, all previous arithmetic instructions will complete without incurring
any arithmetic traps before the TRAPB or any instructions after it are issued.

If an arithmetic exception occurs for which trapping is enabled, the TRAPB
instruction acts like a fault. In this case, the value of the Program Counter reported
to the program may be the address of the TRAPB instruction (or earlier) but is never
the address of the instruction following the TRAPB.

This fault behavior by TRAPB allows software, using one TRAPB instruction for
each exception domain, to isolate the address range in which an exception occurs.
If the address of the instruction following the TRAPB were allowed, there would be
no way to distinguish an exception in the address range preceding a label from an
exception in the range that includes the label along with the faulting instruction and
a branch back to the label. This case arises when the code is not following software
completion rules, but is inserting TRAPB instructions to isolate exceptions to the
proper scope.

Use of TRAPB should be compared with use of the EXCB instruction; see
Section 4.11.2.

4-126 Common Architecture (I)

4.11.7 Write Memory Barrier

Format:

WMB

Operation:

!Memory format

{Guarantee that all preceding stores have accessed
memory before any subsequent stores access memory}

Exceptions:

None

Instruction mnemonics:

WMB

Qualifiers:

None

Description:

Write Memory Barrier

•The WMB instruction provides a way for software to control write buffers. It
guarantees that·writes preceding the WMB will not be aggregated with writes that
follow the WMB. It also guarantees that all writes preceding the WMB instruction
are completed before any writes that follow the WMB instruction. The WMB
instruction effectively causes writes contained in buffers to be completed without
unnecessary delay. It is particularly suited for batching writes to high-performance
110 devices.

In the absence of a WMB instruction, stores to memory or non-memory-like regions
can be aggregated and/or buffered and completed in any order.

The WMB instruction provides for high-bandwidth write streams where order must
be maintained between certain writes in that stream. It is the preferred means for
programs to obtain this result.

Instruction Descriptions (I) 4-127

4.12 VAX Compatibility Instructions

Alpha AXP provides the instructions shown in Table 4-15 for use in translated VAX
code. These instructions are not a permanent part of the architecture and will not be
available in some future implementations. They are intended to preserve customer
assumptions about VAX instruction atomicity in porting code from VAX to Alpha
AXP.

These instructions should be generated only by the VAX-to-Alpha AXP software
translator; they should never be used in native Alpha AXP code. Any native code
that uses them may cease to work.

Table 4-15: VAX Compatibility Instructions Summary

Mnemonic Operation

RC

RS

Read and Clear

Read and Set

4-128 Common Architecture (I)

4.12.1 VAX Compatibility Instructions

Format:

Rx

Operation:

Ra.wq !Memory format

Ra +- intr_flag
intr_flag +- 0
intr_flag +- 1

Exceptions:

None

Instruction mnemonics:

!RC
!RS

RC

RS

Qualifiers:

None

Read and Clear

Read and Set

•Description:

The intr_flag is returned in Ra and then cleared to zero (RC) or set to one (RS).

These instructions may be used to determine whether the sequence of Alpha AXP
instructions between RS and RC (corresponding to a single VAX. instruction) was
executed without interruption or exception.

Intr_flag is a per-processor state bit. The intr_flag is cleared if that processor
encounters a CALL_PAL REI instruction.

It is UNPREDICTABLE whether a processor's intr_flag is affected when that
processor executes an LDx_L or STx_C instruction. A processor's intr_flag is not
affected when that processor executes a normal load or store instruction.

A processor's intr_flag is not affected when that processor executes a taken branch.

Note:

These instructions are intended only for use by the VAX.-to-Alpha AXP software
translator; they should never be used by native code.

Instruction Descriptions (I) 4-129

Chapter 5

System Architecture and Programming Implications
(I)

5.1 Introduction

Portions of the Alpha AXP architecture have implications for programming, and
the system structure, of both uniprocessor and multiprocessor implementations.
Architectural implications considered in the following sections are:

• Physical address space behavior

• Caches and write buffers

• Translation buffers and virtual caches

• Data sharing

• Read/write ordering

• Arithmetic traps •
To meet the requirements of the Alpha AXP architecture, software and hardware
implementors need to take these issues into consideration.

5.2 Physical Address Space Characteristics

Alpha AXP physical address space is divided into four equal-size regions. The regions
are delineated by the two most significant, implemented, physical address bits. Each
region's characteristics are distinguished by the coherency, granularity, and width
of memory accesses, and whether the region exhibits memory-like behavior or non
memory-like behavior.

5.2.1 Coherency of Memory Access

Alpha AXP implementations must provide a coherent view of memory, in which each
write by a processor or I/O device (hereafter, called "processor") becomes visible to
all other processors. No distinction is made between coherency of "memory space"
and "I/O space".

Memory coherency may be provided in different ways, for each of the four physical
address regions.

Possible per-region policies include, but are not restricted to:

1. No caching

System Architecture and Programming Implications (I) 5-1

No copies are kept of data in a region; all reads and writes access the actual data
location (memory or 110 register), but a processor may elide multiple accesses to
the same data (see Section 5.2.3).

2. Write-through caching

Copies are kept of any data in the region; reads may use the copies, but writes
update the actual data location and either update or invalidate all copies.

3. Write-back caching

Copies are kept of any data in the region; reads and writes may use the copies,
and writes use additional state to determine whether there are other copies to
invalidate or update.

Software/Hardware Note:

To produce separate and distinct accesses to a specific location, the location must
be a region with no caching and a memory barrier instruction must be inserted
between accesses. See Section 5.2.3.

Part of the coherency policy implemented for a given physical address region may
include restrictions on excess data transfers (performing more accesses to a location
than is necessary to acquire or change the location's value), or may specify data
transfer widths (the granularity used to access a location).

Independent of coherency policy, a processor may use different hardware or different
hardware resource policies for caching or buffering different physical address
regions.

5.2.2 Granularity of Memory Access

For each region, an implementation must support aligned quadword access and may
optionally support aligned longword access.

For a quadword access region, accesses to physical memory must be implemented
such that independent accesses to adjacent aligned quadwords produce the same
results regardless of the order of execution. Further, an access to an aligned
quadword must be done in a single atomic operation.

For a longword access region, accesses to physical memory must be implemented
such that independent accesses to adjacent aligned longwords produce the same
results regardless of the order of execution. Further, an access to an aligned
longword must be done in a single atomic operation, and an access to an aligned
quadword must also be done in a single atomic operation.

In this context, "atomic" means that if different processors do simultaneous reads
and writes of the same data, it must not be possible to observe a partial write of the
subject longword or quadword. This definition assumes that read and write accesses
are the same size. See Section 5.6.1.5 for the possible results when they are not the
same size.

5-2 Common Architecture (I)

5.2.3 Width of Memory Access
Subject to the granularity, ordering, and coherency constraints given in Sections
5.2.1, 5.2.2, and 5.6, accesses to physical memory may be freely cached, buffered,
and prefetched.

A processor may read more physical memory data (such as a full cache block) than
is actually accessed, writes may trigger reads, and writes may write back more data
than is actually updated. A processor may elide multiple reads and/or writes to the
same data.

5.2.4 Memory-Like and Non-Memory-Like Behavior
Memory-like regions obeys the following rules:

• Each page frame in the region either exists in its entirety or does not exist in its
entirety; there are no holes within a page frame.

• All locations that exist are read/write.

• A write to a location followed by a read from that location returns precisely the
bits written; all bits act as memory.

• A write to one location does not change any other location.

• Reads have no side effects.

• Longword access granularity is provided.

• Instruction-fetch is supported.

• Load-locked and store-conditional are supported.

Non-memory-like regions may have much more arbitrary behavior:

• Unimplemented locations or bits may exist anywhere.

• Some locations or bits may be read-only and others write-only.

• Address ranges may overlap, such that a write to one location changes the bits
read from a different location.

• Reads may have side effects, although this is strongly discouraged.

• Longword granularity need not be supported.

• Instruction-fetch need not be supported.

• Load-locked and store-conditional need not be supported.

Hardware/Software Coordination Note:
The details of such behavior are outside the scope of the Alpha AXP
architecture. Specific processor and I/O device implementations may choose
and document whatever behavior they need. It is the responsibility of system
designers to impose enough consistency to allow processors successfully to
access matching non-memory devices in a coherent way.

System Architecture and Programming Implications (I) 5-3

•

5.3 Translation Buffers and Virtual Caches

A system may choose to include a a virtual instruction cache (virtual I-cache)
or a virtual data cache (virtual D-cache). A system may also choose to include
either a combined data and instruction translation buffer (TB) or separate data and
instruction TBs (DTB and ITB). The contents of these caches and/or translation
buffers may become invalid, depending on what operating system activity is being
performed.

Whenever a non-software field of a valid page table entry (PTE) is modified, copies
of that PTE must be made coherent. PALcode mechanisms are available to clear
all TBs, both DTB and ITB entries for a given VA, either DTB or ITB entries for a
given VA, or all entries with the address space match (ASM) bit clear. Virtual D
cache entries are made coherent whenever the corresponding DTB entry is requested
to be cleared by any of the appropriate PALcode mechanisms. Virtual I-cache entries
can be made coherent via the CALL_PALL 1MB instruction.

If a processor implements address space numbers (ASNs), and the old PTE has the
Address Space Match (ASM) bit clear (ASNs in use) and the Valid bit set, then
entries can also effectively be made coherent by assigning a new, unused ASN to
the currently running process and not reusing the previous ASN before calling the
appropriate PALcode routine to invalidate the translation buffer (TB).

In a multiprocessor environment, making the TBs and/or caches coherent on only
one processor is not always sufficient. An operating system must arrange to perform
the above actions on each processor that could possibly have copies of the PTE or
data for any affected page.

5.4 Caches and Write Buffers

A hardware implementation may include mechanisms to reduce memory access time
by making local copies of recently used memory contents (or those expected to be
used) or by buffering writes to complete at a later time. Caches and write buffers are
examples of these mechanisms. They must be implemented so that their existence
is transparent to software (except for timing, error reporting/control/recovery, and
modification to the I-stream).

The following requirements must be met by all cache/write-buffer implementations.
All processors must provide a coherent view of memory.

1. Write buffers may be used to delay and aggregate writes. From the viewpoint
of another processor, buffered writes appear not to have happened yet. (Write
buffers must not delay writes indefinitely. See Section 5.6.1.9.)

2. Write-back caches must be able to detect a later write from another processor
and invalidate or update the cache contents.

3. A processor must guarantee that a data store to a location followed by a data
load from the same location must read the updated value.

4. Cache prefetching is allowed, but virtual caches must not prefetch from invalid
pages.

5-4 Common Architecture (I)

5. A processor must guarantee that all of its previous writes are visible to all other
processors before a HALT instruction completes. A processor must guarantee
that its caches are coherent with the rest of the system before continuing from
a HALT.

6. If battery backup is supplied, a processor must guarantee that the memory
system remains coherent across a powerfaillrecovery sequence. Data that was
written by the processor before the powerfail may not be lost, and any caches
must be in a valid state before (and if) normal instruction processing is continued
after power is restored.

7. Virtual instruction caches are not required to notice modifications of the virtual
I-stream (they need not be coherent with the rest of memory). Software that
creates or modifies the instruction stream must execute a CALL_PAL 1MB before
trying to execute the new instructions.

For example, if two different virtual addresses, VAl and VA2, map to the same
page frame, a store to VAl modifies the virtual I-stream fetched via VA2.

However, the following sequence does not modify the virtual I-stream (this might
happen in soft page faults).

1. Change the mapping of an I-stream page from valid to invalid.

2. Copy the corresponding page frame to a new page frame.

3. Change the original mapping to be valid and point to the new page frame. •

8. Physical instruction caches are not required to notice modifications of the
physical I-stream (they need not be coherent with the rest of memory), except for
certain paging activity. (See Section 5.6.1.9.) Software that creates or modifies
the instruction stream must execute a CALL_PAL 1MB before trying to execute
the new instructions.

In this context, to "modify the physical I-stream" means any Store to the same
physical address that is subsequently fetched as an instruction.

In this context, to "modify the virtual I-stream" means any Store to the same physical
address that is subsequently fetched as an instruction via some corresponding
(virtual address, ASN) pair, or to change the virtual-to-physical address mapping
so that different values are fetched.

5.5 Data Sharing

In a multiprocessor environment, writes to shared data must be synchronized by the
programmer.

5.5.1 Atomic Change of a Single Datum

The ordinary STL and STQ instructions can be used to perform an atomic change
of a shared aligned longword or quadword. ("Change" means that the new value is
not a function of the old value.) In particular, an ordinary STL or STQ instruction

System Architecture and Programming Implications (I) 5-5

can be used to change a variable that could be simultaneously accessed via an LDx_
USTx_C sequence.

5.5.2 Atomic Update of a Single Datum

The load-Iockedlstore-conditional instructions may be used to perform an atomic
update of a shared aligned longword or quadword. ("Update" means that the new
value is a function of the old value.)

The following sequence performs a read-modify-write operation on location x. Only
register-to-register operate instructions and branch fall-throughs may occur in the
sequence:

try_again:
LDQ_L Rl,x
<modify Rl>
STQ_C Rl,x
BEQ Rl,no_store

no_store:
<code to check for excessive iterations>
BR try_again

If this sequence runs with no exceptions or interrupts, and no other processor writes
to location x (more precisely, the locked range including x) between the LD(LL and
STQ_C instructions, then the ST(LC shown in the example stores the modified value
in x and sets Rl to 1. If, however, the sequence encounters exceptions or interrupts
that eventually continue the sequence, or another processor writes to x, then the
STQ_C does not store and sets R1 to O. In this case, the sequence is repeated via
the branches to no_store and try_again. This repetition continues until the reasons
for exceptions or interrupts are removed, and no interfering store is encountered.

To be useful, the sequence must be constructed so that it can be replayed an arbitrary
number of times, giving the same result values each time. A sufficient (but not
necessary) condition is that, within the sequence, the set of operand destinations
and the set of operand sources are disjoint.

Note:

A sufficiently long instruction sequence between LD(LL and ST(LC will never
complete, because periodic timer interrupts will always occur before the sequence
completes. The rules in Appendix A describe sequences that will eventually
complete in all Alpha AXP implementations.

This load-Iockedlstore-conditional paradigm may be used whenever an atomic update
of a shared aligned quadword is desired, including getting the effect of atomic byte
writes.

5-6 Common Architecture (I)

5.5.3 Atomic Update of Data Structures
Before accessing shared writable data structures (those that are not a single aligned
longword or quadword), the programmer can acquire control of the data structure
by using an atomic update to set a software lock variable. Such a software lock can
be cleared with an ordinary store instruction.

A software-critical section, therefore, may look like the sequence:

st~c_loop:

spin_loop:
LDQ_L Rl,lock_variable
BLBS Rl,already_set
OR Rl,#1,R2
STQ_C R2,lock_variable
BEQ R2,st~c_fail

\
\

/
/

> Set lock bit

MB
<critical section: updates various data structures>
WMB or MB

STQ R31,lock_variable ; Clear lock bit

already_set:
<code to block or reschedule or test for too many iterations>
BR spin_loop

st~c_fail:

<code to test for too many iterations>
BR st~c_loop

This code has a number of subtleties:

1. If the lock_variable is already set, the spin loop is done without doing any stores.
This avoidance of stores improves memory subsystem performance and avoids
the deadlock described below.

2. If the lock_variable is actually being changed from 0 to 1, and the ST<LC fails
(due to an interrupt, or because another processor simultaneously changed lock_
variable), the entire process starts over by reading the lock_variable again.

3. Only the fall-through path of the BLBS does a STx_C; some implementations
may not allow a successful STx_C after a branch-taken.

4. Only register-to-register operate instructions are used to do the modify.

5. Both conditional branches are forward branches, so they are properly predicted
not to be taken (to match the common case of no contention for the lock).

6. The OR writes its result to a second register; this allows the OR and the BLBS
to be interchanged if that would give a faster instruction schedule.

7. Other operate instructions (from the critical section) may be scheduled into
the LDQ_L..STQ_C sequence, so long as they do not fault or trap, and they
give correct results if repeated; other memory or operate instructions may be
scheduled between the STQ_C and BEQ.

System Architecture and Programming Implications (I) 5-7

•

8. The memory barrier instructions are discussed in Section 5.5.4.

9. An ordinary STQ instruction is used to clear the lock_variable.

It would be a performance mistake to spin-wait by repeating the full LD(LL..ST(LC
sequence (to move the BLBS after the BEQ) because that sequence may repeatedly
change the software lock_variable from "locked" to "locked," with each write causing
extra access delays in all other caches that contain the lock_variable. In the extreme,
spin-waits that contain writes may deadlock as follows:

If, when one processor spins with writes, another processor is modifying (not
changing) the lock_variable, then the writes on the first processor may cause the
STx_C of the modify on the second processor always to fail.

This deadlock situation is avoided by:

• Having only one processor execute a store (no STx_C), or

• Having no write in the spin loop, or

• Doing a write only if the shared variable actually changes state (1 ---. 1 does not
change state).

5.5.4 Ordering Considerations for Shared Data Structures

A critical section sequence, such as shown in Section 5.5.3, is conceptually only three
steps:

1. Acquire software lock

2. Critical section-read/write shared data

3. Clear software lock

In the absence of explicit instructions to the contrary, the Alpha AXP architecture
allows reads and writes to be reordered. While this may allow more implementation
speed and overlap, it can also create undesired side effects on shared data structures.
Normally, the critical section just described would have two instructions added to it:

<acquire software lock>
MB (memory barrier #1)
<critical section -- read/write shared data>
WMB or MB (memory barrier #2)
<clear software lock>

The first memory barrier prevents any reads (from within the critical section) from
being prefetched before the software lock is acquired; such prefetched reads would
potentially contain stale data.

The second memory barrier prevents any writes (and reads if MB is used instead of
WMB) from within the critical section from being delayed past the clearing of the
software lock. Such delayed accesses could interact with the next user of the shared
data, defeating the purpose of the software lock entirely.

5-8 Common Architecture (I)

Hardware/Software Note:

If a WMB is used as the second memory barrier, the programmer is probably
relying on causal ordering. Causal ordering is established by cause and effect;
the cause occurs before the effect in time order. A causal ordering is contained
in the sequence of reading a location or set of locations, performing a calculation
on that data, writing the result of that calculation, and then executing a WMB.
See Section 5.6.1.2.

Software Note:

In the VAX architecture, many instructions provide noninterruptable read
modify-write sequences to memory variables. Most programmers never regard
data sharing as an issue.

In the Alpha AXP architecture, programmers must pay more attention to
synchronizing access to shared data; for example, to AST routines. In the VAX,
a programmer can use an ADDL2 to update a variable that is shared between
a "MAIN" routine and an AST routine, if running on a single processor. In the
Alpha AXP architecture, a programmer must deal with AST shared data by using
multiprocessor shared data sequences.

5.6 ReadlWrite Ordering

This section does not apply to programs that run on a single processor and do not
write to the instruction stream. On a single processor, all memory accesses appear
to happen in the order specified by the programmer. This section deals entirely with
predictable read/write ordering across multiple processors.

The order of reads and writes done in an Alpha AXP implementation may differ
from that specified by the programmer.

For any two memory accesses A and B, either A must occur before B in all Alpha
AXP implementations, B must occur before A, or they are UNORDERED. In the
last case, software cannot depend upon one occurring first: the order may vary from
implementation to implementation, and even from run to run or moment to moment
on a single implementation.

If two accesses cannot be shown to be ordered by the rules given, they are
UNORDERED and implementations are free to do them in any order that is
convenient. Implementations may take advantage of this freedom to deliver
substantially higher performance.

The discussion that follows first defines the architectural issue sequence of memory
accesses on a single processor, then defines the (partial) ordering on this issue
sequence that all Alpha AXP implementations are required to maintain.

The individual issue sequences on multiple processors are merged into access
sequences at each shared memory location. The discussion defines the (partial)
ordering on the individual access sequences that all Alpha AXP implementations
are required to maintain.

System ArChitecture and Programming Implications (I) 5-9

•

The net result is that for any code that executes on multiple processors, one can
determine which memory accesses are required to occur before others on all Alpha
AXP implementations and hence can write useful shared-variable software.

Software writers can force one access to occur before another by inserting a memory
barrier instruction (CALL_PAL 1MB, MB or WMB) between the accesses.

5.6.1 Alpha AXP Shared Memory Model

An Alpha AXP system consists of a collection of processors, I/O devices (and possibly
a bridge to connect remote I/O devices), and shared memories that are accessible by
all processors.

Note:

An example of an unshared location is a physical address in I/O space that refers
to a CSR that is local to a processor and not accessible by other processors.

A processor is an Alpha AXP CPU.

In most systems, DMA I/O devices or other agents can read or write shared memory
locations. The order of accesses by those agents is not completely specified in this
document. It is possible in some systems for read accesses by I/O devices or other
agents to give results indicating some reordering of accesses. However, there are
guarantees that apply in all systems. See Section 5.6.4.7.

A shared memory is the primary storage place for one or more locations.

A location is an aligned quadword, specified by its physical address. Multiple virtual
addresses may map to the same physical address. Ordering considerations are based
only on the physical address. This definition oflocation specifically includes locations
and registers in memory mapped I/O devices and bridges to remote I/O (for example,
Mailbox Pointer Registers, or MBPRs).

Implementation Note:

An implementation may allow a location to have multiple physical addresses, but
the rules for accesses via mixtures of the addresses are implementation-specific
and outside the scope of this section. Accesses via exactly one of the physical
addresses follow the rules described next.

Each processor may generate accesses to shared memory locations. There are six
types of accesses:

1. Instruction fetch by processor i to location x, returning value a, denoted Pi:I(x,a).

2. Data read by processor i to location x, returning value a, denoted Pi:R(x,a).

3. Data write by processor i to location x, storing value a, denoted Pi:W(x,a).

4. Memory barrier instruction issued by processor i, denoted Pi:MB.

5. Write memory barrier instruction issued by processor i, denoted Pi:WMB.

6. I-stream memory barrier instruction issued by processor i, denoted Pi:IMB.

5-10 Common Architecture (I)

The first access type is also called an I-stream access or I-fetch. The next two are
also called D-stream accesses. The first three types collectively are called read/write
accesses, denoted Pi:*(x,a). The last three types collectively are called harriers or
memory barriers.

Instruction fetches are longword reads. Data reads and data writes are either
aligned longword or aligned quadword accesses. Unless otherwise noted, it is
assumed that each access to a given location has the same access size (that is, if a
location is written as a longword it is read as a longword). Section 5.6.1.5 describes
the effect of access size on the Alpha AXP shared memory modeL

All accesses in this chapter are naturally aligned accesses.

During actual execution in an Alpha AXP system, each processor has a time-ordered
issue sequence of all the memory accesses presented by that processor (to all memory
locations), and each location has a time-ordered access sequence of all the accesses
presented to that location (from all processors).

5.6.1.1 Architectural Definition of Processor Issue Sequence

The issue sequence for a processor is architecturally defined with respect to a
hypothetical simple implementation that contains one processor and a single shared
memory, with no caches or buffers. This is the instruction execution model:

1. I-fetch: An Alpha AXP instruction is fetched from memory.

2. ReadlWrite: That instruction is executed and runs to completion, including a
single data read from memory for a Load instruction or a single data write to
memory for a Store instruction.

3. Update: The PC for the processor is updated.

4. Loop: Repeat the above sequence indefinitely.

If the instruction fetch step gets a memory management fault, the I-fetch is not done
and the PC is updated to point to a PALcode fault handler. If the read/write step
gets a memory management fault, the read/write is not done and the PC is updated
to point to a PALcode fault handler.

5.6.1.2 Definition of Processor Issue Order

A partial ordering, called processor issue order, is imposed on the issue sequence
defined in Section 5.6.1.1.

For two accesses u and v issued by processor Pi, u is said to PRECEDE v IN ISSUE
ORDER «) if u occurs earlier than v in the issue sequence for Pi, and either of the
following applies:

1. The access types are of the following issue order:

System Architecture and Programming Implications (I) 5-11

•

Table 5-1: Processor Issue Order
1st! 2nd-+ Pi:I(y,b) Pi:R(y,b) Pi:W(y,b) Pi:MB Pi:WMB Pi:IMB

Pi:I(x,a) < ifx=y < ifx=y < < <
Pi:R(x,a) < ifx=y < ifx=y < <
Pi:W(x,a) < ifx=y < ifx=y < < <
Pi:MB < < < < <
Pi:WMB < < < <
Pi:IMB < < < < < <

2. Or, u is a TB fill, for example, a PTE read in order to satisfy a TB miss, and v is
an 1- or D-stream access using that PTE (see Section 5.6.2).

Causal ordering is established by cause and effect; the cause occurs before the effect
in time order. A causal ordering is contained in the processor issue sequence of
reading a set of locations, performing a calculation on the data fetched by those
reads, writing the result of that calculation, and then executing a WMB. The reads
that produced the results used in the calculation precede (in issue order) the WMB.

Hardware/Software Note:

The issue order created by causality does not imply that a read precedes (in
issue order) a write because of causality. The read is ordered with respect to
a subsequent WMB. Also, issue order is not guaranteed in cases in which the
result of a calculation on the read data is always independent of the actual value
read.

For example, in the following sequence, the LDQ does not necessarily precede
the WMB in issue order:

LDQ Rl,O(R10)
XOR Rl,Rl,Rl
STQ Rl,O(Rll)
WMB

But in the following sequence, both LDQ instructions precede the WMB in issue
order even if one of the LDQ intructions reads zero:

LDQ Rl,O(R10)
LDQ R2,104(R10)
AND Rl,R2,R2
STQ R2,O(Rll)
WMB

Issue order is thus a partial order imposed on the architecturally specified issue
sequence. Implementations are free to perform memory accesses from a single
processor in any sequence that is consistent with this partial order.

Note that accesses to different locations are ordered only with respect to barriers
and TB fill. The table asymmetry for I-fetch allows writes to the I-stream to be
incoherent until a CALL_PAL 1MB is executed.

5-12 Common Architecture (I)

5.6.1.3 Definition of Memory Access Sequence

The access sequence for a location cannot be observed directly, nor fully predicted
before an actual execution, nor reproduced exactly from one execution to another.
Nonetheless, some useful ordering properties must hold in all Alpha AXP
implementations.

5.6.1.4 Definition of Location Access Order

A partial ordering, called location access order, is imposed on the memory access
sequence defined above.

As shown in Table 5-2, for two accesses u and v to location x, u is said to PRECEDE
v IN ACCESS ORDER (<<) if u occurs earlier than v in the access sequence for x,
and at least one of them is a write. Also note in Table 5-2 that processor Pi might
or might not be the same processor as Pj.

Table 5-2: Location Access Order
1st! 2nd~ Pj:I(x,b) Pj:R(x,b) Pj:W(x,b)

Pi:I(x,a)
Pi:R(x,a)
Pi:W(x,a) «

Access order is thus a partial order imposed on the actual access sequence for a
given location. Each location has a separate access order. There is no direct ordering
relationship between accesses to different locations.

Note that reads and I-fetches are ordered only with respect to writes.

5.6.1.5 Effect of Access Size

Typically, all accesses to a given location are the same size; a given location is
accessed by longword or quadword accesses. Additional issue order and access order
rules are imposed when accesses to a given location are not all the same size. The
rules differ between aligned quadword read accesses and all other aligned accesses.

The model access for all aligned accesses except an aligned quadword read access is
an indivisible event in issue and access order.

The model access for an aligned quadword read access is as two distinct aligned
longword read accesses - one to the low-order part of the location and one to the
high-order part. Those two longword read accesses are not necessarily identically
ordered with respect to other accesses. However, the two model longword read
accesses can be identically ordered with respect to other accesses and are then said
to occur at the same time in issue order and access order as follows:

• Two accesses, x and y, are said to occur at the same time in access order if for
every access z:

if z « x then z « y and
if z « y then z « x and
if x « z then y « z and

System Architecture and Programming Implications (I) 5-13

•

ify« z then x « z.

• Similarly, two accesses, x and y, are said to occur at the same time in issue order
if for every access z:

if z < x then z < y and
if z < y then z < x and
if x < z then y < Z and
if y < z then x < z.

For model accesses on a given processor, an aligned longword access has an issue
order with respect to a given aligned quadword access if the longword access is to a
longword within the quadword.

Table 5-3: Processor Issue Order With Access Size Effect
lst~ 2nd-. Pi:I(y,b) Pi:Rlong(y,b) Pi:Wlong(y,b) Pi:Wquad(y,b) Pi:MB Pi:WMB Pi:IMB

Pi:I(x,a) < ifx=y < ifx=y < ifx=y or < < <
x=y+4

Pi:Rlong(x,a) < ifx=y < ifx=y < ifx=y or < <
x=y+4

Pi:Wlong(x,a) < ifx=y < ifx=y < ifx=y or < < <
x=y+4

Pi:Wquad(x,a) < ifx=y or < ifx=y or < ifx=y < < <
x+4=y x+4=y

Pi:MB < < < < < <
Pi:WMB < < < < <
Pi:IMB < < < < < < <

For model accesses, aligned longword accesses have an access order with respect
to a given aligned quadword write access if the access is to a longword within the
quadword. Of course, two model accesses have an access order ifboth have the same
access size, both access the same location, and at least one is a write access. Note
that in Table 5-4, processor Pi might or might not be the same processor as Pj.

Table 5-4: Location Access Order With Access Size Effect
1st! 2nd--+ Pj:I(y,b) Pj:Rlong(y,b) Pj:Wlong(y,b) Pj:Wquad(y,b)

Pi:I(x,a)
Pi:Rlong(x,a)

Pi:Wlong(x,a)

Pi:Wquad(x,a)

« ifx=y

« ifx=y or
x+4=y

« ifx=y

« ifx=y or
x+4=y

« ifx=y
« ifx=y

« ifx=y

« ifx=y or
x+4=y

« ifx=y
« ifx=y or

x=y+4
« ifx=y or

x=y+4
« if x=y

If the following condition is true, the two model longword read accesses that
represent a given aligned quadword read access are constrained to occur at the same
time in access order and issue order. That is, for the model accesses Pi:Rlong(x,aO)
and Pi:Rlong(x+4,al) modeling aligned quadword access Pi:Rquad(x,a), if the

5-14 Common Architecture (I)

following condition is true, any access that is ordered with respect to Pi:Rlong(x,aO)
is identically ordered with respect to Pi:Rlong(x+4,a1).

The condition is that for every longword write access by Pi to x or x+4 that precedes
the quadword read in processor issue order, one of the following is true: (1) There
is an MB, 1MB, or a quadword write to x by Pi that follows the longword write and
precedes the quadword read; or, (2) There is at least one write to part or all of the
same quadword by another processor (processor j) that is after the longword write
by processor i and before at least one of the model read accesses (where the order
implied by after and before is the transitive closure described in Section 5.6.1.8).

That is, for every

pi:Wlong(x or x+4,b) < Pi:Rquad(x,a)

there is either an MB, an 1MB, or a quadword write to x by Pi, such that

pi:Wlong(x or x+4,b) < Pi: (MB or 1MB or Wquad(x,c)) < Pi:Rquad(x,a)

or there is at least one write by processor j, such that
Pi:Wlong(x or x+4,b)<= Pj:W(x or x+4,c)<= either Pi: (Rlong(x,aO) or Rlong(x+4,al))

Otherwise, the two modellongword accesses might not be identically ordered.

5.6.1.6 Definition of Storage

If u is Pi:W(x,a), and v is either Pj:I(x,b) or Pj:R(x,b), and u«v, and no w Pk:W(x,c)
exists such that u«w«v, then the value b returned by v is exactly the value a
written by u.

Conversely, if u is Pi:W(x,a), and v is either Pj:I(x,b) or Pj:R(x,b), and b=a (and a is
distinguishable from values written by accesses other than u), then u«v and for any
other w Pk:W(x,c) either w«u or v«w.

The only way to communicate information between different processors is for one to
write a shared location and the other to read the shared location and receive the
newly written value. (In this context, the sending of an interrupt from processor
Pi to processor Pj is modeled as Pi writing to a location INTij, and Pj reading from
INTij.)

5.6.1.7 Relationship Between Issue Order and Access Order

Ifu is Pi:*(x,a), and v is Pi:*(x,b), one of which is a write, and u<v in the issue order
for processor Pi, then u«v in the access order for location x.

In other words, if two accesses to the same location are ordered on a given processor,
they are ordered in the same way at the location.

5.6.1.8 Definition of Before and After

For two accesses u and v, u is said to be BEFORE v (<=) if:

u < v or
u « v or
there exists an access w such that:

(u < wand w <= v) or I

System Architecture and Programming Implications (I) 5-15

•

(u « wand w <= v).

In other words, "before" is the transitive closure over issue order and access order.

If u <= v, then v is said to be AFTER u.

Therefore, at most one of u <= v and v <= u is true.

5.6.1.9 Timeliness

Even in the absence of a barrier after the write, a write by one processor to a given
location may not be delayed indefinitely in the access order for that location.

5.6.2 Litmus Tests

Many issues about writing and reading shared data can be cast into questions about
whether a write is before or after a read. These questions can be answered by
rigorously applying the ordering rules described previously to demonstrate whether
the accesses in question are ordered at all.

Assume, in the litmus tests below, that initially all memory locations contain 1.

5.6.2.1 Litmus Test 1 (Impossible Sequence)

Pi Pj

[Ul] Pi:W(x,2) [VI] Pj:R(x,2)

[V2] Pj:R(x,l)

VI reading 2 implies Ul « VI, by the definition of storage
V2 reading 1 implies V2 « Ul, by the definition of storage
VI < V2, by the definition of issue order

The first two orderings imply that V2 <= VI, whereas the last implies that VI <= V2.

Both implications cannot be true. Thus, once a processor reads a new value from a
location, it must never see an old value-time must not go backward. V2 must read
2.

5.6.2.2 Litmus Test 2 (Impossible Sequence)

Pi Pj

[Ul] Pi:W(x,2) [VI] Pj:W(x,3)

[V2] Pj:R(x,2)

[V3] Pj:R(x,3)

V2 reading 2 implies VI <= Ul
V3 reading 3 implies Ul <= VI

Both implications cannot be true. Thus, once a processor reads a new value written
by Ul, any other writes that must precede the read must also precede Ul. V3 must
read 2.

5-16 Common Architecture (I)

5.6.2.3 Litmus Test 3 (Impossible Sequence)

Pi Pi Pk

[Ul] Pi:W(x,2) [VI] Pj:W(x,3) [WI] Pk:R(x,3)

[U2] Pi:R(x,3) [W2] Pk:R(x,2)

U2 reading 3 implies Ul <= VI
W2 reading 2 implies VI <= UI

Both implications cannot be true. Again, time cannot go backward. If U2 reads 3
then W2 must read 3. Alternately, if W2 reads 2, then U2 must read 2.

5.6.2.4 Litmus Test 4 (Sequence Okay)

Pi Pi

[Ul] Pi:W(x,2) [VI] Pj:R(y,2)

[U2] Pi:W(y,2) [V2] Pj:R(x,l)

There are no conflicts in this sequence. U2 <= VI and V2 <= UI. UI and U2 are not
ordered with respect to each other. VI and V2 are not ordered with respect to each
other. There is no conflicting implication that Ul <= V2.

5.6.2.5 Litmus Test 5 (Sequence Okay)

Pi Pi

[UI] Pi:W(x,2) [VI] Pj:R(y,2)

[V2] Pj:MB

[U2] Pi:W(y,2) [V3] Pj:R(x,l)

There are no conflicts in this sequence. U2 <= VI <= V3 <= UI. There is no conflicting
implication that Ul <= U2.

5.6.2.6 Litmus Test 6 (Sequence Okay)

Pi Pj

•
[Ul] Pi:W(x,2)

[U2] Pi:MB or
Pi:WMB

[U3] Pi:W(y,2)

[VI] Pj:R(y,2)

[V2] Pj:R(x,l)

There are no conflicts in this sequence. V2 <= Ul <= U3 <= VI. There is no conflicting
implication that VI <= V2.

In scenarios 4, 5, and 6, writes to two different locations x and yare observed
(by another processor) to occur in the opposite order than that in which they were

System Architecture and Programming Implications (I) 5-17

performed. An update to y propagates quickly to Pj, but the update to x is delayed,
and Pi and Pj do not both have MBs.

5.6.2.7 Litmus Test 7 (Impossible Sequence)

Pi Pi

[Ul] Pi:W(x,2) [VI] Pj:R(y,2)

[U2] Pi:MB or [V2] Pj:MB
Pi:WMB

[U3] Pi:W(y,2) [V3] Pj:R(x,l)

VI reading 2 implies U3 ~ VI
V3 reading 1 implies V3 ~ Ul
But, by transitivity, Ul ~ U3 ~ VI <= V3

Both cannot be true, so if VI reads 2, then V3 must also read 2.

5.6.2.8 Litmus Test 8 (Impossible Sequence)

Pi Pi

[Ul] Pi:W(x,2) [VI] Pj:W(y,2)

[U2] Pi:MB [V2] Pj:MB

[U3] Pi:R(y,l) [V3] Pj:R(x,l)

U3 reading 1 implies U3 <= VI
V3 reading 1 implies V3 ~ Ul
But, by transitivity, Ul <= U3 ~ VI ~ V3

Both cannot be true, so if U3 reads 1, then V3 must read 2, and vice versa.

5.6.2.9 Litmus Test 9 (Impossible Sequence)

Pi Pi

[Ul] Pi:W(x,2) [VI] Pj:W(x,3)

[U2] Pi:R(x,2) [V2] Pj:R(x,3)

[U3] Pi:R(x,3) [V3] Pj:R(x,2)

V3 reading 2 implies Ul ~ V3
V2 <= V3 and V2 reading 3 implies V2 <= Ul
VI <= V2 and V2 ~ UI implies VI ~ UI

U3 reading 3 implies VI <= U3
U2 <= U3 and U2 reading 2 implies U2 <= VI
Ul <= U2 and U2 <= VI implies UI ~ VI

Both VI ~ UI and UI <= VI cannot be true. Time cannot go backwards. IfV3 reads
2, then U3 must read 2. Alternatively, If U3 reads 3, then V3 must read 3.

5-18 Common Architecture (I)

5.6.2.10 Litmus Test 10 (Sequence Okay)

For an aligned quadword location, x, initially 10000000116:

Pi

[Ul] Pi:Wquad(x,20000000216)

[U2] Pi:Rlong(x+4,3)

Model that case as follows:

Pi

[Ul] Pi:Wquad(x,20000000216)

[U2] Pi:Rlong(x+4,3)

Pj

[VI] Pj:Wlong(x+4,3)

[V2] Pj:Rquad(x,30000000116)

Pj

[VI] Pj:Wlong(x+4,3)

[V2'] Pj:Rlong(x,l)

[V2"] Pj:Rlong(x+4,3)

5.6.2.11 Litmus Test 11 (Impossible Sequence)

For an aligned quadword location, x, initially 10000000116:

V2" returning 3 implies Ul « VI < V2". That, in turn, implies that V2' and V2" are
not constrained to occur at the same time in access order or issue order. The result
of U2 implies Ul « VI « U2, whereas the result of V2' implies V2' «Ul. There
are no inconsistencies because V2' and V2" can be in different order.

Pi

[Ul] Pi:Wlong(x,2)

[U2] Pi:WMB or Pi:MB

[U3] Pi:Wlong(x+4,2)

Model that case as follows:

Pi

[Ul] Pi:Wlong(x,2)

[U2] Pi:WMB or Pi:MB

[U3] Pi:Wlong(x+4,2)

Pj

[VI] Pj:MB

[V2] Pj:Rquad(x,20000000116)

Pj

[VI] Pj:MB

[V2'] Pj:Rlong(x,l)

[V2"] Pj:Rlong(x+4,2)

•

With no longword write access to x between VI and V2' or V2", V2' and V2" are
constrained to occur at the same time in access and issue order. V2' reading
1 implies V2' «Ul, whereas V2" reading 2 implies U3 «V2". This leads to
V2' « Ul < U2 < U3 « V2", which violates the constraint that V2' and V2" occur
at the same time. The sequence is impossible.

System Architecture and Programming Implications (I) 5-19

5.6.3 Implied Barriers

In Alpha AXP, there are no implied barriers. If an implied barrier is needed
for functionally correct access to shared data, it must be written as an explicit
instruction. (Software must explicitly include any needed MB, WMB, or CALL_
PAL 1MB instructions.)

Alpha AXP transitions such as the following have no built-in implied memory
barriers:

• Entry to PALcode

• Sending and receiving interrupts

• Returning from exceptions, interrupts, or machine checks

• Swapping context

• Invalidating the Translation Buffer (TB)

Depending on implementation choices for maintaining cache coherency, some
PALcode/cache implementations may have an implied CALL_PAL 1MB in the 1
stream TB fill routine, but this is transparent to the non-PALcode programmer.

5.6.4 Implications for Software

Software must explicitly include MB, WMB, or CALL_PAL 1MB instructions
according to the following circumstances.

5.6.4.1 Single-Processor Data Stream

No barriers are ever needed. A read to physical address x will always return
the value written by the immediately preceding write to x in the processor issue
sequence.

5.6.4.2 Single-Processor Instruction Stream

An I-fetch from virtual or physical address x does not necessarily return the value
written by the immediately preceding write to x in the issue sequence. To make
the I-fetch reliably get the newly written instruction, a CALL_PAL 1MB is needed
between the write and the I-fetch.

5.6.4.3 Multiple-Processor Data Stream (Including Single Processor with DMA I/O)

Generally, the only way to reliably communicate shared data is to write the shared
data on one processor or DMA I/O device, execute an MB or WMB (or the logical
equivalent if it is a DMA I/O device), then write a flag (equivalently, send an
interrupt) signaling the other processor that the shared data is ready. Each receiving
processor must read the new flag (equivalently, receive the interrupt), execute an
MB, then read or update the shared data. In the special case in which data
is communicated through just one location in memory, memory barriers are not
necessary.

5-20 Common Architecture (I)

Software Note:

Note that this section does not describe how to reliably communicate data from
a processor to a DMA device. See Section 5.6.4.7.

Leaving out the first MB or WMB removes the assurance that the shared data is
written before the flag is written.

Leaving out the second MB removes the assurance that the shared data is read or
updated only after the flag is seen to change; in this case, an early read could see
an old value, and an early update could be overwritten.

This implies that after a DMA I/O device has written some data to memory (such as
paging in a page from disk), the DMA device must logically execute an MB before
posting a completion interrupt, and the interrupt handler software must execute an
MB before the data is guaranteed to be visible to the interrupted processor. Other
processors must also execute MBs before they are guaranteed to see the new data.

An important special case occurs when a write is done (perhaps by an I/O device) to
some physical page frame, then an MB is executed, and then a previously invalid
PTE is changed to be a valid mapping of the physical page frame that was just
written. In this case, all processors that access virtual memory by using the newly
valid PTE must guarantee to deliver the newly written data after the TB miss, for
both I-stream and D-stream accesses.

5.6.4.4 Multiple-Processor Instruction Stream (Including Single Processor with DMA I/O)

The only way to update the I-stream reliably is to write the shared I-stream on one I
processor or DMA I/O device, then execute a CALL_PAL 1MB (or an MB or WMB if
the processor is not going to execute the new I-stream, or the logical equivalent of
an MB if it is a DMA I/O device), then write a flag (equivalently, send an interrupt)
signaling the other processor that the shared I-stream is ready. Each receiving
processor must read the new flag (equivalently, receive the interrupt), then execute
a CALL_PAL 1MB, then fetch the shared I-stream.

Software Note:

Note that this section does not describe how to reliably communicate I-stream
from a processor to a DMA device. See Section 5.6.4.7.

Leaving out the first CALL_PAL 1MB (MB or WMB) removes the assurance that the
shared I-stream is written before the flag.

Leaving out the second CALL_PAL 1MB removes the assurance that the shared 1
stream is read only after the flag is seen to change; in this case, an early read could
see an old value.

This implies that after a DMA I/O device has written some I-stream to memory (such
as paging in a page from disk), the DMA device must logically execute a CALL_
PAL 1MB (or MB) before posting a completion interrupt, and the interrupt handler
software must execute a CALL_PAL 1MB before the I-stream is guaranteed to be
visible to the interrupted processor. Other processors must also execute CALL_PAL
1MB instructions before they are guaranteed to see the new I-stream.

System Architecture and Programming Implications (I) 5-21

An important special case occurs under the following circumstances:

1. A write (perhaps by an 110 device) is done to some physical page frame.

2. A CALL_PAL 1MB (or MB) is executed.

3. A previously invalid PTE is changed to be a valid mapping of the physical page
frame that was written in step 1.

In this case, all processors that access virtual memory by using the newly valid PTE
must guarantee to deliver the newly written I-stream after the TB miss.

5.6.4.5 Multiple-Processor Context Switch

If a process migrates from executing on one processor to executing on another, the
context switch operating system code must include a number of barriers.

A process migrates by having its context stored into memory, then eventually having
that context reloaded on another processor. In between, some shared mechanism
must be used to communicate that the context saved in memory by the first processor
is available to the second processor. This could be done by using an interrupt, by
using a flag bit associated with the saved context, or by using a shared-memory
multiprocessor data structure, as follows:

First Processor

Save state of current process.
MB or WMB[l]
Pass ownership of process context =>
data structure memory.

Second Processor

Pick up ownership of process context
data structure memory.
MB [2]
Restore state ofnew process context data
structure memory.
Make I-stream coherent [3].
Make TB coherent [4].

Execute code for new process that
accesses memory that is not common to
all processes.

MB or WMB [1] ensures that the writes done to save the state of the current process
happen before the ownership is passed.

MB [2] ensures that the reads done to load the state of the new process happen
after the ownership is picked up and hence are reliably the values written by the
processor saving the old state. Leaving this MB out makes the code fail if an old
value of the context remains in the second processor's cache and invalidates from
the writes done on the first processor are not delivered soon enough.

5-22 Common Architecture (I)

The TB on the second processor must be made coherent with any write to the page
tables that may have occurred on the first processor just before the save of the process
state. This must be done with a series of TB invalidate instructions to remove any
nonglobal page mapping for this process, or by assigning an ASN that is unused on
the second processor to the process. One of these actions must occur sometime before
starting execution of the code for the new process that accesses memory (instruction
or data) that is not common to all processes. A common method is to assign a new
ASN after gaining ownership of the new process and before loading its context, which
includes its ASN.

The D-cache on the second processor must be made coherent with any write to the D
stream that may have occurred on the first processor just before the save of process
state. This is ensured by MB [2] and does not require any additional instructions.

The I-cache on the second processor must be made coherent with any write to the
I-stream that may have occurred on the first processor just before the save of process
state. This can be done with a CALL_PAL 1MB sometime before the execution of
any code that is not common to all processes, More commonly, this can be done by
forcing a TB miss (via the new ASN or via TB invalidate instructions) and using the
TB-fill rule (see Section 5.6.4.3). This latter approach does not require any additional
instruction.

Combining all these considerations gives:

First Processor

Pick up ownership of process
context data structure memory.
MB
Assign new ASN or invalidate TBs.
Save state of current process.
Restore state of new process.
MB
Pass ownership of process context =>
data structure memory.

Second Processor

Pickup ownership of new process context
data structure memory.
MB
Assign new ASN or invalidate TBs.
Save state of current process.
Restore state of new process.
MB
Pass ownership of old process context
data structure memory.

I

System Architecture and Programming Implications (I) 5-23

First Processor Second Processor

Execute code for new process that
accesses memory that is not common to
all processes.

Note that on a single processor there is no need for the barriers.

5.6.4.6 Multiple-Processor Send/Receive Interrupt

If one processor writes some shared data, then sends an interrupt to a second
processor, and that processor receives the interrupt, then accesses the shared data,
the sequence from Section 5.6.4.3 must be used:

First Processor

Write data
MB orWMB
Send interrupt

Second Processor

Receive interrupt
MB
Access data

Leaving out the MB or WMB at the beginning of the interrupt-receipt routine causes
the code to fail if an old value of the context remains in the second processor's cache,
and invalidates from the writes done on the first processor are not delivered soon
enough.

5.6.4.7 Implications for Memory Mapped I/O

Sections 5.6.4.3 and 5.6.4.4 describe methods for communicating data from a
processor or DMA 110 device to another processor that work reliably in all Alpha
AXP systems. Special considerations apply to the communication of data or I-stream
from a processor to a DMA 110 device. These considerations arise from the use of
bridges to connect to 110 buses with devices that are accessible by memory accesses
to non-memory-like regions of physical memory.

The following communication method works in all Alpha AXP systems.

To reliably communicate shared data from a processor to an 110 device:

1. Write the shared data to a memory-like physical memory region on the
processor.

2. Execute an MB or WMB instruction.

3. Write a flag (equivalently, send an interrupt or write a register location
implemented in the 110 device).

5-24 Common Architecture (I)

The receiving 110 device must:

1. Read the flag (equivalently, detect the interrupt or detect the write to the
register location implemented in the 110 device).

2. Execute the equivalent of an MB.

3. Read the shared data.

As shown in Section 5.6.4.3, leaving out the memory barrier removes the assurance
that the shared data is written before the flag is. Unlike the case in Section 5.6.4.3,
writing the shared data to a non-memory-like physical memory region removes
the assurance that the 110 device will detect the writes of the shared data before
detecting the flag write, interrupt, or device register write.

This implies that after a processor has prepared a data buffer to be read from memory
by a DMA 110 device (such as writing a buffer to disk), the processor must execute
an MB or WMB before starting the I/O. The 110 device, after receiving the start
signal, must logically execute an MB before reading the data buffer, and the buffer
must be located in a memory-like physical memory region.

There are methods of communicating data that may work in some systems but are
not guaranteed in all systems. Two notable examples are:

1. If an Alpha AXP processor writes a location implemented in a component located
on an I/O bus in the system, then executes a memory barrier, then writes a flag
in some memory location (in a memory-like or non-memory-like region), a device I
on the 110 bus may be able to detect (via read access) the result of the flag in
memory write and the write of the location on the I/O bus out of order (that is, in
a different order than the order in which the Alpha AXP processor wrote those
locations).

2. If an Alpha AXP processor writes a location that is a control register within an
110 device, then executes a memory barrier, then writes a location in memory (in
a memory-like or non-memory-like region), the 110 device may be able to detect
(via read access) the result of the memory write before receiving and responding
to the write of its own control register.

In almost every case, a mechanism that ensures the completion of writes to
control register locations within 110 devices is provided. The normal and strongly
recommended mechanism is to read a location after writing it, which guarantees
that the write is complete. In any case, all systems that use a particular 110 device
should provide the same mechanism for that device.

5.6.5 Implications for Hardware

The coherency point for physical address x is the place in the memory subsystem at
which accesses to x are ordered. It may be at a main memory board, or at a cache
containing x exclusively, or at the point of winning a common bus arbitration.

The coherency point for x may move with time, as exclusive access to x migrates
between main memory and various caches.

System Architecture and Programming Implications (I) 5-25

MB, WMB, and CALL_PAL 1MB force all preceding writes to at least reach their
respective coherency points. This does not mean that main-memory writes have
been done, just that the order of the eventual writes is committed. For example, on
the XMI with retry, this means getting the writes acknowledged as received with
good parity at the inputs to memory board queues; the actual RAM write happens
later.

MB and CALL_PAL 1MB also force all queued cache invalidates to be delivered to
the local caches before starting any subsequent reads (that may otherwise cache hit
on stale data) or writes (that may otherwise write the cache, only to have the write
effectively overwritten by a late-delivered invalidate).

Implementations may allow reads ofx to hit (by physical address) on pending writes
in a write buffer, even before the writes to x reach the coherency point for x. If this
is done, it is still true that no earlier value of x may subsequently be delivered to
the processor that took the hit on the write buffer value.

Virtual data caches are allowed to deliver data before doing address translation, but
only if there cannot be a pending write under a synonym virtual address. Lack of a
write-buffer match on untranslated address bits is sufficient to guarantee this.

Virtual data caches must invalidate or otherwise become coherent with the new value
whenever a PALcode routine is executed that affects the validity, fault behavior,
protection behavior, or virtual-to-physical mapping specified for one or more pages.
Becoming coherent can be delayed until the next subsequent MB instruction or TB
fill (using the new mapping) if the implementation of the PALcode routine always
forces a subsequent TB fill.

5.7 Arithmetic Traps

Alpha AXP implementations are allowed to execute multiple instructions
concurrently and to forward results from one instruction to another. Thus, when an
arithmetic trap is detected, the PC may have advanced an arbitrarily large number
of instructions past the instruction T (calculating result R) whose execution triggered
the trap.

When the trap is detected, any or all of these subsequent instructions may run to
completion before the trap is actually taken. Instruction T and the set of instructions
subsequent to T that complete before the trap is taken are collectively called the trap
shadow of T. The PC pushed on the stack when the trap is taken is the PC of the
first instruction past the trap shadow.

The instructions in the trap shadow of T may use the UNPREDICTABLE result R
of T, they may generate additional traps, and they may completely change the PC
(branches, JSR).

Thus, by the time a trap is taken, the PC pushed on the stack may bear no
useful relationship to the PC of the trigger instruction T, and the state visible to
the programmer may have been updated using the UNPREDICTABLE result R. If
an instruction in the trap shadow of T uses R to calculate a subsequent register

5-26 Common Architecture (I)

value, that register value is UNPREDICTABLE, even though there may be no trap
associated with the subsequent calculation. Similarly:

• If an instruction in the trap shadow of T stores R or any subsequent
UNPREDICTABLE result, the stored value is UNPREDICTABLE.

• If an instruction in the trap shadow of T uses R or any subsequent
UNPREDICTABLE result as the basis of a conditional or calculated branch, the
branch target is UNPREDICTABLE.

• If an instruction in the trap shadow of T uses R or any subsequent
UNPREDICTABLE result as the basis of an address calculation, the memory
address actually accessed is UNPREDICTABLE.

Software that is intended to bound how far the PC may advance before taking a
trap, or how far an UNPREDICTABLE result may propagate, must insert TRAPB
instructions at appropriate points.

Software that is intended to continue from a trap by supplying a well-defined result
R within an arithmetic trap handler, can do so reliably by following the rules for
software completion code sequences given in Section 4.7.6.

System Architecture and Programming Implications (I) 5-27

I

Chapter 6

Common PALcode Architecture (I)

6.1 PALcode

In a family of machines, both users and operating system implementors require
functions to be implemented consistently. When functions conform to a common
interface, the code that uses those functions can be used on several different
implementations without modification.

These functions range from the binary encoding of the instruction and data to the
exception mechanisms and synchronization primitives. Some of these functions can
be implemented cost effectively in hardware, but others are impractical to implement
directly in hardware. These functions include low-level hardware support functions
such as Translation Buffer miss fill routines, interrupt acknowledge, and vector
dispatch. They also include support for privileged and atomic operations that require
long instruction sequences.

In the VAX, these functions are generally provided by microcode. This is not seen as
a problem because the VAX architecture lends itself to a microcoded implementation.

One of the goals of Alpha AXP architecture is to implement functions consistently
without microcode. However, it is still desirable to provide an architected interface
to these functions that will be consistent across the entire family of machines. The
Privileged Architecture Library (PALcode) provides a mechanism to implement these
functions without microcode.

6.2 PALcode Instructions and Functions

PALcode is used to implement the following functions:

• Instructions that require complex sequencing as an atomic operation

• Instructions that require VAX style interlocked memory access

• Privileged instructions

• Memory management control, including translation buffer (TB) management

• Context swapping

• Interrupt and exception dispatching

• Power-up initialization and booting

• Console functions

• Emulation of instructions with no hardware support

Common PALcode Architecture (I) 6-1

I

The Alpha AXP architecture lets these functions be implemented in standard
machine code that is resident in main memory. PALcode is written in standard
machine code with some implementation-specific extensions to provide access to low
level hardware. This lets an Alpha AXP implementation make various design trade
offs based on the hardware technology being used to implement the machine. The
PALcode can abstract these differences and make them invisible to system software.

For example, in aMOS VLSI implementation, a small (32-entry) fully associative
TB can be the right match to the media, given that chip area is a costly resource.
In an ECL version, a large (1024 entry) direct-mapped TB can be used because it
will use RAM chips and does not have fast associative memories available. This
difference would be handled by implementation-specific versions of the PALcode on
the two systems, both versions providing transparent TB miss service routines. The
operating system code would not need to know there were any differences.

An Alpha AXP Privileged Architecture Library (PALcode) of routines and
environments is supplied by Digital. Other systems may use a library supplied
by Digital or architect and implement a different library of routines. Alpha AXP
systems are required to support the replacement of PALcode defined by Digital with
an operating system-specific version.

6.3 PALcode Environment

The PALcode environment differs from the normal environment in the following
ways:

• Complete control of the machine state.

• Interrupts are disabled.

• Implementation-specific hardware functions are enabled, as described below.

• I-stream memory management traps are prevented (by disabling I-stream
mapping, mapping PALcode with a permanent TB entry, or by other
mechanisms).

Complete control of the machine state allows all functions of the machine to be
controlled. Disabling interrupts allows the system to provide multi-instruction
sequences as atomic operations. Enabling implementation-specific hardware
functions allows access to low-level system hardware. Preventing I-stream memory
management traps allows PALcode to implement memory management functions
such as translation buffer fill.

6.4 Special Functions Required for PALcode

PALcode uses the Alpha AXP instruction set for most of its operations. A small
number of additional functions are needed to implement the PALcode. Five opcodes
are reserved to implement PALcode functions: PAL19, PAL1B, PAL1D, PAL1E,
and PAL1F. These instructions produce an trap if executed outside the PALcode
environment.

6-2 Common Architecture (I)

• PALcode needs a mechanism to save the current state of the machine and
dispatch into PALcode.

• PALcode needs a set of instructions to access hardware control registers.

• PALcode needs a hardware mechanism to transition the machine from the
PALcode environment to the non-PALcode environment. This mechanism loads
the PC, enables interrupts, enables mapping, and disables PALcode privileges.

An Alpha AXP implementation may also choose to provide additional functions to
simplify or improve performance of some PALcode functions. The following are some
examples:

• An Alpha AXP implementation may include a read/write virtual function
that allows PALcode to perform mapped memory accesses using the mapping
hardware rather than providing the virtual-to-physical translation in PALcode
routines. PALcode may provide a special function to do physical reads and writes
and have the Alpha AXP loads and stores continue to operate on virtual address
in the PALcode environment.

• An Alpha AXP implementation may include hardware assists for various
functions, such as saving the virtual address of a reference on a memory
management error rather than having to generate it by simulating the effective
address calculation in PALcode.

• An Alpha AXP implementation may include private registers so it can function
without having to save and restore the native general registers.

6.5 PALcode Effects on System Code

PALcode will have one effect on system code. Because PALcode may reside in main
memory and maintain privileged data structures in main memory, the operating
system code that allocates physical memory cannot use all of physical memory.

The amount of memory PALcode requires is small, so the loss to the system is
negligible.

6.6 PALcode Replacement

Alpha AXP systems are required to support the replacement of PALcode supplied
by Digital with an operating system-specific version. The following functions must
be implemented in PALcode, not directly in hardware, to facilitate replacement with
different versions.

1. Translation 'Buffer fill. Different operating systems will want to replace the
Translation Buffer (TB) fill routines. ·The replacement routines will use different
data structures. Page tables will not be present in these systems. Therefore, no
portion of the TB fill flow that would change with a change in page tables may
be placed in hardware, unless it is placed in a manner that can be overridden by
PALcode.

Common PALcode Architecture (I) 6-3

I

2. Process structure. Different operating systems might want to replace the process
context switch routines. The replacement routines will use different data
structures. The HWPCB or PCB will not be present in these systems. Therefore,
no portion of the context switching flows that would change with a change in
process structure may be placed in hardware.

PALcode can be viewed as consisting of the following somewhat intertwined
components:

• Chip/architecture component

• Hardware platform component

• Operating system component

PALcode should be written modularly to facilitate the easy replacement or
conditional building of each component. Such a practice simplifies the integration
of CPU hardware, system platform hardware, console firmware, operating system
software, and compilers.

PALcode subsections that are commonly subject to modification include:

• Translation Buffer fill

• Process structure and context switch

• Interrupt and exception frame format and routine dispatch

• Privileged PALcode instructions

• Transitions to and from console I/O mode

• Power-up reset

6.7 Required PALcode Instructions

The PALcode instructions listed in Table 6-1 and Appendix C must be recognized
by mnemonic and opcode in all operating system implementations, but the effect of
each instruction is dependent on the implementation. Digital defines the operation
of these PALcode instructions for operating system implementations supplied by
Digital.

Table 6-1: PALcode Instructions that Require Recognition

Mnemonic Name

BPT

BUGCHK

CSERVE

GENTRAP

RDUNIQUE

Breakpoint trap

Bugcheck trap

Console service

Generate trap

Read unique value

6-4 Common Architecture (I)

Table 6-1 (Cont.): PALcode Instructions that Require Recognition

Mnemonic Name

SWPPAL Swap PALcode

WRUNIQUE Write unique value

The PALcode instructions listed in Table 6-2 and described in the following sections
must be supported by all Alpha AXP implementations:

Table 6-2: Required PALcode Instructions

Mnemonic Type Operation

DRAINA

HALT

1MB

Privileged

Privileged

Unprivileged

Drain aborts

Halt processor

I-stream memory barrier

Common PALcode Architecture (I) 6-5

I

6.7.1 Drain Aborts

Format:

!PALcode format

Operation:

IF PS<CM> NE 0 THEN
{privileged instruction exception}

{Stall instruction issuing until all prior
instructions are guaranteed to complete
without incurring aborts.}

Exceptions:

Privileged Instruction

Instruction mnemonics:

Drain Aborts

Description:

Ifaborts are deliberately generated and handled (such as nonexistent memory aborts
while sizing memory or searching for 110 devices), the DRAINA instruction forces
any outstanding aborts to be taken before continuing.

Aborts are necessarily implementation dependent. DRAINA stalls instruction issue
at least until all previously issued instructions have completed and any associated
aborts have been signaled, as follows:

• For operate instructions, this usually means stalling until the result register has
been written.

• For branch instructions, this usually means stalling until the result register and
PC have been written.

• For load instructions, this usually means stalling until the result register has
been written.

• For store instructions, this usually means stalling until at least the first level in
a potentially multilevel memory hierarchy has been written.

For load instructions, DRAINA does not necessarily guarantee that the unaccessed
portions of a cache block have been transferred error free before continuing.

6-6 Common Architecture (I)

For store instructions, DRAINA does not necessarily guarantee that the ultimate
target location of the store has received error-free data before continuing.
An implementation-specific technique must be used to guarantee the ultimate
completion of a write in implementations that have multilevel memory hierarchies
or store-and-forward bus adapters.

Common PALcode Architecture (I) 6-7

•

6.7.2 Halt

Format:

!PALcode format

Platform dependent choice
{halt}
{restart/boot/halt}
{boot/halt}
{debugger/halt}
{restart/halt}

Operation:

IF PS<CM> NE 0 THEN
{privileged instruction exception}

CASE {halt_action} OF
! Operating System or

halt:
restart/boot/halt:
boot/halt:
debugger/halt:
restart/halt:

ENDCASE

Exceptions:

Privileged Instruction

Instruction mnemonics:

Halt Processor

Description:

The HALT instruction stops normal instruction processing and initiates some other
operating system or platform-specific behavior, depending on the HALT action
setting. The choice of behavior typically includes the initiation of a restart sequence,
a system bootstrap, or entry into console mode. See Console Interface (III), Chapter
3.

6-8 Common Architecture (I)

6.7.3 Instruction Memory Barrier

Format:

!PALcode format

Operation:

{Make instruction stream coherent with Data stream}

Exceptions:

None

Instruction mnemonics:

I-stream Memory Barrier

Description:

An 1MB instruction must be executed after software or I/O devices write into the
instruction stream or modify the instruction stream virtual address mapping, and •
before the new value is fetched as an instruction. An implementation may contain
an instruction cache that does not track either processor or I/O writes into the
instruction stream. The instruction cache and memory are made coherent by an
1MB instruction.

If the instruction stream is modified and an 1MB is not executed before fetching an
instruction from the modified location, it is UNPREDICTABLE whether the old or
new value is fetched.

Software Note:

In a multiprocessor environment, executing an 1MB on one processor does not
affect instruction caches on other processors. Thus, a single 1MB on one processor
is insufficient to guarantee that all processors see a modification of the instruction
stream.

The cache coherency and sharing rules are described in Chapter 5.

Common PALcode Architecture (I) 6-9

Chapter 7

Console Subsystem Overview (I)

On an Alpha AXP system, underlying control of the system platform hardware is
provided by a console subsystem. The console subsystem:

1. Initializes, tests, and prepares the system platform hardware for Alpha AXP
system software.

2. Bootstraps (loads into memory and starts the execution of) system software.

3. Controls and monitors the state and state transitions of each processor in a
multiprocessor system.

4. Provides services to system software that simplify system software control of and
access to platform hardware.

5. Provides a means for a console operator to monitor and control the system.

The console subsystem interacts with system platform hardware to accomplish the
first three tasks. The actual mechanisms of these interactions are specific to the
platform hardware; however, the net effects are common to all systems. •

The console subsystem interacts with system software once control of the system
platform hardware has been transferred to that software.

The console subsystem interacts with the console operator through a virtual display
device or console terminal. The console operator may be a person or a management
application.

Console Subsystem Overview (I) 7-1

Chapter 8

Input/Output Overview (I)

Conceptually, Alpha AXP systems can consist of processors, memory, a processor
memory interconnect (PMI), I/O buses, bridges, and I/O devices.

Figure 8-1 shows the Alpha AXP system overview.

Figure 8-1: Alpha AXP System Overview

Processor-Memory Interconnect

As shown in Figure 8-1, processors, memory, and possibly I/O devices, are connected
by a PMI.

A bridge connects an I/O bus to the system, either directly to the PMI or through
another I/O bus. The I/O bus address space is available to the processor either
directly or indirectly. Indirect access is provided through either an I/O mailbox or
an I/O mapping mechanism. The I/O mapping mechanism includes provisions for
mapping between PMI and I/O bus addresses and access to I/O bus operations.

Alpha AXP I/O operations can include:

• Accesses between the processor and an I/O device across the PMI

• Accesses between the processor and an I/O device across an I/O bus

• DMA accesses - I/O devices initiating reads and writes to memory

• Processor interrupts requested by devices

• Bus-specific I/O accesses

Input/Output Overview (I) 8-1

•

Specific Operating System PALcode
Architecture {II)

This part describes how operating systems supplied by Digital relate to the
Alpha AXP architecture. It is made up of the following sections:

• OpenVMS AXP Software (II-A)

• DEC OSF/1 Software (II-B)

• Windows NT AXP Software (II-C)

OpenVMS AXP Software (II-A)

This section describes how the OpenVMS AXP operating system relates to the Alpha AXP
architecture and contains the following chapters:

• Chapter 1, Introduction to OpenVMS AXP (II-A)

• Chapter 2, OpenVMS AXP PALcode Instruction Descriptions (II-A)

• Chapter 3, OpenVMS AXP Memory Management (II-A)

• Chapter 4, OpenVMS AXP Process Structure (II-A)

• Chapter 5, OpenVMS AXP Internal Processor Registers (II-A)

• Chapter 6, OpenVMS AXP Exceptions, Interrupts, and Machine Checks (II-A)

Contents

Chapter 1 Introduction to OpenVMS AXP (II-A)

1.1 Register Usage. 1-1
1.1.1 Processor Status. 1-1
1.1.2 Stack Pointer (SP) . 1-1
1.1.3 Internal Processor Registers (IPRs) . 1-1
1.1.4 Processor Cycle Counter (PCC) 1-1

Chapter 2 OpenVMS AXP PALcode Instruction Descriptions (II-A)

2.1 Unprivileged General OpenVMS AXP PALcode Instructions .
2.1.1 Breakpoint .
2.1.2 Bugcheck .
2.1.3 Change Mode Executive .
2.1.4 Change Mode to Kernel .
2.1.5 Change Mode Supervisor ' .
2.1.6 Change Mode User .
2.1.7 Generate Software Trap .
2.1.8 Probe Memory Access .
2.1.9 Read Processor Status .
2.1.10 Return from Exception or Interrupt .
2.1.11 Read System Cycle Counter .
2.1.12 Swap AST Enable .
2.1.13 Write Processor Status Software Field .
2.2 OpenVMS AXP Queue Data Types .
2.2.1 Absolute Longword Queues .
2.2.2 Self-Relative Longword Queues .
2.2.3 Absolute Quadword Queues .
2.2.4 Self-Relative Quadword Queues .
2.3 Unprivileged OpenVMS AXP Queue PALcode Instructions .
2.3.1 Insert Entry into Longword Queue at Head Interlocked .
2.3.2 Insert Entry into Longword Queue at Head Interlocked Resident .
2.3.3 Insert Entry into Quadword Queue at Head Interlocked .
2.3.4 Insert Entry into Quadword Queue at Head Interlocked Resident .
2.3.5 Insert Entry into Longword Queue at Tail Interlocked .
2.3.6 Insert Entry into Longword Queue at Tail Interlocked Resident ' .
2.3.7 Insert Entry into Quadword Queue at Tail Interlocked .
2.3.8 Insert Entry into Quadword Queue at Tail Interlocked Resident .
2.3.9 Insert Entry into Longword Queue .
2.3.10 Insert Entry into Quadword Queue .

2-3
2-4
2-5
2-6
2-7
2-8
2-9

2-10
2-11
2-13
2-14
2-17
2-19
2-20
2-21
2-21
2-21
2-25
2-26
2-30
2-31
2-33
2-35
2-37
2-39
2-42
2-44
2-46
2-48
2-50

iii

•

2.3.11 Remove Entry from Longword Queue at Head Interlocked 2-52
2.3.12 Remove Entry from Longword Queue at Head Interlocked Resident. 2-55
2.3.13 Remove Entry from Quadword Queue at Head Interlocked. 2-57
2.3.14 Remove Entry from Quadword Queue at Head Interlocked Resident. 2-60
2.3.15 Remove Entry from Longword Queue at Tail Interlocked 2-62
2.3.16 Remove Entry from Longword Queue at Tail Interlocked Resident. 2-65
2.3.17 Remove Entry from Quadword Queue at Tail Interlocked 2-67
2.3.18 Remove Entry from Quadword Queue at Tail Interlocked Resident. 2-70
2.3.19 Remove Entry from Longword Queue 2-72
2.3.20 Remove Entry from Quadword Queue. .. 2-74
2.4 Unprivileged VAX Compatibility PALcode Instructions .. 2-76
2.4.1 Atomic Move Operation. .. 2-77
2.5 Unprivileged PALcode Thread Instructions .. 2-81
2.5.1 Read Unique Context. .. 2-82
2.5.2 Write Unique Context 2-83
2.6 Privileged PALcode Instructions 2-84
2.6.1 Cache Flush. .. 2-85
2.6.2 Console Service 2-86
2.6.3 Load Quadword Physical .. 2-87
2.6.4 Move From Processor Register. .. 2-88
2.6.5 Move to Processor Register 2-89
2.6.6 Store Quadword Physical .. 2-90
2.6.7 Swap Privileged Context 2-91
2.6.8 Swap PALcode Image. .. 2-94

Chapter 3 OpenVMS AXP Memory Management (II-A)

3.1 Introduction. 3-1
3.2 Virtual Address Space . 3-1
3.2.1 Virtual Address Format. 3-2
3.3 Physical Address Space . 3-3
3.4 Memory Management Control . 3-3
3.5 Page Table Entries. 3-3
3.5.1 Changes to Page Table Entries 3-6
3.6 Memory Protection. 3-7
3.6.1 Processor Access Modes. 3-7
3.6.2 Protection Code . 3-7
3.6.3 Access Violation Fault . 3-8
3.7 Address Translation . 3-8
3.7.1 Physical Access for Page Table Entries 3-8
3.7.2 Virtual Access for Page Table Entries 3-10
3.8 Translation Buffer .. 3-11
3.9 Address Space Numbers. .. 3-12
3.10 Memory Management Faults. .. 3-12

iv

Chapter 4 OpenVMS AXP Process Structure (II-A)

4.1 Process Definition 4-1
4.2 Hardware Privileged Process Context 4-2
4.3 Asynchronous System Traps (AST) 4-4
4.4 Process Context Switching. 4-4

Chapter 5 OpenVMS AXP Internal Processor Registers (II-A)

5.1 Internal Processor Registers .
5.2 Stack Pointer Internal Processor Registers .
5.3 IPR Summary .
5.3.1 Address Space Number (ASN) .
5.3.2 AST Enable (ASTEN) .
5.3.3 AST Summary Register (ASTSR) .
5.3.4 Data Alignment Trap Fixup (DATFX) .
5.3.5 Executive Stack Pointer (ESP) .
5.3.6 Floating Enable (FEN) .
5.3.7 Interprocessor Interrupt Request (IPIR) .
5.3.8 Interrupt Priority Level (IPL) .
5.3.9 Machine Check Error Summary Register (MCES) .
5.3.10 Performance Monitoring Register (PERFMON) .
5.3.11 Privileged Context Block Base (PCBB) .
5.3.12 Processor Base Register (PRBR) .
5.3.13 Page Table Base Register (PTBR) .
5.3.14 System Control Block Base (SCBB) .
5.3.15 Software Interrupt Request Register (SIRR) .
5.3.16 Software Interrupt Summary Register (SISR) .
5.3.17 Supervisor Stack Pointer (SSP) .
5.3.18 Translation Buffer Check (TBCHK) .
5.3.19 Translation Buffer Invalidate All (TBIA) .
5.3.20 Translation Buffer Invalidate All Process (TBIAP) .
5.3.21 Translation Buffer Invalidate Single (TBISx) .
5.3.22 User Stack Pointer (USP) .
5.3.23 Virtual Page Table Base (VPTB) .
5.3.24 Who-Am-I (WHAMI) .

Chapter 6 OpenVMS AXP Exceptions, Interrupts, and Machine Checks (II-A)

5-1
5-1
5-2
5-4
5-5
5-7
5-9

5-10
5-11
5-12
5-13
5-14
5-16
5-17
5-18
5-19
5-20
5-21
5-22
5-23
5-24
5-26
5-27
5-28
5-29
5-30
5-31

•
6.1 Introduction. 6-1
6.1.1 Differences Between Exceptions, Interrupts, and Machine Checks 6-2
6.1.2 Exceptions, Interrupts, and Machine Checks Summary. 6-2
6.2 Processor State and ExceptionlInterruptlMachine Check Stack Frame 6-6
6.2.1 Processor Status. 6-6
6.2.2 Program Counter. 6-7
6.2.3 Processor Interrupt Priority Level (IPL) 6-8

v

6.2.4 Protection Modes . 6-8
6.2.5 Processor Stacks 6-8
6.2.6 Stack Frames . 6-8
6.3 Exceptions. 6-9
6.3.1 Faults. .. 6-11
6.3.1.1 Floating Disabled Fault. .. 6-11
6.3.1.2 Access Control Violation (ACV) Fault. .. 6-11
6.3.1.3 Translation Not Valid (TNV) 6-12
6.3.1.4 Fault on Read (FOR) .. 6-12
6.3.1.5 Fault on Write (FOW) 6-12
6.3.1.6 Fault on Execute (FOE) .. 6-13
6.3.2 Arithmetic Traps. .. 6-13
6.3.2.1 Exception Summary Parameter. .. 6-14
6.3.2.2 Register Write Mask 6-15
6.3.2.3 Invalid Operation (INV) Trap. .. 6-15
6.3.2.4 Division by Zero (DZE) Trap 6-16
6.3.2.5 Overflow (OVF) Trap .. 6-16
6.3.2.6 Underflow (UNF) Trap. .. 6-16
6.3.2.7 Inexact Result (INE) Trap .. 6-16
6.3.2.8 Integer Overflow (IOV) Trap 6-16
6.3.3 Synchronous Traps. .. 6-16
6.3.3.1 Data Alignment Trap. .. 6-16
6.3.3.2 Other Synchronous Traps. .. 6-17
6.3.3.2.1 Breakpoint Trap. .. 6-17
6.3.3.2.2 Bugcheck Trap. .. 6-18
6.3.3.2.3 Illegal Instruction Trap .. 6-18
6.3.3.2.4 Illegal Operand Trap. .. 6-18
6.3.3.2.5 Generate Software Trap. .. 6-18
6.3.3.2.6 Change Mode to Kernel Trap. .. 6-18
6.3.3.2.7 Change Mode to Executive Trap 6-18
6.3.3.2.8 Change Mode to Supervisor Trap. .. 6-19
6.3.3.2.9 Change Mode to User Trap 6-19
6.4 Interrupts.. .. 6-19
6.4.1 Software Interrupts - IPLs 1 to 15. .. 6-20
6.4.1.1 Software Interrupt Summary Register. .. 6-20
6.4.1.2 Software Interrupt Request Register. .. 6-21
6.4.2 Asynchronous System Trap - IPL 2 .. 6-21
6.4.3 Passive Release Interrupts - IPLs 20 to 23 6-22
6.4.4 I/O Device Interrupts - IPLs 20 to 23 6-22
6.4.5 Interval Clock Interrupt - IPL 22 6-22
6.4.5.1 Interprocessor Interrupt - IPL 22 6-22
6.4.5.1.1 Interprocessor Interrupt Request Register. .. 6-22
6.4.6 Performance Monitor Interrupts - IPL 29 6-23
6.4.7 Powerfail Interrupt - IPL 30 .. 6-23
6.5 Machine Checks .. 6-24

vi

6.5.1 Software Response. .. 6-25
6.5.2 Logout Areas .. 6-26
6.6 System Control Block. .. 6-27
6.6.1 SCB Entries for Faults. .. 6-28
6.6.2 SCB Entries for Arithmetic Traps 6-29
6.6.3 SCB Entries for Asynchronous System Traps (ASTs) .. 6-29
6.6.4 SCB Entries for Data Alignment Traps .. 6-30
6.6.5 SCB Entries for Other Synchronous Traps. .. 6-30
6.6.6 SCB Entries for Processor Software Interrupts .. 6-31
6.6.7 SCB Entries for Processor Hardware Interrupts and Machine Checks 6-31
6.6.8 SCB Entries for I/O Device Interrupts. .. 6-32
6.7 PALcode Support .. 6-33
6.7.1 Stack Writeability 6-33
6.7.2 Stack Residency .. 6-33
6.7.3 Stack Alignment 6-33
6.7.4 Initiate Exception or Interrupt or Machine Check. .. 6-33
6.7.5 Initiate Exception or Interrupt or Machine Check Model. 6-34
6.7.6 PALcode Interrupt Arbitration. .. 6-36
6.7.6.1 Writing the AST Summary Register 6-36
6.7.6.2 Writing the AST Enable Register. .. 6-37
6.7.6.3 Writing the IPL Register. .. 6-37
6.7.6.4 Writing the Software Interrupt Request Register 6-37
6.7.6.5 Return from Exception or Interrupt. .. 6-37
6.7.6.6 Swap AST Enable 6-38
6.7.7 Processor State Transition Table .. 6-38

Figures

2-1 Empty Absolute Longword Queue .
2-2 Absolute Longword Queue with One Entry .
2-3 Absolute Longword Queue with Two Entries .
2-4 Absolute Longword Queue with Three Entries .
2-5 Absolute Longword Queue with Three Entries After Removing the Second Entry .
2-6 Empty Self-Relative Longword Queue .
2-7 Self-Relative Longword Queue with One Entry .
2-8 Self-Relative Longword Queue with Two Entries .
2-9 Self-Relative Longword Queue with Three Entries .
2-10 Empty Absolute Quadword Queue .
2-11 Absolute Quadword Queue with One Entry .
2-12 Absolute Quadword Queue with Two Entries .
2-13 Absolute Quadword Queue with Three Entries .
2-14 Absolut~ Quadword Queue with Three Entries Mter Removing the Second Entry .
2-15 Empty Self-Relative Quadword Queue .
2-16 Absolute Quadword Queue with One Entry .
2-17 Self-Relative Quadword Queue with Two Entries .

2-22
2-22
2-23
2-23
2-24
2-24
2-24
2-25
2-25
2-27
2-27
2-27
2-28
2-28
2-28
2-29
2-29

vii

•

2-18
3-1
3-2
4-1
5-1
5-2
5-3
5-4
5-5
5-6
5-7
5-8
5-9
5-10
5-11
5-12
5-13
5-14
5-15
5-16
5-17
5-18
5-19
5-20
5-21
5-22
5-23
5-24
6-1
6-2
6-3
6-4
6-5
6-6
6-7

Self-Relative Quadword Queue with Three Entries .
Virtual Address Format .
Page Table Entry .
Hardware Privileged Context Block .
Address Space Number Register (ASN) .
AST Enable Register (ASTEN) .
AST Summary Register (ASTSR) .
Data Alignment Trap Fixup (DATFX) .
Executive Stack Pointer (ESP) .
Floating Enable (FEN) Register .
Interprocessor Interrupt Request Register (IPIR) .
Interrupt Priority Level (IPL) .
Machine Check Error Summary Register (MCES) .
Performance Monitoring Register (PERFMON) .
Privileged Context Block Base Register (PCBB) .
Processor Base Register (PRBR) .
Page Table Base Register (PTBR) .
System Control Block Base Register (SCBB) .
Software Interrupt Request Register (SIRR) .
Software Interrupt Summary Register (SISR) .
Supervisor Stack Pointer (SSP) .
Translation Buffer Check Register (TBCHK) .
Translation Buffer Invalidate All Register (TBIA) .
Translation Buffer Invalidate All Process Register (TBIAP) .
Translation Buffer Invalidate Single (TBIS) .
User Stack Pointer (USP) .
Virtual Page Table Base Register (VPTB) .
Who-Am-I Register (WHAMI) .
Current Processor Status (PS Register) .
Saved Processor Status (PS on Stack) .
Program Counter (PC) .
Stack Frame .
Exception Summary .
Corrected Error and Machine Check Logout Frame .
System Control Block Summary .

2-29
3-2
3-3
4-2
5-4
5-5
5-7
5-9

5-10
5-11
5-12
5-13
5-14
5-16
5-17
5-18
5-19
5-20
5-21
5-22
5-23
5-24
5-26
5-27
5-28
5-29
5-30
5-31
6-6
6-6
6-8
6-9

6-14
6-26
6-28

Tables

2-1 OpenVMS AXP PALcode Instructions 2-1
2-2 Unprivileged General OpenVMS AXP PALcode Instruction Summary. 2-3
2-3 VAX. Queue Palcode Instruction Summary. .. 2-30
2-4 Unprivileged PALcode Thread Instructions .. 2-81
2-5 PALcode Privileged Instructions Summary .. 2-84
3-1 Virtual Address Options . 3-3
3-2 Page Table Entry . 3-4

viii

5-1
5-2
6-1
6-2
6-3
6-4
6-5
6-6
6-7
6-8
6-9
6-10
6-11
6-12

Internal Processor Register (IPR) Summary .
Internal Processor Register (IPR) Access Summary .
Exceptions, Interrupts, and Machine Checks Summary .
Processor Status Register Summary .
Exception Summary .
Corrected Error and Machine Check Logout Frame Fields .
SCB Entries for Faults .
SCB Entries for Arithmetic Traps .
SCB Entries for Asynchronous System Traps .
SCB Entries for Data Alignment Trap .
SCB Entries for Other Synchronous Traps .
SCB Entries for Processor Software Interrupts .
SCB Entries for Processor Hardware Interrupts and Machine Checks .
Processor State Transitions .

5-2
5-3
6-4
6-7

6-14
6-27
6-29
6-29
6-29
6-30
6-30
6-31
6-31
6-39

ix

•

Chapter 1

Introduction to OpenVMS AXP (II-A)

The goals of this design are to provide a hardware-implementation independent
interface between the OpenVMS AXP operating system and the hardware. Further,
the design provides the needed abstractions to minimize the impact between
OpenVMS AXP and different hardware implementations. Finally, the design must
contain only that overhead necessary to satisfy those requirements, while still
supporting high-performance systems.

1.1 Register Usage

In addition to those registers described in Part I, Common Architecture, OpenVMS
AXP defines the registers described in the following sections.

1.1.1 Processor Status

The Processor Status (PS) is a special register that contains the current status of the
processor. It can be read by the CALL_PAL RD_PS instruction. The software field
(PS<SW» can be written by the CALL_PAL WR_PS_SW routine. See Chapter 6 for
a description of the PS register.

1.1.2 Stack Pointer (SP)

Integer register R30 is the Stack Pointer (SP).

The SP contains the address of the top of the stack in the current mode.

Certain PALcode instructions, such as CALL_PAL REI, use R30 as an implicit •
operand. During such operations, the address value in R30, interpreted as an
unsigned 64-bit integer, decreases (predecrements) when items are pushed onto the
stack, and increases (postincrements) when they are popped from the stack. After
pushing (writing) an item to the stack, SP points to that item.

1.1.3 Internal Processor Registers (IPRs)

The IPRs provide an architected mapping to internal hardware or provide other
specialized uses. They are available only to privileged software through PALcode
routines and allow OpenVMS AXP to interrogate or modify system state. The IPRs
are described in Chapter 5.

1.1.4 Processor Cycle Counter (PCe)

The PCC register consists of two 32-bit fields. The low-order 32 bits (PCC<31:0»
are an unsigned, wrapping counter, PCC_CNT. The high-order 32 bits (PCC<63:32»
are an offset, PCC_OFF. PCC_OFF is a value that, when added to PCC_CNT, gives
the total PCC register count for this process, modulo 2**32.

Introduction to OpenVMS AXP (II-A) 1-1

Chapter 2

OpenVMS AXP PALcode Instruction Descriptions
(II-A)

This chapter describes the PALcode instructions that are implemented for the
OpenVMS AXP environment. The PALcode instructions are a set of unprivileged
and privileged CALL_PAL instructions that are used to match specific operating
system requirements to the underlying hardware implementation.

For example, privileged PALcode instructions switch the hardware context of a
process structure. Unprivileged PALcode instructions implement the uninterruptible
queue operations. Also, PALcode instructions provide mechanisms for standard
interrupt and exception reporting that are independent of the underlying hardware
implementation.

Table 2-1 lists all the unprivileged and privileged OpenVMS AXP PALcode
instructions and the section in this chapter in which they are described.

Table 2-1: OpenVMS AXP PALcode Instructions

Unprivileged OpenVMS AXP PALcode Instructions

Mnemonic Operation Section

AMOVRM Atomic move register/memory Section 2.4

AMOVRR Atomic move register/register Section 2.4

BPT Breakpoint Section 2.1

•BUGCHK Bugcheck Section 2.1

CHME Change mode to executive Section 2.1

CHMK Change mode to kernel Section 2.1

CHMS Change mode to supervisor Section 2.1

CHMU Change mode to user Section 2.1

GENTRAP Generate software trap Section 2.1

1MB I-stream memory barrier Common Architecture
Chapter 6

INSQxxx Insert in specified queue Section 2.3

PROBER Probe read access Section 2.1

PROBEW Probe write access Section 2.1

OpenVMS AXP PALcode Instruction Descriptions (II-A) 2-1

Table 2-1 (Cont.): OpenVMS AXP PALcode Instructions

Unprivileged OpenVMS AXP PALcode Instructions

Mnemonic Operation Section

RD_PS

READ_UNQ

REI

REMQxxx

RSCC

SWASTEN

WRITE_UNQ

WR_PS_SW

Read processor status

Read unique context

Return from exception or interrupt

Remove from specified queue

Read system cycle counter

Swap AST enable

Write unique context

Write processor status software field

Section 2.1

Section 2.5

Section 2.1

Section 2.3

Section 2.1

Section 2.1

Section 2.5

Section 2.1

Privileged OpenVMS AXP PALcode Instructions

Mnemonic Operation Section

CFLUSH

CSERVE

DRAINA

HALT

LDQP

MFPR

MTPR

STQP

SWPCTX

SWPPAL

Cache flush

Console service

Drain aborts

Halt processor

Load quadword physical

Move from processor register

Move to processor register

Store quadword physical

Swap privileged context

Swap PALcode image

Section 2.6

Section 2.6

Common Architecture
Chapter 6

Common Architecture
Chapter 6

Section 2.6

Section 2.6

Section 2.6

Section 2.6

Section 2.6

Section 2.6

2-2 OpenVMS AXP Software (II-A)

2.1 Unprivileged General OpenVMS AXP PALcode Instructions

The general unprivileged instructions in this section, together with those in Sections
2.3, 2.4, and 2.5, provide support for the underlying OpenVMS AXP model.

Table 2-2: Unprivileged General OpenVMS AXP PALcode Instruction Summary

Mnemonic Operation

BPT

BUGCHK

CHME

CHMK

CHMS

CHMU

GENTRAP

1MB

PROBER

PROBEW

RD_PS

REI

RSCC

SWASTEN

WR_PS_SW

Breakpoint

Bugcheck

Change mode to executive

Change mode to kernel

Change mode to supervisor

Change mode to user

Generate software trap

I-stream memory barrier

See Common Architecture, Chapter 6

Probe read access

Probe write access

Read processor status

Return from exception or interrupt

Read system cycle counter

Swap AST enable

Write processor status software field

OpenVMS AXP PALcode Instruction Descriptions (II-A) 2-3

•

2.1.1 Breakpoint

Format:

Operation:

! PALcode format

{initiate BPT exception with new_mode=kernel}

Exceptions:

Kernel Stack Not Valid Halt

Instruction mnemonics:

Breakpoint

Description:

The BPT instruction is provided for program debugging. It switches to kernel mode
and pushes R2..R7, the updated PC, and PS on the kernel stack. It then dispatches
to the address in the Breakpoint SCB vector. See Section 6.3.3.2.1

2-4 OpenVMS AXP Software (II-A)

2.1.2 Bugcheck

Format:

Operation:

! PALcode format

{initiate BUGCHK exception with new_ffiode=kernel}

Exceptions:

Kernel Stack Not Valid Halt

Instruction mnemonics:

CALL_PAL BUGCHK Bugcheck

Description:

The BUGCHK instruction is provided for error reporting. It switches to kernel mode
and pushes R2..R7, the updated PC, and PS on the kernel stack. It then dispatches
to the address in the Bugcheck SCB vector. See Section 6.3.3.2.2.

OpenVMS AXP PALcode Instruction Descriptions (II-A) 2-5

•

2.1.3 Change Mode Executive

Format:

Operation:

! PALcode format

tmp1 +- MlNU(1, PS<CM»
{initiate CHME exception with new_mode=tmp1}

Exceptions:

Kernel Stack Not Valid Halt

Instruction mnemonics:

Description:

Change Mode to Executive

The CHME instruction lets a process change its mode in a controlled manner.

A change in mode also results in a change of stack pointers: the old pointer is saved,
the new pointer is loaded. R2..R7, PC, and PS are pushed onto the selected stack.
The saved PC addresses the instruction following the CHME instruction. Registers
R22, R23, R24, and R27 are available for use by PALcode as scratch registers. The
contents of these registers are not preserved across a CHME.

2-6 OpenVMS AXP Software (II-A)

2.1.4 Change Mode to Kernel

Format:

! PALcode format

Operation:

{initiate CHMK exception with new_mode=kernel}

Exceptions:

Kernel Stack Not Valid Halt

Instruction mnemonics:

Change Mode to Kernel

Description:

The CHMK instruction lets a process change its mode to kernel in a controlled
manner.

A change in mode also results in a change of stack pointers: the old pointer is saved,
the new pointer is loaded. R2..R7, PC, and PS are pushed onto the kernel stack.
The saved PC addresses the instruction following the CHMK instruction. Registers
R22, R23, R24, and R27 are available for use by PALcode as scratch registers. The
contents of these registers are not preserved across a CHMK.

OpenVMS AXP PALcode Instruction Descriptions (II-A) 2-7

•

2.1.5 Change Mode Supervisor

Format:

Operation:

! PALcode format

tmpl +- MlNU(2, PS<CM»
{initiate CHMB exception with new_mode=tmpl}

Exceptions:

Kernel Stack Not Valid Halt

Instruction mnemonics:

Description:

Change Mode to Supervisor

The CHMS instruction lets a process change its mode in a controlled manner.

A change in mode also results in a change of stack pointers: the old pointer is saved,
the new pointer is loaded. R2..R7, PC, and PS are pushed onto the selected stack.
The saved PC addresses the instruction following the CHMS instruction.

2-8 OpenVMS AXP Software (II-A)

2.1.6 Change Mode User

Format:

! PALcode format

Operation:

{initiate CHMU exception with new_mode=PS<CM>}

Exceptions:

Kernel Stack Not Valid Halt

Instruction mnemonics:

Change Mode to User

Description:

The CHMU instruction lets a process call a routine via the change mode mechanism.

R2..R7, PC, and PS are pushed onto the current stack. The saved PC addresses the
instruction following the CHMU instruction.

The CALL_PAL CHMU instruction is provided for VAX compatibility only.

OpenVMS AXP PALcode Instruction Descriptions (II-A) 2-9

I

2.1.7 Generate Software Trap

Format:

! PALcode format

Operation:

{initiate GENTRAP exception with new_mode=kernel}
! R16 contains the value encoding of the software trap

Exceptions:

Kernel Stack Not Valid Halt

Instruction mnemonics:

CALL_PAL GENTRAP Generate Software Trap

Description:

The GENTRAP instruction is provided for reporting run-time software conditions.
It switches to kernel mode, and pushes R2...R7, the updated PC, and PS on the
kernel stack. It then dispatches to the address in the GENTRAP SCB Vector. See
Section 6.6.

The value in R16 identifies the particular software condition that has occurred. The
encoding for the software trap values is given in the software calling standard for
the system.

2-10 OpenVMS AXP Software (II-A)

2.1.8 Probe Memory Access

Format:

! PALcode format

Operation:

R16 contains the base address
R17 contains the signed offset
R18 contains the access mode
RO receives the completion status

+- 1 if success
+- 0 if failure

first +- R16
last +- {R16+R17}

IF R18<1:0> GTU PS<CM> THEN
probe_mode +- R18<1:0>

ELSE
probe_mode +- PS<CM»

IF ACCESS(first, probe_mode) AND ACCESS (last, probe_mode) THEN
RO +- 1

ELSE
RO +- 0

Translation Not Valid

Exceptions:

Instruction mnemonics:

PROBER

PROBEW

Probe for Read Access

Probe for Write Access •
Description:

The PROBE instruction checks the read or write accessibility of the first and last
byte specified by the base address and the signed offset; the bytes in between are
not checked.

System software must check all pages between the two bytes if they are to be
accessed. If both bytes are accessible, PROBE returns the value 1 in RO; otherwise,
PROBE returns o. The Fault on Read and Fault on Write PTE bits are not checked.
A Translation Not Valid exception is signaled only if the mapping structures cannot
be accessed. A Translation Not Valid exception is signaled only if the first or second
level PTE is invalid.

OpenVMS AXP PALcode Instruction Descriptions (II-A) 2-11

The protection is checked against the less privileged of the modes specified by
R18<1:0> and the Current Mode (PS<CM». See Section 6.2 for access mode
encodings.

PROBE is only intended to check a single datum for accessibility. It does not check
all intervening pages because this could result in excessive interrupt latency.

2-12 OpenVMS AXP Software (II-A)

2.1.9 Read Processor Status

Format:

Operation:

RO +- PS

Exceptions:

None

Instruction mnemonics:

Read Processor Status

! PALcode format

Description:

The RD_PS instruction returns the Processor Status (PS) in register RO. The
Processor Status is described in Section 6.2. The PS<SP_ALIGN> field is always
a zero on a RD_PS.

OpenVMS AXP PALcode Instruction Descriptions (II-A) 2-13

I

2.1.10 Return from Exception or Interrupt

Format:

PALcode format

Get saved R2
Get saved R3
Get saved R4
Get saved R5
Get saved R6
Get saved R7
Get new PC
Get new PS

Copy new ps
Clear cm field
Clear sp_align field
Clear Software Field
Clear except/inter/mcheck flag

Operation:

! See Chapter 6
for information on interrupted registers

IF SP<5:0> NE 0 THEN
{illegal operand

tmp1 ~ (SP)
tmp2 ~ (SP+8)
tmp3 ~ (SP+16)
tmp4 ~ (SP+24)
tmp5 ~ (SP+32)
tmp6 ~ (SP+40)
tmp7 ~ (SP+48)
tmp8 ~ (SP+56)

ps_chk ~ tmp8
ps_chk<cm> ~ 0
ps_chk<sp_align> ~ 0
ps_chk<sw> ~ 0
intr_flag ~ 0
{ clear lock_flag}

! If current mode is not kernel check the new ps is valid.
IF {ps<cm> NE O} AND

{{tmp8<cm> LT ps<cm>} OR {ps_chk NE OJ} THEN
BEGIN

{illegal operand}
END

sp ~ {sp + 8*8} OR tmp8<sp_align>
IF {internal registers for stack pointers} THEN

CASE ps<cm> BEGIN
[0]: ipr_ksp ~ sp
[1]: ipr_esp ~ sp
[2]: ipr_ssp ~ sp
[3]: ipr_usp ~ sp

ENDCASE
CASE tmp8<cm> BEGIN

[0]: sp ~ ipr_ksp
[1]: sp ~ ipr_esp
[2]: sp ~ ipr_ssp
[3]: sp ~ ipr_usp

ENDCASE
ELSE

(pcbb + 8*ps<cm» ~ sp
sp ~ (pcbb + 8*tmp8<cm>)

ENDIF

2-14 OpenVMS AXP Software (II-A)

R2 +- tmp1
R3 +- tmp2
R4 +- tmp3
R5 +- tmp4
R6 +- tmp5
R7 +- tmp6
PC +- tmp7
PS +- tmp8 <12:00>

{Initiate interrupts or AST interrupts that are now pending}

Exceptions:

Access Violation

Fault on Read

Illegal Operand

Kernel Stack Not Valid Halt

Translation Not Valid

Instruction mnemonics:

Return from Exception or Interrupt

Description:

The REI instruction pops the PS, PC, and saved R2...R7 from the current stack and
holds them in temporary registers.

The new PS is checked for validity and consistency. If it is invalid or inconsistent,
an illegal operand exception occurs; otherwise the operation continues. A kernel
to nonkernel REI with a new PS<IPL> not equal to zero may yield UNDEFINED
results.

The current stack pointer is then saved and a new stack pointer is selected according
to the new PS<CM> field. R2 through R7 are restored using the saved values held in
the temporary registers. A check is made to determine if an AST or other interrupt
is pending (see Section 6.7.6).

If the enabling conditions are present for an interrupt or AST interrupt at the
completion of this instruction, the interrupt or AST interrupt occurs before the next
instruction.

OpenVMS AXP PALcode Instruction Descriptions (II-A) 2-15

I

When an REI is issued, the current stack must be writeable from the current mode
or an Access Violation may occur.

Implementation Note:

This is necessary so that an implementation can choose to clear the lock_flag by
doing a STx_C to above the top-of-stack after popping PS, PC, and saved R2..R7
off the current stack.

2-16 OpenVMS AXP Software (II-A)

2.1.11 Read System Cycle Counter

Format:

! PALcode format

Operation:

RO +- {System Cycle Counter}

Exceptions:

None

Instruction mnemonics:

Read System Cycle Counter

Description:

The RSCC instruction writes register RO with the value of the system cycle counter.
This counter is an unsigned 64-bit integer that increments at the same rate as the
process cycle counter. The cycle counter frequency, which is the number of times
the system cycle counter gets incremented per second rounded to a 64-bit integer, is
given in the HWRPB. (See Console Interface (III), Chapter 2).

The system cycle counter is suitable for timing a general range of intervals to within
10% error and may be used for detailed performance characterization. It is required
on all implementations. SCC is required for every processor, and each processor in
a multiprocessor system has its own private, independent SCC.

Notes:

1. Processor initialization starts the sec at O.

2. sce is monotonically increasing. On the same processor, the values returned
by two successive reads of SCC must either be equal or the value of the second
must be greater (unsigned) than the first.

3. SCC ticks are never lost so long as the SCC is accessed at least once per each PCC
overflow period (2**32 PCC increments) during periods when the hardware clock
interrupt remains blocked. The hardware clock interrupt is blocked whenever
the IPL is at or above CLOCK_IPL or whenever the processor enters console I/O
mode from program I/O mode.

4. The 64-bit SCC may be constructed from the 32-bit PCC hardware counter and
a 32-bit PALcode software counter. As part of the hardware clock interrupt
processing, PALcode increments the software counter whenever a PCC wrap is

OpenVMS AXP PALcode Instruction Descriptions (II-A) 2-17

•

detected. Thus, SCC ticks may be lost only when PALcode fails to detect PCC
wraps. In a machine where the PCC is incremented at a 1 ns rate, this may
occur when hardware clock interrupts are blocked for greater than 4 seconds.

5. An implementation-dependent mechanism must exist so that, when enabled, it
causes the RSCC instruction, as implemented by standard PALcode, always to
return a zero in RO. This mechanism must be usable by privileged system
software. A similar mechanism must exist for RPCC. Implementations are
allowed to have only a single mechanism, which when enabled causes both RSCC
and RPCC to return zero.

2-18 OpenVMS AXP Software (II-A)

2.1.12 Swap AST Enable

Format:

CALL_PAL SWASTEN

Operation:

RO +- ZEXT(ASTEN<PS<CM»)
ASTEN<PS<CM» +- R16<O>

{check for pending ASTs}

Exceptions:

None

Instruction mnemonics:

! PALcode format

CALL_PAL SWASTEN Swap AST Enable for Current Mode

Description:

The SWASTEN instruction swaps the AST enable bit for the current mode. The
new state for the enable bit is supplied in register R16<O> and previous state of the
enable bit is returned, zero extended, in RO.

A check is made to determine if an AST interrupt is pending (see Section 6.7.6.6).

If the enabling conditions are present for an AST interrupt at the completion of this
instruction, the AST occurs before the next instruction.

OpenVMS AXP PALcode Instruction Descriptions (II-A) 2-19

I

2.1.13 Write Processor Status Software Field

Format:

Operation:

PS<SW> +- R16<1:0>

Exceptions:

None

Instruction mnemonics:

! PALcode format

CALL_PAL WR_PS_SW Write Processor Status Software Field

Description:

The WR_PS_SW instruction writes the Processor Status software field (PS<SW»
with the low-order two bits of R16. The Processor Status is described in Section 6.2.

2-20 OpenVMS AXP Software (II-A)

2.2 OpenVMS AXP Queue Data Types

The following sections describe the queue data types that are manipulated by the
OpenVMS AXP queue PALcode. Section 2.3 describes the PALcode instructions that
perform the manipulation.

2.2.1 Absolute Longword Queues
A longword queue is a circular, doubly linked list. A longword queue entry is specified
by its address. Each longword queue entry is linked to the next with a pair of
longwords. A queue is classified by the type of link it uses. Absolute longword
queues use absolute addresses as links.

The first (lowest addressed) longword is the forward link; it specifies the address of
the succeeding longword queue entry. The second (highest addressed) longword is
the backward link; it specifies the address of the preceding longword queue entry.

A longword queue is specified by a longword queue header, which is identical to a
pair of longword queue linkage longwords. The forward link of the header is the
address of the entry termed the head of the longword queue. The backward link of
the header is the address of the entry termed the tail of the longword queue. The
forward link of the tail points to the header.

An empty longword queue is specified by its header at address H, as shown in
Figure 2-1. If an entry at address B is inserted into an empty longword queue (at
either the head or tail), the longword queue shown in Figure 2-2 results. Figures
2-3, 2-4, and 2-5, respectively, illustrate the results of subsequent insertion of an
entry at address A at the head, insertion of an entry at address C at the tail, and
removal of the entry at address B.

2.2.2 Self-Relative Longword Queues

Self-relative longword queues use displacements from longword queue entries as I
links. Longword queue entries are linked by a pair of longwords. The first longword
(lowest addressed) is the forward link; it is a displacement ofthe succeeding longword
queue entry from the present entry. The second longword (highest addressed) is the
backward link; it is the displacement of the preceding longword queue entry from
the present entry. A longword queue is specified by a longword queue header, which
also consists of two longword links.

An empty longword queue is specified by its header at address H. Since the longword
queue is empty, the self-relative links are zero, as shown in Figure 2-6.

Four types of operations can be performed on self-relative queues: insert at head,
insert at tail, remove from head, and remove from tail. Furthermore, these
operations are interlocked to allow cooperating processes in a multiprocessor system
to access a shared list without additional synchronization. A hardware-supported,
interlocked memory-access mechanism is used to modify the queue header. Bit <0>
of the queue header is used as a secondary interlock and is set when the queue is
being accessed.

OpenVMS AXP PALcode Instruction Descriptions (II-A) 2-21

If an interlocked queue CALL_PAL instruction encounters the secondary interlock
set, then, in the absence of exceptions, it terminates after setting RO to -1 to indicate
failure to gain access to the queue. If the secondary interlock bit is not set, then
it is set during the interlocked queue operation and is cleared upon completion of
the operation. This prevents other interlocked queue CALL_PAL instructions from
operating on the same queue.

If both the secondary interlock is set and an exception condition occurs, it is
UNPREDICTABLE whether the exception will be reported.

Figures 2-7,2-8, and 2-9, respectively, illustrate the results of subsequent insertion
of an entry at address B at the head, insertion of an entry at address A at the tail,
and insertion of an entry at address C at the tail.

Figures 2-9, 2-8, and 2-7 (in that order) illustrate the effect of removal at the tail
and removal at the head.

Figure 2-1: Empty Absolute Longword Queue

31 0

I
H I:HI---------H------------j·::H+4

Figure 2-2: Absolute Longword Queue with One Entry

31 0

I
8 [::+4B

I
H los
H :8+4

2-22 OpenVMS AXP Software (II-A)

Figure 2-3: Absolute Longword Queue with Two Entries

31 0

I
A 10H
8 :H+4

I

8 lOA
H :A+4

I
H lOB
A :8+4

Figure 2-4: Absolute Longword Queue with Three Entries

31 0

A 10H
C :H+4

8

1::+4H

c lOB
A :8+4

H

1:~+48

OpenVMS AXP PALcode Instruction Descriptions (II-A) 2-23

•

Figure 2-5: Absolute Longword Queue with Three Entries After Removing the Second
Entry

31 0

I
A

1::+4c

I
C

I'AH :A+4

I
H

1:~+4A

Figure 2-6: Empty Self-Relative Longword Queue

31 0

I
0

1::+40

Figure 2-7: Self-Relative Longword Queue with One Entry

31 0

I
B-H

I'HB-H :H+4

I
H-B

1::+4H-B

2-24 OpenVMS AXP Software (II-A)

Figure 2-8: Self-Relative Longword Queue with Two Entries

31 0

I

A-H 1::+4B-H

I
B-A 1::+4H-A

I
H-B los
A-B :8+4

Figure 2-9: Self-Relative Longword Queue with Three Entries

31

~~~~~~~-:-~-:~~~~~~~1::+4

~~~~~~~-:-~-:~~~~~~~1::+4

~~~~~~~-:-~-:~~~~~~~1:+4

f----
H_-C -----.,loC

~~~ B_-_C_~__~__ :C+4

2.2.3 Absolute Quadword Queues

A quadword queue is a circular, doubly linked list. A quadword queue entry is
specified by its address. Each quadword queue entry is linked to the next with
a pair of quadwords. A queue is classified by the type of link it uses. Absolute
quadword queues use absolute addresses as links.

The first (lowest addressed) quadword is the forward link; it specifies the address of
the succeeding quadword queue entry. The second (highest addressed) quadword is
the backward link; it specifies the address of the preceding quadword queue entry.

A quadword queue is specified by a quadword queue header, which is identical to a
pair of quadword queue linkage quadwords. The forward link of the header is the
address of the entry termed the head of the quadword queue. The backward link of
the header is the address of the entry termed the tail of the quadword queue. The
forward link of the tail points to the header.

OpenVMS AXP PALcode Instruction Descriptions (II-A) 2-25

I

An empty quadword queue is specified by its header at address H, as shown in
Figure 2-10. If an entry at address B is inserted into an empty quadword queue (at
either the head or tail), the quadword queue shown in Figure 2-11 results. Figures
2-12, 2-13, and 2-14, respectively, illustrate the results of subsequent insertion of
an entry at address A at the head, insertion of an entry at address C at the tail, and
removal of the entry at address B.

2.2.4 Self-Relative Quadword Queues

Self-relative quadword queues use displacements from quadword queue entries
as links. Quadword queue entries are linked by a pair of quadwords. The
first quadword (lowest addressed) is the forward link; it is a displacement of the
succeeding quadword queue entry from the present entry. The second quadword
(highest addressed) is the backward link; it is the displacement of the preceding
quadword queue entry from the present entry. A quadword queue is specified by a
quadword queue header, which also consists of two quadword links.

An empty quadword queue is specified by its header at address H. Since the
quadword queue is empty, the self-relative links are zero, as shown in Figure 2-15.

Four types of operations can be performed on self-relative queues: insert at head,
insert at tail, remove from head, and remove from tail. Furthermore, these
operations are interlocked to allow cooperating processes in a multiprocessor system
to access a shared list without additional synchronization. A hardware-supported,
interlocked memory-access mechanism is used to modify the queue header. Bit <0>
of the queue header is used as a secondary interlock and is set when the queue is
being accessed.

If an interlocked queue CALL_PAL instruction encounters the secondary interlock
set, then, in the absence of exceptions, it terminates after setting RO to -1 to indicate
failure to gain access to the queue. If the secondary interlock bit is not set, it
is set during the interlocked queue operation and is cleared upon completion of
the operation. This prevents other interlocked queue CALL_PAL instructions from
operating on the same queue.

If both the secondary interlock is set and an exception condition occurs, it is
UNPREDICTABLE whether the exception will be reported.

Figures 2-16, 2-17, and 2-18, respectively, illustrate the results of subsequent
insertion of an entry at address B at the head, insertion of an entry at address
A at the tail, and insertion of an entry at address C at the tail.

Figures 2-18, 2-17, and 2-16, (in that order) illustrate the effect of removal at the
tail and removal at the head.

2-26 OpenVMS AXP Software (II-A)

Figure 2-10: Empty Absolute Quadword Queue

63 0

I
H IOH
H :H+8

Figure 2-11: Absolute Quadword Queue with One Entry

63 0

1

B IOH
B :H+8

I

H

1::+8H

Figure 2-12: Absolute Quadword Queue with Two Entries

63 0

I
A IOH
B :H+8

I
B lOA
H :A+8

I
H

1::+8 •A

OpenVMS AXP PALcode Instruction Descriptions (II-A) 2-27

Figure 2-13: Absolute Quadword Queue with Three Entries

0

A 1::+8c

B 1::+8H

c 1::+8A

H 1::+8B

63

I-----~

I-----~

1---------1
1~----______1

Figure 2-14: Absolute Quadword Queue with Three Entries After Removing the Second Entry

63

r-------------------:--------------------,1::+8
----------------:---------------------11::+8
----------------:----------------1::+8
Figure 2-15: Empty Self-Relative Quadword Queue

63 0

I~---:---1::+8

2-28 OpenVMS AXP Software (II-A)

Figure 2-16: Absolute Quadword Queue with One Entry

63 0

I
B-H

1::+8B-H

I
H-B

1

08
H-B :8+8

Figure 2-17: Self-Relative Quadword Queue with Two Entries

63 0

I

A-H

[::+8B-H

1
B-A

1::+8H-A

I

H-B

1::+8A-B

Figure 2-18: Self-Relative Quadword Queue with Three Entries

63 0

A-H

1::+8 •C-H

B-A lOA
H-A :A+8

C-B

1::+8A-B

H-C

1:~+8B-C

OpenVMS AXP PALcode Instruction Descriptions (II-A) 2-29

2.3 Unprivileged OpenVMS AXP Queue PALcode Instructions

The following unprivileged PALcode instructions perform atomic modification of the
queue data types that are described in Section 2.2.

Table 2-3: VAX Queue Palcode Instruction Summary
Mnemonic Operation

INSQHIL

INSQHILR

INSQHIQ

INSQHIQR

INSQTIL

INSQTILR

INSQTIQ

INSQTIQR

INSQUEL

INSQUEQ

REMQHIL

REMQHILR

REMQHIQ

REMQHIQR

REMQTIL

REMQTILR

REMQTIQ

REMQTIQR

REMQUEL

REMQUEQ

Insert into longword queue at head, interlocked

Insert into longword queue at head, interlocked, resident

Insert into quadword queue at head, interlocked

Insert into quadword queue at head, interlocked, resident

Insert into longword queue at tail, interlocked

Insert into longword queue at tail, interlocked, resident

Insert into quadword queue at tail, interlocked

Insert into quadword queue at tail, interlocked, resident

Insert into longword queue

Insert into quadword queue

Remove from longword queue at head, interlocked

Remove from longword queue at head, interlocked, resident

Remove from quadword queue at head, interlocked

Remove from quadword queue at head, interlocked, resident

Remove from longword queue at tail, interlocked

Remove from longword queue at tail, interlocked, resident

Remove from quadword queue at tail, interlocked

Remove from quadword queue at tail, interlocked, resident

Remove from longword queue

Remove from quadword queue

2-30 OpenVMS AXP Software (II-A)

2.3.1 Insert Entry into Longword Queue at Head Interlocked

Format:

CALL_PAL INSQHIL

Operation:

PALcode format

Check alignment
Release secondary interlock.

R16 contains the address of the queue header
R17 contains the address of the new entry
RO receives status:

-1 if the secondary interlock was set
o if the queue was not empty before adding this entry
1 if the queue was empty before adding this entry

Must have write access to header and queue entries
Header and entries must be quadword aligned.
Header cannot be equal to entry.

check entry and header alignment and
that the header and entry not same location and
that the header and entry are valid 32 bit addresses

IF {R16<2:0> NE O} OR {R17<2:0> NE O} OR {R16 EQ R17} OR
{SEXT(R16<31:0» NE R16} OR {SEXT(R17<31:0» NE R17} THEN
BEGIN

{illegal operand exception}
END

N <- {retry_amount} Implementation-specific
REPEAT

LOAD_LOCKED (tmpO ~ (R16)) Acquire hardware interlock.
IF tmpO<O> EQ 1 THEN Try to set secondary interlock.

RO +- -1, {return} Already set •
done +- STORE_CONDITIONAL ({ RiG) ~ {tmpO OR 1})
N+- N-l

UNTIL {done EQ 1} OR {N EQ O}
IF done NEQ 1, RO ~ -1, {return} Retry exceeded

MB
tmp1 ~ SEXT{tmpO<31:0»
IF {tmpl<2:1> NE O} THEN BEGIN

BEGIN
(RiG) +- tmpO
{illegal operand exception}

END

Check if following addresses can be written
without causing a memory management exception:

entry
header + tmpl

IF {all memory accesses can NOT be completed} THEN
BEGIN Release secondary interlock.

(R16) +- tmpO
{initiate memory management fault}

END

OpenVMS AXP PALcode Instruction Descriptions (II-A) 2-31

Forward link
Backward link
Successor back link

! All accesses can be done so enqueue the entry

tmp2 +- SEXT({R16 - R17}<31:0»
(R17)<31:0> +- tmpl + tmp2
(R17 + 4)<31:0> +- tmp2
(R16 + tmpl + 4)<31:0> +- -tmp1 - tmp2

MB

(R16)<31:0> +- -tmp2

IF tmpl EQ 0 THEN
RO +- 1

ELSE
RO +- 0

END

Exceptions:

Access Violation

Fault on Read

Fault on Write

Illegal Operand

Translation Not Valid

Instruction mnemonics:

Forward link of header
Release lock

Queue was empty

Queue was not empty

Insert into Longword Queue at Head Interlocked

Description:

If the secondary interlock is clear, INSQHIL inserts the entry specified in R17 into
the self-relative queue following the header specified in R16.

If the entry inserted was the first one in the queue, RO is set to 1; otherwise it is set
to O. The insertion is a non-interruptible operation. The insertion is interlocked to
prevent concurrent interlocked insertions or removals at the head or tail of the same
queue by another process, in a multiprocessor environment. Before the insertion,
the processor validates that the entire operation can be completed. This ensures that
if a memory management exception occurs, the queue is left in a consistent state
(see Chapters 3 and 6). If the instruction fails to acquire the secondary interlock
after "N" retry attempts, then (in the absence of exceptions) R<O> is set to a -1. The
value "N" is implementation dependent.

2-32 OpenVMS AXP Software (II-A)

2.3.2 Insert Entry into Longword Queue at Head Interlocked Resident

Format:

CALL_PAL INSQHILR PALcode format

Operation:

R16 contains the address of the queue header
R17 contains the address of the new entry
RO receives status:

-1 if the secondary interlock was set
o if the queue was not empty before adding this entry
1 if the queue was empty before adding this entry

•
Queue was not empty

Queue was empty

Enqueue the entry
Forward link of entry.
Backward link of entry.
Successor back link

Forward link of header
! Release the lock

IF tmpl EQ 0 THEN
RO ~ 1

ELSE
RO +- 0

END

MB
(R16)<31:0> ~ -tmp2

Must have write access to header and queue entries
Header and entries must be quadword aligned.
Header cannot be equal to entry.
All parts of the Queue must be memory resident

N <- {retry_amount} Implementation-specific
REPEAT

LOAD_LOCKED (tmpO ~ (R16)) Acquire hardware interlock.
IF tmpO<O> EQ 1 THEN Try to set secondary interlock.

RO ~ -1, {return} Already set
done ~ STORE_CONDITIONAL «R16) ~ {tmpO OR l})
N+- N-l

UNTIL {done EQ 1} OR {N EQ O}
IF done NEQ 1, RO +- -1, {return} Retry exceeded

MB

tmpl ~ SEXT(tmpO<31:0»
tmp2 +- SEXT({R16 - R17}<31:0»
(R17)<31:0> ~ tmpl + tmp2
(R17 + 4)<31:0> ~ tmp2
(R16 + tmpl + 4)<31:0> ~ -tmpl - tmp2

Exceptions:

Illegal Operand

OpenVMS AXP PALcode Instruction Descriptions (II-A) 2-33

Instruction mnemonics:

CALL_PAL INSQHILR Insert Entry into Longword Queue
at Head Interlocked Resident

Description:

If the secondary interlock is clear, INSQHILR inserts the entry specified in R17 into
the self-relative queue following the header specified in R16.

If the entry inserted was the first one in the queue, RO is set to 1; otherwise, it is set
to O. The insertion is a non-interruptible operation. The insertion is interlocked to
prevent concurrent interlocked insertions or removals at the head or tail of the same
queue by another process, in a multiprocessor environment. If the instruction fails
to acquire the secondary interlock after "N" retry attempts, then (in the absence of
exceptions) R<O> is set to a -1. The value "N" is implementation dependent.

This instruction requires that the queue be memory resident and that the queue
header and elements are quadword aligned. No alignment or memory management
checks are made before starting queue modifications to verify these requirements.
Therefore, if any of these requirements are not met, the queue may be left in an
unpredictable state and an illegal operand fault may be reported.

2-34 OpenVMS AXP Software (II-A)

2.3.3 Insert Entry into Quadword Queue at Head Interlocked

Format:

CALL_PAL INSQHIQ

Operation:

PALcode format

RiG contains the address of the queue header
R17 contains the address of the new entry
RO receives status:

-1 if the secondary interlock was set
o if the entry was not empty before adding this entry
1 if the entry was empty before adding this entry

Must have write access to header and queue entries
Header and entries must be octaword aligned.
Header cannot be equal to entry.

check entry and header alignment and
that the header and entry not same location

IF {R1G<3:0> NE O} OR {R17<3:0> NE O} OR {RiG EQ R17} THEN
BEGIN
{illegal operand exception}

END

N <- {retry_amount} Implementation-specific
REPEAT

LOAD_LOCKED (tmpl ~ (RiG)) Acquire hardware interlock.
IF tmpl<O> EQ 1 THEN Try to set secondary interlock.

RO +- -1, {return} Already set
done +- STORE_CONDITIONAL ({RiG) +- {tmpl OR 1})
N+- N-l

UNTIL {done EQ 1} OR {N EQ O}
IF done NEQ 1, RO +- -1, {return} Retry exceeded

MB

IF {tmpl<3:1> NE O} THEN BEGIN
BEGIN

(RiG) +- tmpl
{illegal operand exception}

END

Check Alignment
Release secondary interlock •

Check if following addresses can be written
without causing a memory management exception:

entry
header + tmpl

IF {all memory accesses can NOT be completed} THEN
BEGIN ! Release secondary interlock

(RiG) +- tmpl
{initiate memory management fault}

END

OpenVMS AXP PALcode Instruction Descriptions (II-A) 2-35

Forward link
Backward link
Successor back link

! All accesses can be done so enqueue the entry
tmp2 +- R16 - R17
(R17) +- tmpl + tmp2
(R17 + 8) +- tmpl
(R16 + tmpl + 8) +- -tmpl - tmp2

MB

(R16) +- -tmp2

IF tmpl EQ 0 THEN
RO +- 1

ELSE
RO +- 0

END

Exceptions:

Access Violation

Fault on Read

Fault on Write

Illegal Operand

Translation Not Valid

Instruction mnemonics:

Forward link of header
Release the lock.

Queue was empty

Queue was not empty

Insert into Quadword Queue at Head Interlocked

Description:

If the secondary interlock is clear, INSQHIQ inserts the entry specified in R17 into
the self-relative queue following the header specified in R16.

If the entry inserted was the first one in the queue, RO is set to 1; otherwise it is set
to o. The insertion is a non-interruptible operation. The insertion is interlocked to
prevent concurrent interlocked insertions or removals at the head or tail of the same
queue by another process, in a multiprocessor environment. Before the insertion,
the processor validates that the entire operation can be completed. This ensures that
if a memory management exception occurs, the queue is left in a consistent state
(see Chapters 3 and 6). If the instruction fails to acquire the secondary interlock
after "N" retry attempts, then (in the absence of exceptions) R<O> is set to a -1. The
value "N" is implementation dependent.

2-36 OpenVMS AXP Software (II-A)

2.3.4 Insert Entry into Quadword Queue at Head Interlocked Resident

Format:

PALcode format

Operation:

R16 contains the address of the queue header
R17 contains the address of the new entry
RO receives status:

-1 if the secondary interlock was set
o if the entry was not empty before adding this entry
1 if the entry was empty before adding this entry

Must have write access to header and queue entries
Header and entries must be octaword aligned.
Header cannot be equal to entry.
All parts of the Queue must be memory resident

N <- {retry_amount} Implementation-specific
REPEAT

LOAD_LOCKED (tmp1 +- (R16)) Acquire hardware interlock.
IF tmp1<O> EQ 1 THEN Try to set secondary interlock.

RO +- -1, {return} Already set
done +- STORE_CONDITIONAL ((R16) +- {tmp1 OR 1})
N+- N-l

UNTIL {done EQ 1} OR {N EQ O}
IF done NEQ 1, RO +- -1, {return} Retry exceeded

MB

tmp2 +- R16 - R17
(R17) +- tmp1 + tmp2
(R17 + 8) +- tmp2
(R16 + tmp1 + 8) +- -tmp1 - tmp2

MB
(R16) +- -tmp2

IF tmp1 EQ 0 THEN
RO +- 1

ELSE
RO +- 0

END

Exceptions:

Illegal Operand

Enqueue the entry
Forward link of entry .
Backward link of entry.
Successor back link

Forward link of header,
Release the lock

Queue was empty

Queue was not empty

•

OpenVMS AXP PALcode Instruction Descriptions (II-A) 2-37

Instruction mnemonics:

CALL_PAL INSQHIQR Insert Entry into Quadword Queue
at Head Interlocked Resident

Description:

If the secondary interlock is clear, INSQHIQR inserts the entry specified in R17 into
the self-relative queue following the header specified in R16.

If the entry inserted was the first one in the queue, RO is set to 1; otherwise, it is set
to o. The insertion is a non-interruptible operation. The insertion is interlocked to
prevent concurrent interlocked insertions or removals at the head or tail of the same
queue by another process, in a multiprocessor environment. If the instruction fails
to acquire the secondary interlock after "N" retry attempts, then (in the absence of
exceptions) R<O> is set to a -1. The value "N" is implementation dependent.

This instruction requires that the queue be memory resident and that the queue
header and elements are octaword aligned. No alignment or memory management
checks are made before starting queue modifications to verify these requirements.
Therefore, if any of these requirements are not met, the queue may be left in an
unpredictable state and an illegal operand fault may be reported.

2-38 OpenVMS AXP Software (II-A)

2.3.5 Insert Entry into Longword Queue at Tail Interlocked

Format:

CALL_PAL INSQTIL

Operation:

PALcode format

R16 contains the address of the queue header
R17 contains the address of the new entry
RO receives status:

-1 if the secondary interlock was set
o if the entry was not empty before adding this entry
1 if the entry was empty before adding this entry

Must have write access to header and queue entries
Header and entries must be quadword aligned.
Header cannot be equal to entry.

check entry and header alignment and
that the header and entry not same location and
that the header and entry are valid 32 bit addresses

IF {R16<2:0> NE O} OR {R17<2:0> NE O} OR {R16 EQ R17} OR
{SEXT(R16<31:0» NE R16} OR {SEXT(R17<31:0» NE R16} THEN
BEGIN

{illegal operand exception}
END

N <- {retry_amount} Implementation-specific
REPEAT

LOAD_LOCKED (tmpO +- (R16)) Acquire hardware interlock.
IF tmpO<O> EQ 1 THEN Try to set secondary interlock.

RO +- -1, {return} Already set
done +- STORE_CONDITIONAL ((R16) +- {tmpO OR 1} } •
N+- N-1

UNTIL {done EQ 1} OR {N EQ O}
IF done NEQ 1, RO +- -1, {return} Retry exceeded

MB

tmp1 +- SEXT(tmpO<31:0»
tmp2 +- SEXT(tmpO<63:32»

IF {tmp1<2:1> NE O} OR {tmp2<2:0> NE O} THEN ! Check Alignment
BEGIN Release secondary interlock

(R16) +- tmpO
{illegal operand exception}

END

OpenVMS AXP PALcode Instruction Descriptions (II-A) 2-39

Check if following addresses can be written
without causing a memory management exception:

entry
header + (header + 4)

IF {all memory accesses can NOT be completed} THEN
BEGIN ! Release secondary interlock

(RI6) +- tmpO
{initiate memory management fault}

END

All Accesses can be done so enqueue entry
tmp3 +- SEXT({R16 - RI7}<31:0»
(R17) <31: 0> +- tmp3 Forward link
(R17 + 4)<31:0> +- tmp2 + tmp3 Backward link
IF {tmp2 NE O} THEN Forward link of predecessor

(RI6+tmp2)<31:0> +- -tmp3 - tmp2
ELSE

tmpl +- SEXT({-tmp3 - tmp2}<31:0»
(R16+4)<31:0> +- -tmp3 ! Backward link of header

MB

(RI6)<31:0> +- tmpl
IF tmp1 EQ -tmp3 THEN

RO +- 1
ELSE

RO +- 0
END

Exceptions:

Access Violation

Fault on Read

Fault on Write

Illegal Operand

Translation Not Valid

Instruction mnemonics:

Forward link, release lock

Queue was empty

Queue was not empty

Insert into Longword Queue at Tail Interlocked

Description:

If the secondary interlock is clear, INSQTIL inserts the entry specified in R17 into
the self-relative queue preceding the header specified in R16.

If the entry inserted was the first one in the queue, RO is set to 1; othewise it is set
to O. The insertion is a non-interruptible operation. The insertion is interlocked to
prevent concurrent interlocked insertions or removals at the head or tail of the same
queue by another process, in a multiprocessor environment. Before performing any
part of the operation, the processor validates that the insertion can be completed.

2-40 OpenVMS AXP Software (II-A)

This ensures that if a memory management exception occurs, the queue is left in
a consistent state (see Chapters 3 and 6). If the instruction fails to acquire the
secondary interlock after "N" retry attempts, then (in the absence of exceptions)
R<O> is set to a -1. The value "N" is implementation dependent.

OpenVMS AXP PALcode Instruction Descriptions (II-A) 2-41

•

2.3.6 Insert Entry into Longword Queue at Tail Interlocked Resident

Format:

CALL_PAL INSQTILR

Operation:

PALcode format

Forward link
Backward link
Forward link of predecessor

R16 contains the address of the queue header
R17 contains the address of the new entry
RO receives status:

-1 if the secondary interlock was set
o if the entry was not empty before adding this entry
1 if the entry was empty before adding this entry

Must have write access to header and queue entries
Header and entries must be quadword aligned.
Header cannot be equal to entry.
All parts of the Queue must be memory resident

N <- {retry_amount} Implementation-specific
REPEAT

LOAD_LOCKED (tmpO +- (R16» Acquire hardware interlock.
IF tmpO<O> EQ 1 THEN Try to set secondary interlock.

RO +- -1, {return} Already set
done +- STORE_CONDITIONAL ((R16) +- {tropO OR 1})
N+- N-1

UNTIL {done EQ 1} OR {N EQ O}
IF done NEQ 1, RO +- -1, {return} Retry exceeded

MB

tmp1 +- SEXT(tmpO<31:0»
tmp2 +- SEXT(tmpO<63:32»
tmp3 +- SEXT({R16 - R17}<31:0»
(R17)<31:0> +- tmp3
(R17 + 4)<31:0> +- tmp2 + tmp3
IF {tmp2 NE O} THEN

(R16+tmp2)<31:0> +- -tmp3 - tmp2
ELSE

tmp1 +- <- SEXT({-tmp3 - tmp2}<31:0»

(R16+4)<31:0> +- -tmp3 ! Backward link of header

MB

(R16)<31:0> +- tmp1

IF tmp1 EQ -tmp3 THEN
RO +- 1

ELSE
RO +- 0

END

2-42 OpenVMS AXP Software (II-A)

! Forward link
! Release the lock

Queue was empty

Queue was not empty

Exceptions:

Illegal Operand

Instruction mnemonics:

CALL_PAL INSQTILR Insert Entry into Longword Queue
at Tail Interlocked Resident

Description:

If the secondary interlock is clear, INSQTILR inserts the entry specified in R17 into
the self-relative queue preceding the header specified in R16.

If the entry inserted was the first one in the queue, RO is set to 1; otherwise, it is set
to o. The insertion is a non-interruptible operation. The insertion is interlocked to
prevent concurrent interlocked insertions or removals at the head or tail of the same
queue by another process, in a multiprocessor environment. If the instruction fails
to acquire the secondary interlock after "N" retry attempts, then (in the absence of
exceptions) R<O> is set to a -1. The value "N" is implementation dependent.

This instruction requires that the queue be memory resident and that the queue
header and elements are quadword aligned. No alignment or memory management
checks are made before starting queue modifications to verify these requirements.
Therefore, if any of these requirements are not met, the queue may be left in an
unpredictable state and an illegal operand fault may be reported.

OpenVMS AXP PALcode Instruction Descriptions (II-A) 2-43

•

2.3.7 Insert Entry into Quadword Queue at Tail Interlocked

Format:

CALL_PAL INSQTIQ

Operation:

PALcode format

R16 contains the address of the queue header
R17 contains the address of the new entry
RO receives status:

-1 if the secondary interlock was set
o if the entry was not empty before adding this entry
1 if the entry was empty before adding this entry

Must have write access to header and queue entries
Header and entries must be octaword aligned.
Header cannot be equal to entry.

check entry and header alignment and
that the header and entry not same location

IF {R16<3:0> NE O} OR {R17<3:0> NE O} OR {R16 EQ R17} THEN
BEGIN

{illegal operand exception}
END

N <- {retry_amount} Implementation-specific
REPEAT

LOAD_LOCKED· (tmp1 +- (R16)) Acquire hardware interlock.
IF tmp1<O> EQ 1 THEN Try to set secondary interlock.

RO +- -1, {return} Already set
done +- STORE_CONDITIONAL ((R16) +- {tmp1 OR 1})
N+- N-1

UNTIL {done EQ 1} OR {N EQ O}
IF done NEQ 1, RO +- -1, {return} Retry exceeded

MB

tmp2 +- (R16+8)
IF {tmp1<3:1> NE O} OR {tmp2<3:0> NE O} THEN ! Check Alignment.

BEGIN ! Release secondary interlock.
(R16) +- tmp1
{illegal operand exception}

END

Check if following addresses can be written
without causing a memory management exception:

entry
header + (header + 8)

IF {all memory accesses can NOT be completed} THEN
BEGIN ! Release secondary interlock.

(R16) +- tmp1
{initiate memory management fault}

END

2-44 OpenVMS AXP Software (II-A)

Backward link of header

! Forward link
! Backward link

! Forward link of predecessor

! All accesses can be done so enqueue the entry
tmp3 +- R16 - R17
(R17) +- tmp3
(R17 + 8) +- tmp2 + tmp3
IF {tmp2 NE O} THEN

(R16+tmp2) +- -tmp3 - tmp2
ELSE

tmpl +- {-tmp3 - tmp2}
(R16+8) +- -tmp3

ME

(R16) +- tmpl

IF tmpl EQ -tmp3 THEN
RO +- 1

ELSE
RO +- 0

END

Exceptions:

Access Violation

Fault on Read

Fault on Write

Illegal Operand

Translation Not Valid

Forward link
Release the lock

Queue was empty

Queue was not empty

Instruction mnemonics:

Insert into Quadword Queue at Tail Interlocked

Description:

If the secondary interlock is clear, INSQTIQ inserts the entry specified in R17 into
the self-relative queue preceding the header specified in R16.

If the entry inserted was the first one in the queue, RO is set to 1; otherwise, it is set
to o. The insertion is a non-interruptible operation. The insertion is interlocked to
prevent concurrent interlocked insertions or removals at the head or tail of the same
queue by another process, in a multiprocessor environment. Before performing any
part of the operation, the processor validates that the insertion can be completed.
This ensures that if a memory management exception occurs, the queue is left in
a consistent state (see Chapters 3 and 6). If the instruction fails to acquire the
secondary interlock after "N" retry attempts, then (in the absence of exceptions)
R<O> is set to a -1. The value "N" is implementation dependent.

OpenVMS AXP PALcode Instruction Descriptions (II-A) 2-45

•

2.3.8 Insert Entry into Quadword Queue at Tail Interlocked Resident

Format:

CALL_PAL INSQTIQR

Operation:

PALcode format

Backward link of header

! Forward link
! Backward link

Forward link of predecessor

R16 contains the address of the queue header
R17 contains the address of the new entry
RO receives status:

-1 if the secondary interlock was set
o if the entry was not empty before adding this entry
1 if the entry was empty before adding this entry

Must have write access to header and queue entries
Header and entries must be octaword aligned.
Header cannot be equal to entry.
All parts of the Queue must be memory resident

N <- {retry_amount} Implementation-specific
REPEAT

LOAD_LOCKED (tmp1 ~ (R16)) Acquire hardware interlock.
IF tmp1<O> EQ 1 THEN Try to set secondary interlock.

RO ~ -1 , {return} Already set
done ~ STORE_CONDITIONAL ((R1G) ~ {tmp1 OR 1})
N ~ N - 1

UNTIL {done EQ 1} OR {N EQ O}
IF done NEQ 1, RO ~ -1, {return} Retry exceeded

MB

tmp2 ~ (R16+8)
tmp3 ~ R16 - R17
(R17) ~ tmp3
(R17 + 8) ~ tmp2 + tmp3
IF {tmp2 NE O} THEN

(R16+tmp2) ~ -tmp3 - tmp2
ELSE

tmp1 ~ {-tmp3 - tmp2}
(R16+8) ~ -tmp3

MB

(R16) ~ tmp1
IF tmp1 EQ -tmp3 THEN

RO ~ 1
ELSE

RO ~ 0
END

2-46 OpenVMS AXP Software (II-A)

Forward link and release the lock

Queue was empty

Queue was not empty

Exceptions:

Illegal Operand

Instruction mnemonics:

CALL_PAL INSQTIQR Insert Entry into Quadword Queue
at Tail Interlocked Resident

Description:

If the secondary interlock is clear, INSQTIQR inserts the entry specified in R17 into
the self-relative queue preceding the header specified in R16.

If the entry inserted was the first one in the queue, RO is set to 1; otherwise, it is set
to o. The insertion is a non-interruptible operation. The insertion is interlocked to
prevent concurrent interlocked insertions or removals at the head or tail of the same
queue by another process, in a multiprocessor environment. If the instruction fails
to acquire the secondary interlock after "N" retry attempts, then (in the absence of
exceptions) R<O> is set to a -1. The value "N" is implementation dependent.

This instruction requires that the queue be memory resident and that the queue
header and elements are octaword aligned. No alignment or memory management
checks are made before starting queue modifications to verify these requirements.
Therefore, if any of these requirements are not met, the queue may be left in an
unpredictable state and an illegal operand fault may be reported.

OpenVMS AXP PALcode Instruction Descriptions (II-A) 2-47

•

2.3.9 Insert Entry into Longword Queue

Format:

CALL_PAL INSQUEL PALcode format

Operation:

R16 contains the address of the predecessor entry
or the 32 bit address of the 32 bit address of the
predecessor entry for INSQUEL/D

R17 contains the address of the new entry
RO receives status:

o if the queue was not empty before adding this entry
1 if the queue was empty before adding this entry

Must have write access to header and queue entries
IF opcode EQ INSQUEL/D THEN

tmp2 +- SEXT((R16)<31:0» ! Address of predecessor
ELSE

tmp2 +- R16

! Get Forward Link
! Set forward link

! Backward link
R17

Backward link of Successor
! Forward link of PredecessorR17

THEN
(tmp2)<31:0> +

IF tmpl EQ tmp2
RO +- 1

ELSE
RO +- 0

END
ELSE

BEGIN
{initiate fault}

END
END

IF {all memory accesses can be completed} THEN
BEGIN

tmp1<31:0> +- SEXT((tmp2)<31:0»
(R17)<31:0> +- tmpl
(R17 + 4)<31:0> +- tmp2
(SEXT((tmp2)<31:0» + 4)<31:0> +-

Exceptions:

Access Violation

Fault on Read

Fault on Write

Translation Not Valid

2-48 OpenVMS AXP Software (II-A)

Instruction mnemonics:

INSQUEL Insert Entry into Longword Queue

INSQUEUD Insert Entry into Longword Queue Deferred

Description:

INSQUEL inserts the entry specified in RI7 into the absolute queue following the
entry specified by the predecessor addressed by R16. INSQUEUD performs the
same operation on the entry specified by the contents of the longword addressed by
R16.

In either case, if the entry inserted was the first one in the queue, a 1 is returned in
RO; otherwise, a 0 is returned in RO. The insertion is a non-interruptible operation.
Before performing any part of the insertion, the processor validates that the entire
operation can be completed. This ensures that if a memory management exception
occurs, the queue is left in a consistent state (see Chapters 3 and 6).

OpenVMS AXP PALcode Instruction Descriptions (II-A) 2-49

•

2.3.10 Insert Entry into Quadword Queue

Format:

CALL_PAL INSQUEQ PALcode format

Operation:

R16 contains the address of the predecessor entry
or the address of the address of the
predecessor entry for INSQUEQ/D

R17 contains the address of the new entry
RO receives status:

o if the queue was not empty before adding this entry
1 if the queue was empty before adding this entry

. Must have write access to header and queue entries
! Header and entries must be octaword aligned

Set forward link of entry
Backward link of entry
Backward link of successor
Forward link of predecessor

! Address of predecessor

o

IF opcode EQ INSQUEQ/D THEN
IF {R16<3:0> NE O} THEN

BEGIN
{illegal operand exception}

END
tmp2 ~ (R16)

ELSE
tmp2 ~ R16

END
IF {tmp2<3:0> NE O} OR {R17<3:0> NE O} THEN

BEGIN
{illegal operand exception}

END
IF {all memory accesses can be completed} THEN

BEGIN
tmpl ~ (tmp2) ! Get forward link of entry
IF {tmpl<3:0> NE O} THEN

BEGIN ! Check alignment
{illegal operand exception}

END
(R17) ~ tmpl
(R17 + 8) ~ tmp2
(tmp + 8) ~ Rl 7
(tmp2) ~ R17
IF tmpl EQ tmp2 THEN

RO ~ 1
ELSE

RO ~

END
ELSE

BEGIN
{initiate fault}

END
END

2-50 OpenVMS AXP Software (II-A)

Exceptions:

Access Violation

Fault on Read

Fault on Write

Translation Not Valid

Illegal Operand

Instruction mnemonics:

INSQUEQ Insert Entry into Quadword Queue

INSQUEQ/D Insert Entry into Quadword Queue Deferred

Description:

INSQUEQ inserts the entry specified in R17 into the absolute queue following the
entry specified by the predecessor addressed by R16. INSQUEQ/D performs the
same operation on the entry specified by the contents of the quadword addressed by
R16.

In either case, if the entry inserted was the first one in the queue, a 1 is returned
in RO; otherwise, a 0 is returned in RO. The insertion is a non-interruptible
operation. Before performing any part of the insertion, the processor validates that
the entire operation can be completed. This ensures that if a memory management
exception occurs, the queue is left in a consistent state (see Chapters 3 and 6). RO
is unpredictable if an exception occurs. The relative order of reporting memory
management and illegal operand exceptions is unpredictable.

OpenVMS AXP PALcode Instruction Descriptions (II-A) 2-51

•

2.3.11 Remove Entry from Longword Queue at Head Interlocked

Format:

CALL_PAL REMQHIL

Operation:

PALcode format

Check Alignment
Release secondary interlock

R16 contains the address of the queue header
RO receives status:

-1 if the secondary interlock was set
o if the queue was empty
1 if entry removed and queue still not empty
2 if entry removed and queue empty

Rl receives the address of the removed entry

. Must have write access to header and queue entries
Header and entries must be quadword aligned.

Check header alignment and
that the header is a valid 32 bit address

IF {R16<2:0> NE O} OR {SEXT(R16<31:0» NE R16} THEN
BEGIN

{illegal operand exceptipn}
END

N <- {retry_amount} Implementation-specific
REPEAT

LOAD_LOCKED (tmpO +- (R16)) Acquire hardware interlock.
IF tmpO<O> EQ 1 THEN Try to set secondary interlock.

RO +- -1, {return} Already set
done +- STORE_CONDITIONAL «R16) +- {tmpO OR 1})
N+- N-1

UNTIL {done EQ 1} OR {N EQ O}
IF done NEQ 1, RO +- -1, {return} Retry exceeded

MB

tmp1 +- SEXT(tmpO<31:0»
IF tmp1<2:0> NE 0 THEN

BEGIN
(R16) +- tmpO
{illegal operand exception}

END

Check if the following can be done without
causing a memory management exception:
read contents of header + tmp1 {if tmp1 NE O}
write into header + tmpl + (header + tmpl) {if tmpl NE O}

IF {all memory accesses can NOT be completed} THEN
BEGIN ! Release secondary interlock

(R16) +- tmpO
{initiate memory management fault}

END

2-52 OpenVMS AXP Software (II-A)

tmp2 +- SEXT({R16 + tmp1}<31:0»
IF {tmp1 EQL O} THEN

tmp3 +- R16
ELSE

tmp3 +- SEXT({tmp2 + SEXT«tmp2)<31:0»})

IF tmp3<2:0> NE 0 THEN
BEGIN

(R16) +- tmpO
{illegal operand exception}

END

(tmp3 + 4)<31:0> +- R16 - tmp3

MB

(R16)<31:0> +- tmp3 - R16

IF tmp1 EQ 0 THEN
RO +- 0

ELSE
BEGIN

IF {tmp3 - R16} EQ 0 THEN
RO +- 2

ELSE
RO +- 1

END
END
R1 +- tmp2

Exceptions:

Access Violation

Fault on Read

Fault on Write

Illegal Operand

Translation Not Valid

Instruction mnemonics:

Check Alignment
! Release secondary interlock

Backward link of successor

Forward link of header
Release lock

Queue was empty

Queue now empty

Queue not empty

Address of removed entry

•
CALL_PAL REMQHIL Remove from Longword Queue at Head Interlocked

Description:

If the secondary interlock is clear, REMQHIL removes from the self-relative queue
the entry following the header, pointed to by RI6, and the address of the removed
entry is returned in RI.

If the queue was empty prior to this instruction and secondary interlock succeeded,
a 0 is returned in RO. If the interlock succeeded and the queue was not empty at
the start of the removal and the queue is empty after the removal, a 2 is returned
in RO. If the instruction fails to acquire the secondary interlock after "N" retry

OpenVMS AXP PALcode Instruction Descriptions (II-A) 2-53

attempts, then (in the absence of exceptions) R<O> is set to a -1. The value "N" is
implementation dependent.

The removal is interlocked to prevent concurrent interlocked insertions or removals
at the head or tail of the same queue by another process, in a multiprocessor
environment. The removal is a non-interruptible operation. Before performing
any part of the removal, the processor validates that the entire operation can be
completed. This ensures that if a memory management exception occurs, the queue
is left in a consistent state (see Chapters 3 and 6).

2-54 OpenVMS AXP Software (II-A)

2.3.12 Remove Entry from Longword Queue at Head Interlocked Resident

Format:

CALL_PAL REMQHILR

Operation:

PALcode format

R16 contains the address of the queue header
RO receives status:

-1 if the secondary interlock was set
o if the queue was empty
1 if entry removed and queue still not empty
2 if entry removed and queue empty

R1 receives the address of the removed entry

Must have write access to header and queue entries
Header and entries must be quadword aligned.
All parts of the Queue must be memory resident

N <- {retry_amount} Implementation-specific
REPEAT

LOAD_LOCKED (tmpO +- (R16)) Acquire hardware interlock.
IF tmpO<O> EQ 1 THEN Try to set secondary interlock.

RO +- -1, {return} Already set
done +- STORE_CONDITIONAL ((R16) +- {tmpO OR 1})
N+- N-1

UNTIL {done EQ 1} OR {N EQ O}
IF done NEQ 1, RO +- -1, {return} Retry exceeded

MB

tmp1 +- SEXT(tmpO<31:0»
tmp2 +- SEXT({R16 + tmp1}<31:0»
IF {tmp1 EQL O} THEN

tmp3 +- R16
ELSE

tmp3 +- SEXT({tmp2 + SEXT((tmp2)<31:0»})
END •(tmp3 + 4)<31:0> +- R16 - tmp3

MB
(R16)<31:0> +- tmp3 - R16

IF tmpl EQ 0 THEN
RO +- 0

ELSE
BEGIN

IF {tmp3 - R16} EQ 0 THEN
RO +- 2

ELSE
RO +- 1

END
END
R1 +- tmp2

Backward link of successor

Forward link of header
Release lock

Queue was empty

Queue now empty

Queue not empty

Address of removed entry

OpenVMS AXP PALcode Instruction Descriptions (II-A) 2-55

Exceptions:

Illegal Operand

Instruction mnemonics:

CALL_PAL REMQHILR Remove Entry from Longword Queue
at Head Interlocked Resident

Description:

If the secondary interlock is clear, REMQHILR removes from the self-relative queue
the entry following the header, pointed to by RIG, and the address of the removed
entry is returned in Rl.

If the queue was empty prior to this instruction and secondary interlock succeeded,
a 0 is returned in RO. If the interlock succeeded and the queue was not empty at
the start of the removal and the queue is empty after the removal, a 2 is returned
in RO. If the instruction fails to acquire the secondary interlock after "N" retry
attempts, then (in the absence of exceptions) R<O> is set to a -1. The value "N" is
implementation dependent.

The removal is interlocked to prevent concurrent interlocked insertions or removals
at the head or tail of the same queue by another process, in a multiprocessor
environment. The removal is a non-interruptible operation.

This instruction requires that the queue be memory resident and that the queue
header and elements are quadword aligned. No alignment or memory management
checks are made before starting queue modifications to verify these requirements.
Therefore, if any of these requirements are not met, the queue may be left in an
unpredictable state and an illegal operand fault may be reported.

2-56 OpenVMS AXP Software (II-A)

2.3.13 Remove Entry from Quadword Queue at Head Interlocked

Format:

PALcode format

Check Alignment
Release secondary interlock

Operation:

R16 contains the address of the queue header
RO receives status:

-1 if the secondary interlock was set
o if the queue was empty
1 if entry removed and queue still not empty
2 if entry removed and queue empty

R1 receives the address of the removed entry

Must have write access to header and queue entries
Header and entries must be octaword aligned.

Check header alignment
IF {R16<3:0> NE O} THEN

BEGIN
{illegal operand exception}

END

N <- {retry_amount} Implementation-specific
REPEAT

LOAD_LOCKED (tmp1 ~ (R16)) Acquire hardware interlock.
IF tmp1<O> EQ 1 THEN Try to set secondary interlock.

RO +- -1, {return} Already set
done +- STORE_CONDITIONAL ((R16) ~ {tmp1 OR 1})
N+- N-1

UNTIL {done EQ 1} OR {N EQ O}
IF done NEQ 1, RO ~ -1, {return} Retry exceeded

MB

IF tmp1<3:0> NE 0 THEN
BEGIN

(R16) ~ tmp1
{illegal operand exception}

END

Check if the following can be done without
causing a memory management exception:
read contents of header + tmp1 {if tmp1 NE O}
write into header + tmp1 + (header + tmp1) {if tmp1 NE O}

IF {all memory accesses can NOT be completed} THEN
BEGIN Release secondary interlock

(R16) ~ tmpO
{initiate memory management fault}

END

OpenVMS AXP PALcode Instruction Descriptions (II-A) 2-57

I

! Check Alignment
! Release secondary interlock

tmp2 +- R16 + tmpl
IF {tmpl EQL O} THEN

tmp3 +- R16
ELSE

tmp3 +- tmp2 + (tmp2)

IF tmp3<3:0> NE 0 THEN
BEGIN

(R16) +- tmpl
{illegal operand exception}

END

(tmp3 + 8) +- R16 - tmp3

MB

(R16) +- tmp3 - R16

! Backward link of successor

Forward link of header
Release lock

IF tmpl EQ 0 THEN
RO +- 0 Queue was empty

ELSE
BEGIN

IF {tmp3 - R16} EQ 0 THEN
RO +- 2 Queue now empty

ELSE
RO +- 1 Queue not empty

END
END
Rl +- tmp2

Exceptions:

Access Violation

Fault on Read

Fault on Write

Illegal Operand

Translation Not Valid

Instruction mnemonics:

Address of removed entry

CALL_PAL REMQHIQ Remove from Quadword Queue at Head
Interlocked

Description:

If the secondary interlock is clear, REMQHIQ removes from the self-relative queue
the entry following the header, pointed to by RI6, and the address of the removed
entry is returned in RI.

If the queue was empty prior to this instruction and secondary interlock succeeded,
a 0 is returned in RO. If the interlock succeeded and the queue was not empty at

2-58 OpenVMS AXP Software (II-A)

the start of the removal, and the queue is empty after the removal, a 2 is returned
in RO. If the instruction fails to acquire the secondary interlock after "N" retry
attempts, then (in the absence of exceptions) R<O> is set to a -1. The value "N" is
implementation dependent.

The removal is interlocked to prevent concurrent interlocked insertions or removals
at the head or tail of the same queue by another process, in a multiprocessor
environment. The removal is a non-interruptible operation. Before performing
any part of the removal, the processor validates that the entire operation can be
completed. This ensures that if a memory management exception occurs, the queue
is left in a consistent state (see Chapters 3 and 6).

OpenVMS AXP PALcode Instruction Descriptions (II-A) 2-59

•

2.3.14 Remove Entry from Quadword Queue at Head Interlocked Resident

Format:

CALL_PAL REMQHIQR

Operation:

PALcode format

Backward link of successor

R1G contains the address of the queue header
RO receives status:

-1 if the secondary interlock was set
o if the queue was empty
1 if entry removed and queue still not empty
2 if entry removed and queue empty

R1 receives the address of the removed entry

Must have write access to header and queue entries
Header and entries must be octaword aligned.
All parts of the Queue must be memory resident

N <- {retry_amount} Implementation-specific
REPEAT

LOAD_LOCKED (tmp1 +- (R1G)) Acquire hardware interlock.
IF tmp1<O> EQ 1 THEN Try to set secondary interlock.

RO +- -1, {return} Already set
done +- STORE_CONDITIONAL ((R1G) +- {tmpl OR l})
N+- N-1

UNTIL {done EQ 1} OR {N EQ O}
IF done NEQ 1, RO +- -1, {return} Retry exceeded

MB

tmp2 +- R1G + tmp1
IF {tmpl EQL O} THEN

tmp3 +- R1G
ELSE

tmp3 +- tmp2 + (tmp2)
END
(tmp3 + 8) +- R1G - tmp3'

MB

(R1G) +- tmp3 - R1G

IF tmp1 EQ 0 THEN
RO +- 0

ELSE
IF {tmp3 - R1G} EQ 0 THEN

RO +- 2
ELSE

RO +- 1
END
R1 +- tmp2

2-60 OpenVMS AXP Software (II-A)

Forward link of header
Release lock

Queue was empty

Queue now empty

Queue not empty

Address of removed entry

Exceptions:

Illegal Operand

Instruction mnemonics:

CALL_PAL REMQHIQR Remove Entry from Quadword Queue
at Head Interlocked Resident

Description:

If the secondary interlock is clear, REMQHIQR removes from the self-relative queue
the entry following the header, pointed to by R16, and the address of the removed
entry is returned in Rl.

If the queue was empty prior to this instruction and secondary interlock succeeded,
a 0 is returned in RO. If the interlock succeeded and the queue was not empty at
the start of the removal, and the queue is empty after the removal, a 2 is returned
in RO. If the instruction fails to acquire the secondary interlock after "N" retry
attempts, then (in the absence of exceptions) R<O> is set to a -1. The value "N" is
implementation dependent.

The removal is interlocked to prevent concurrent interlocked insertions or removals
at the head or tail of the same queue by another process, in a multiprocessor
environment. The removal is a non-interruptible operation.

This instruction requires that the queue be memory resident and that the queue
header and elements are octaword aligned. No alignment or memory management
checks are made before starting queue modifications to verify these requirements.
Therefore, if any of these requirements are not met, the queue may be left in an
unpredictable state and an illegal operand fault may be reported.

OpenVMS AXP PALcode Instruction Descriptions (II-A) 2-61

I

2.3.15 Remove Entry from Longword Queue at Tail Interlocked

Format:

CALL_PAL REMQTIL

Operation:

! PALcode format

! Check alignment
! Release secondary interlock

R16 contains the address of the queue header
RO receives status:

-1 if the secondary interlock was set
o if the queue was empty
1 if entry removed and queue still not empty
2 if entry removed and queue empty

R1 receives the address of the removed entry

Must have write access to header and queue entries
Header and entries must be quadword aligned.

Check header alignment and
that the header is a valid 32 bit address

IF {R16<2:0> NE O} OR {SEXT(R16<31:0» NE R16} THEN
BEGIN

{illegal operand exception}
END

N <- {retry_amount} Implementation-specific
REPEAT

LOAD_LOCKED (tmpO +- (R16)) Acquire hardware interlock.
IF tmpO<O> EQ 1 THEN Try to set secondary interlock.

RO +- -1, {return} Already set
done +- STORE_CONDITIONAL ((R16) +- {tmpO OR 1})
N+- N-1

UNTIL {done EQ 1} OR {N EQ O}
IF done NEQ 1, RO +- -1, {return} Retry exceeded

MB

tmp1 +- SEXT(tmpO<31:0»
tmp5 +- SEXT(tmpO<63:32»
IF tmp5<2:0> NE 0 THEN

BEGIN
(R16) +- tmpO
{illegal operand exception}

END

!Check if the following can be done without
causing a memory management exception:
read contents of header + (header + 4) {if tmpl NE O}
write into header + (header + 4)

+ (header + 4 + (header + 4)){if tmpl NE O}
IF {all memory accesses can NOT be completed} THEN

BEGIN ! Release secondary interlock
(R16) +- tmpO
{initiate memory management fault}

END

2-62 OpenVMS AXP Software (II-A)

Release lock

Queue not empty

Queue now empty

Queue was empty

Address of removed entry

Forward link of predecessor

Backward link of header

Forward link, release lock

addr +- SEXT({R16 + tmp5}<31:0>)
tmp2 +- SEXT({addr + SEXT((addr+4)<31:0»}<31:0>
IF tmp2<2:0> NE 0 THEN Check alignment

BEGIN ! Release secondary interlock
(R16) +- tmpO
{illegal operand exception}

END

(R16 + 4)<31:0> +- tmp2 - R16
IF {tmp2 EQL R16} THEN

(R16)<31:0> +- 0
ELSE

BEGIN
(tmp2)<31:0> +- R16 - tmp2

MB
(R16)<31:0> +- tmp1

END
IF tmpl EQ 0 THEN

RO +- 0
ELSE

BEGIN
IF {tmp2 - R16} EQ 0 THEN

RO +- 2
ELSE

RO +- 1
END

R1 +- addr

Exceptions:

Access Violation

Fault on Read

Fault on Write

Illegal Operand

Translation Not Valid I
Instruction mnemonics:

CALL_PAL REMQTIL Remove from Longword Queue at Tail Interlocked

Description:

If the secondary interlock is clear, REMQTIL removes from the self-relative queue
the entry preceding the header, pointed to by RI6, and the address of the removed
entry is returned in RI.

If the queue was empty prior to this instruction and secondary interlock succeeded,
a 0 is returned in RO. If the interlock succeeded and the queue was not empty at
the start of the removal, and the queue is empty after the removal, a 2 is returned
in RO. If the instruction fails to acquire the secondary interlock after "N" retry

OpenVMS AXP PALcode Instruction Descriptions (II-A) 2-63

attempts, then (in the absence of exceptions) R<O> is set to a -1. The value "N" is
implementation dependent.

The removal is interlocked to prevent concurrent interlocked insertions or removals
at the head or tail of the same queue by another process, in a multiprocessor
environment. The removal is a non-interruptible operation. Before performing
any part of the removal, the processor validates that the entire operation can be
completed. This ensures that if a memory management exception occurs, the queue
is left in a consistent state (see Chapters 3 and 6).

2-64 OpenVMS AXP Software (II-A)

2.3.16 Remove Entry from Longword Queue at Tail Interlocked Resident

Format:

CALL_PAL REMQTILR

Operation:

PALcode format

R16 contains the address of the queue header
RO receives status:

-1 if the secondary interlock was set
o if the queue was empty
1 if entry removed and queue still not empty
2 if entry removed and queue empty

Rl receives the address of the removed entry

Must have write access to header and queue entries
Header and entries must be quadword aligned.
All parts of the Queue must be memory resident

N <- {retry_amount} Implementation-specific
REPEAT

LOAD_LOCKED (tmpO +- (R16)) Acquire hardware interlock.
IF tmpO<O> EQ 1 THEN Try to set secondary interlock.

RO +- -1, {return} Already set
done +- STORE_CONDITIONAL «R16) +- {tmpO OR 1})
N+- N-l

UNTIL {done EQ 1} OR {N EQ O}
IF done NEQ 1, RO +- -1, {return} Retry exceeded

MB

tmpl +- SEXT(tmpO<31:0»
tmp5 +- SEXT(tmpO<63:32» I
addr +- SEXT({R16 + tmp5}<31:0>)
tmp2 +- SEXT({addr + SEXT((addr+4)<31:0»}<31:0>)
(R16 + 4)<31:0> ~ tmp2 - R16 Backward link of header
IF {tmp2 EQL R16} THEN

(R16)<31:0> +- 0 Forward link, release lock
ELSE

BEGIN
(tmp2)<31:0> +- R16 - tmp2 Forward link of predecessor

MB
(R16)<31:0> ~ tmpl Release lock

END
IF tmp1 EQ 0 THEN

RO +- 0 Queue was empty
ELSE

IF {tmp2 - R16} EQ 0 THEN
RO +- 2 Queue now empty

ELSE
RO +- 1 Queue not empty

END
END
R1 +- addr Address of removed entry

OpenVMS AXP PALcode Instruction Descriptions (II-A) 2-65

Exceptions:

Illegal Operand

Instruction mnemonics:

CALL_PAL REMQTILR Remove Entry from Longword Queue
at Tail Interlocked Resident

Description:

If the secondary interlock is clear, REMQTILR removes from the self-relative queue
the entry preceding the header, pointed to by RI6, and the address of the removed
entry is returned in Rl.

If the queue was empty prior to this instruction and secondary interlock succeeded,
a 0 is returned in RO. If the interlock succeeded and the queue was not empty at
the start of the removal, and the queue is empty after the removal, a 2 is returned
in RO. If the instruction fails to acquire the secondary interlock after "N" retry
attempts, then (in the absence of exceptions) R<O> is set to a -1. The value "N" is
implementation dependent.

The removal is interlocked to prevent concurrent interlocked insertions or removals
at the head or tail of the same queue by another process, in a multiprocessor
environment. The removal is a non-interruptible operation.

This instruction requires that the queue be memory resident and that the queue
header and elements are quadword aligned. No alignment or memory management
checks are made before starting queue modifications to verify these requirements.
Therefore, if any of these requirements are not met, the queue may be left in an
unpredictable state and an illegal operand fault may be reported.

2-66 OpenVMS AXP Software (II-A)

2.3.17 Remove Entry from Quadword Queue at Tail Interlocked

Format:

CALL_PAL REMQTIQ

Operation:

PALcode format

Check Alignment
Release secondary interlock

R16 contains the address of the queue header
RO receives status:

-1 if the secondary interlock was set
o if the queue was empty
1 if entry removed and queue still not empty
2 if entry removed and queue empty

R1 receives the address of the removed entry

Must have write access to header and queue entries
Header and entries must be octaword aligned.

Check header alignment
IF {R16<3:0> NE O} THEN

BEGIN
{illegal operand exception}

END

N <- {retry_amount} Implementation-specific
REPEAT

LOAD_LOCKED {tmp1 ~ (R16)) Acquire hardware interlock.
IF tmp1<O> EQ 1 THEN Try to set secondary interlock.

RO +- -1, {return} Already set
done +- STORE_CONDITIONAL ({R16) +- {tmp1 OR 1})
N+- N-1

UNTIL {done EQ 1} OR {N EQ O}
IF done NEQ 1, RO +- -1, {return} Retry exceeded

MB

tmp5 +- (R16+8)
IF tmp5<3:0> NE 0 THEN

BEGIN
(R16) +- tmp1
{illegal operand exception}

END
Check if the following can be done without

causing a memory management exception:
read contents of header + (header + 8) {if tmp1 NE O}
write into header + (header + 8)
+ {header + 8 + (header + 8)){if tmp1 NE O}

IF {all memory accesses can NOT be completed} THEN
BEGIN Release secondary interlock

(R16) +- tmp1
{initiate memory management fault}

END

OpenVMS AXP PALcode Instruction Descriptions (II-A) 2-67

•

! Check alignment
! Release secondary interlock

addr +- R16 + tmpS
tmp2 +- addr + (addr + 8)
IF tmp2<3:0> NE 0 THEN

BEGIN
(R16) +- tmpl
{illegal operand exception}

END

(R16 + 8) +- tmp2 - R16 Backward link of header
IF {tmp2 EQL R16} THEN

(R16) +- 0 Forward link, release lock
ELSE

BEGIN
(tmp2) +- R16 - tmp2 Forward link of predecessor

ME
(R16) +- tmpl Release lock

END
END
IF tmpl EQ 0 THEN

RO +- 0 Queue was empty
ELSE

BEGIN
IF {tmp2 - R16} EQ 0 THEN

RO +- 2 Queue now empty
ELSE

RO +- 1 Queue not empty
END

END
Rl +- addr Address of removed entry

Exceptions:

Access Violation

Fault on Read

Fault on Write

Illegal Operand

Translation Not Valid

Instruction mnemonics:

CALL_PAL REMQTIQ Remove from Quadword Queue at Tail Interlocked

Description:

If the secondary interlock is clear, REMQTIQ removes from the self-relative queue
the entry preceding the header, pointed to by RI6, and the address ot the removed
entry is returned in Rl.

If the queue was empty prior to this instruction and secondary interlock succeeded,
a 0 is returned in RO. If the interlock succeeded and the queue was not empty at

2-68 OpenVMS AXP Software (II-A)

the start of the removal, and the queue is empty after the removal, a 2 is returned
in RO. If the instruction fails to acquire the secondary interlock after "N" retry
attempts, then (in the absence of exceptions) R<O> is set to a -1. The value "N" is
implementation dependent.

The removal is interlocked to prevent concurrent interlocked insertions or removals
at the head or tail of the same queue by another process, in a multiprocessor
environment. The removal is a non-interruptible operation. Before performing
any part of the removal, the processor validates that the entire operation can be
completed. This ensures that if a memory management exception occurs, the queue
is left in a consistent state (see Chapters 3 and 6).

OpenVMS AXP PALcode Instruction Descriptions (II-A) 2-69

•

2.3.18 Remove Entry from Quadword Queue at Tail Interlocked Resident

Format:

CALL_PAL REMQTIQR PALcode format

Operation:

R16 contains the address of the queue header
RO receives status:

-1 if the secondary interlock was set
o if the queue was empty
1 if entry removed and queue still not empty
2 if entry removed and queue empty

R1 receives the address of the removed entry

Address of removed entry

Queue not empty

Queue now empty

Queue was empty

Release lock

Forward link of predecessor

Backward link of header

Forward link, release lock

END
R1 +- addr

Must have write access to header and queue entries
Header and entries must be octaword aligned.
All parts of the Queue must be memory resident

N <- {retry_amount} Implementation-specific
REPEAT

LOAD_LOCKED (tmp1 ~ (R16)) Acquire hardware interlock.
IF tmp1<O> EQ 1 THEN Try to set secondary interlock.

RO ~ -1, {return} Already set
done +- STORE_CONDITIONAL «R16) ~ {tmp1 OR 1})
N+- N-1

UNTIL {done EQ 1} OR {N EQ O}
IF done NEQ 1, RO ~ -1, {return} Retry exceeded

MB

tmp5 +- (R16+8)
addr +- R16 + tmp5
tmp2 ~ addr + (addr + 8)
(R16 + 8) ~ tmp2 - R16
IF {tmp2 EQL R16} THEN

(R16) +- 0
ELSE

BEGIN
(tmp2) +- R16 - tmp2

MB
(R16) +- tmp1

END
END
IF tmp1 EQ 0 THEN

RO +- 0
ELSE

IF {tmp2 - R16} EQ 0 THEN
RO +- 2

ELSE
RO ~ 1

2-70 OpenVMS AXP Software (II-A)

Exceptions:

Illegal Operand

Instruction mnemonics:

CALL_PAL REMQTIQR Remove Entry from Quadword Queue
at Tail Interlocked Resident

Description:

If the secondary interlock is clear, REMQTIQR removes from the self-relative queue
the entry preceding the header, pointed to by R16, and the address of the removed
entry is returned in Rl.

If the queue was empty prior to this instruction and secondary interlock succeeded,
a 0 is returned in RO. If the interlock succeeded and the queue was not empty at
the start of the removal, and the queue is empty after the removal, a 2 is returned
in RO. If the instruction fails to acquire the secondary interlock after "N" retry
attempts, then (in the absence of exceptions) R<O> is set to a -1. The value "N" is
implementation dependent.

The removal is interlocked to prevent concurrent interlocked insertions or removals
at the head or tail of the same queue by another process, in a multiprocessor
environment. The removal is a non-interruptible operation.

This instruction requires that the queue be memory resident and that the queue
header and elements are octaword aligned. No alignment or memory management
checks are made before starting queue modifications to verify these requirements.
Therefore, if any of these requirements are not met, the queue may be left in an
unpredictable state and an illegal operand fault may be reported.

OpenVMS AXP PALcode Instruction Descriptions (II-A) 2-71

I

2.3.19 Remove Entry from Longword Queue

Format:

CALL_PAL REMQUEL

Operation:

PALcode format

R16 contains the address of the entry to remove
or the address of the 32 bit address of the
entry for REMQUEL/D

RO receives status:
-1 if the queue was empty
o if the queue is empty after removing an entry
1 if the queue is not empty after removing an entry

R1 receives the address of the removed entry

Must have write access to header and queue entries
IF opcode EQ REMQUEL/D THEN

R1 +- SEXT((R16)<31:0»
ELSE

R1 +- SEXT(R16<31:0»

IF {all memory accesses can be completed} THEN
BEGIN

tmp1 +- (R1)<31:0> Forward Link of Predecessor
((Rl+4)<31:0»<31:0> +- tmpl
tmp2 +- (Rl+4)<31:0> Backward Link of Successor
((R1)<31:0>+4)<31:0> +- tmp2

RO +- 1 Queue not empty
IF {tmp1 EQ tmp2} THEN

RO +- 0 Queue now empty
IF {R1 EQ tmp2} THEN

RO +- -1 Queue was empty
END

ELSE
BEGIN
{initiate fault}

END
END

Exceptions:

Access Violation

Fault on Read

Fault on Write

Translation Not Valid

2-72 OpenVMS AXP Software (II-A)

Instruction mnemonics:

REMQUEL

REMQUEUD

Remove Entry from Longword Queue

Remove Entry from Longword Queue Deferred

Description:

REMQUEL removes the entry addressed by RI6 from the longword absolute queue.
The address of the removed entry is returned in RI. REMQUEUD performs the
same operation on the queue entry addressed by the longword addressed by R16.

In either case, if there was no entry in the queue to be removed, RO is set to -1. If
there was an entry to remove and the queue is empty at the end of this instruction,
RO is set to o. If there was an entry to remove and the queue is not empty at the
end of this instruction, RO is set to 1. The removal is a non-interruptible operation.
Before performing any part of the removal, the processor validates that the entire
operation can be completed. This ensures that if a memory management exception
occurs, the queue is left in a consistent state (see Chapters 3 and 6).

OpenVMS AXP PALcode Instruction Descriptions (II-A) 2-73

I

2.3.20 Remove Entry from Quadword Queue

Format:

CALL_PAL REMQUEQ

Operation:

PALcode format

R16 contains the address of the entry to remove
or address of address of entry for REMQUEQ/D

RO receives status:
-1 if the queue was empty
o if the queue is empty after removing an entry
1 if the queue is not empty after removing an entry

R1 receives the address of the removed entry
Must have write access to header and queue entries
Header and entries must be octaword aligned

IF opcode EQ REMQUEQ/D THEN
IF {R16<3:0> NE O} THEN

BEGIN
{illegal operand exception}

END
R1 ~ (R16)

ELSE
R1 ~ R16

IF {R1<3:0> NE O} THEN ! Check alignment
BEGIN

{illegal operand exception}
END

IF {all memory accesses can be completed} THEN
BEGIN

tmp1 ~ (R1) ! Forward link of Predecessor
IF {tmpl<3:0> NE O} THEN

BEGIN ! Check alignment
{illegal operand exception}

END
tmp2 +- (Rl+8) ! Find predecessor
IF {tmp2<3:0> NE O} THEN

BEGIN ! Check alignment
{illegal operand exception}

END
(tmp2) +- tmpl Update Forward link of predecessor
((Rl)+8) ~ tmp2

RO +- 1 Queue not empty
IF {tmp1 EQ tmp2} THEN

RO +- 0 Queue now empty
IF {Rl EQ tmp2} THEN

RO +- -1 Queue was empty
END

ELSE
BEGIN
{initiate fault}

END
END

2-74 OpenVMS AXP Software (II-A)

Exceptions:

Access Violation

Fault on Read

Fault on Write

Translation Not Valid

Illegal Operand

Instruction mnemonics:

REMQUEQ Remove Entry from Quadword Queue

REMQUEQ/D Remove Entry from Quadword Queue Deferred

Description:

REMQUEQ removes the queue entry addressed by R16 from the quadword absolute
queue. The address of the removed entry is returned in Rl. REMQUEUD performs
the same operation on the queue entry addressed by the quadword addressed by
R16.

In either case, if there was no entry in the queue to be removed, RO is set to -1. If
there was an entry to remove and the queue is empty at the end of this instruction,
RO is set to O. If there was an entry to remove and the queue is not empty at the
end of this instruction, RO is set to 1. The removal is a non-interruptible operation.
Before performing any part of the removal, the processor validates that the entire
operation can be completed. This ensures that if a memory management exception
occurs, the queue is left in a consistent state (see Chapters 3 and 6). RO and Rl
are unpredictable if an exception occurs. The relative order of reporting memory
management and illegal operand exceptions is unpredictable.

OpenVMS AXP PALcode Instruction Descriptions (II-A) 2-75

•

2.4 Unprivileged VAX Compatibility PALcode Instructions

The Alpha AXP architecture provides the following PALcode instructions for use in
translated VAX code. These instructions are not a permanent part of the architecture
and will not be available in some future implementations. They are provided to help
customers preserve VAX instruction atomicity assumptions in porting code from VAX
to Alpha AXP. These calls should be user mode. They must not be used by any code
other than that generated by the VEST software translator and its supporting run
time code (TIE).

2-76 OpenVMS AXP Software (II-A)

2.4.1 Atomic Move Operation

Format:

the first source
the first destination address
the first length
the second source
the second destination address
the second length

AMOVRR

AMOVRM

Operation:

R16 contains
R17 contains
R18 contains
R19 contains
R20 contains
R21 contains

ASE
AMOVRR:

IF intr_flag EQ 0 THEN
R18 +- 0
{return}

END

! PALcode format

! PALcode format

intr_flag +- 0
(R17) +- R16 length specified by R18<1:0>
(R20) +- R19 length specified by R21<1:0>
IF {both moves successful} THEN

R18 +- 1
ELSE

R18 +- 0
END

AMOVRM:
IF intr_flag EQ 0 THEN

R18 +- 0
{return}

END

intr_flag +- 0
(R17) +- R16 length specified by R18<1:0>
IF R21<5:0> NE 0 THEN

BEGIN
IF R19<1:0> NE 00 OR R20<1:0> NE 00

{Illegal operand exception}
ELSE

(R20) +- (R19) ! length specified by R21<5:0>
END

IF {both moves successful} THEN
R18 +- 1

ELSE
R18 +- 0

END
ENDCASE

OpenVMS AXP PALcode Instruction Descriptions (II-A) 2-77

•

Exceptions:

AMOVRR: Access Violation

Fault On Write

Translation Not Valid

AMOVRM: Access Violation

Fault On Read

Fault On Write

Illegal Operand

Translation Not Valid

Instruction mnemonics:

AMOVRR

AMOVRM

Atomic Move Register/Register

Atomic Move RegisterlMemory

Description:

Note:

The CALL_PAL AMOVxx instructions exist only for the support of translated
VAX code. They will be removed from the architecture at some time in the
future. They must be used only in translated VAX code and its support routines
(TIE).

CALL_PAL AMOVRR
The CALL_PAL AMOVRR instruction specifies two multiprocessor safe register
stores to arbitrary byte addresses. Either both stores are done or neither store
is done. R18 is set to 1 if both stores are done, and 0 otherwise. The two source
registers are R16 and R19. The two destination byte addresses are in R17 and R20.
The two lengths are specified in RI8<1:0> and R21<1:0>. The length encoding is: 00
is store byte, 01 is store word, 10 is store longword, 11 is store quadword. The low
1, 2, 4, or 8 bytes of the source register are used, respectively. The unused bytes of
the source registers are ignored. The unused bits of the length registers (RI8<63:2>
and R21<63:2» should be zero (SBZ).

If, upon entry to the PALcode routine, the intr_flag is clear then the instruction
sets R18 to zero and exits, doing no stores. Otherwise, intr_flag is cleared and the
PALcode routine proceeds. This is the same per-processor intr_flag used by the RS
and RC instructions.

The AMOVRR memory addresses may be unaligned. If either store would result in
a Translation Not Valid fault, Fault on Write, or Access Violation fault, neither store
is done and the corresponding fault is taken. If both stores would result in faults, it
is UNPREDICTABLE which one is taken.

2-78 OpenVMS AXP Software (II-A)

Note:

A fault does not set RIB, since the instruction has not been completed.

If both stores can be completed without faulting, they are both attempted
using multiprocessor-safe LD'LLooSTQ_C sequences. If all the sequences store
successfully with no interruption, the PALcode routine completes with RI8 set to
one. Otherwise, the PALcode routine completes with RIB set to zero. In addition,
R16, R17, R19, R20 and R2I are UNPREDICTABLE upon return from the PALcode
routine, even if an exception has occurred.

If the destinations overlap, the stores must appear to be done in the order specified.

CALL_PAL AMOVRM
The CALL_PAL AMOVRM instruction specifies one multiprocessor safe register
store to an arbitrary byte address, plus an atomic memory-to-memory move of 0
to 63 aligned longwords. Either the store and the move are both done in their
entirety or neither is done. RIB is set to one if both are done, and zero otherwise.

The first source register is RI6, the first destination address is in R17, and the first
length is in RIB. These three are specified exactly as in AMOVRR.

The second source address is in R19, the second destination address is in R20, and
the second length is in R2I<5:0>. The length is a longword length, in the range 0
to 63 longwords (0 to 252 bytes). The unused bytes of the source register RI6 are
ignored. The unused bits of the length registers (RIB<63:2> and R2I<63:6» should
be zero (SBZ).

If, upon entry to the PALcode routine, the intr_flag is clear, the instruction sets RIB
to 0 and exits, doing no stores. Otherwise, intr_flag is cleared and the PALcode
routine proceeds. This is the same per-processor intr_flag used by the RS and RC
instructions.

The memory address in RI7 may be unaligned.

If the length for the move is 0, no move is done, no memory accesses are made via
RI9 and R20, and no fault checking of these addresses is done. In this case, the
move is always considered to have succeeded in determining the setting of RIB.

If the length in R2I is non-zero, the two addresses in RI9 and R20 must be aligned
longword addresses; otherwise, an Illegal Operand exception is taken.

Ifeither the store or the move would result in a Translation Not Valid, Fault on Read,
Fault on Write, or Access Violation fault, neither is done and the corresponding fault
is taken. If both would result in faults, it is UNPREDICTABLE which one is taken.

Note:

A fault does not set RIB, since the instruction has not been completed.

If both the store and the move can be completed without faulting, they are both
attempted, using multiprocessor-safe LDQ_LooST'LC sequences for the store. If
all the operations store successfully with no interruption, the PALcode routine
completes with RIB set to one. Otherwise, the PALcode routine completes with

OpenVMS AXP PALcode Instruction Descriptions (II-A) 2-79

I

R18 set to O. In addition, R16, R17, R19, R20, and R21 are UNPREDICTABLE
upon return from the PALcode routine, even if an exception has occurred.

If the memory fields overlap, the store must appear to be done first, followed by the
move. The ordering of the reads and writes of the move is unspecified. Thus, if the
move destination overlaps the move source, the move results are UNPREDICTABLE.

These instructions contain no implicit MB.

Notes:

• Typically, these instructions would be used in a sequence starting with CALL_
PAL RS and ending with CALL_PAL AMOVxx, Bxx R18,label. The failure path
from the conditional branch would eventually go back to the RS instruction.
When such a sequence succeeds, it has done everything from the RS up to and
including the CALL_PAL AMOVxx completely with no interrupts or exceptions.

• The CALL_PAL AMOVxx instruction is typically followed by a conditional branch
on R18. If the CALL_PAL AMOVxx is likely to succeed, the conditional branch
should be a forward branch on failure (BEQ R18,forward_label) or backward
branch on success (BNE R1B, backward_label), to match the architected branch
prediction rule.

• The CALL_PAL AMOVxx instruction must either do both stores or neither. If
R1B=O upon return, then memory state must be unchanged. If the first ST<L
C inside AMOVRR succeeds (and thus has changed programmer-visible state
in memory), the PALcode routine must complete the second ST<LC also, and
exit with R1B=1. In particular, if the failure loop around the second ST<LC is
executed an excessive number oftimes (due to perverse interference from another
processor), the PALcode may not "give up" and return with R1B=O.

2-80 OpenVMS AXP Software (II-A)

2.5 Unprivileged PALcode Thread Instructions

The PALcode thread instructions provide support for multithread implementations,
which require that a given thread be able to generate a reproduceable unique value
in a "timely" fashion. This value can then be used to index into a structure or
otherwise generate additional thread unique data.

The two instructions in Table 2-4 are provided to read and write a process unique
value from the process's hardware context.

Table 2-4: Unprivileged PALcode Thread Instructions

Mnemonic Operation

READ_UNQ Read unique context

WRITE_UNQ Write unique Context

The process-unique value is stored in the HWPCB at [HWPCB+72] when the process
is not active. When the process is active, the process unique value can be cached in
hardware internal storage or reside in the HWPCB only.

OpenVMS AXP PALcode Instruction Descriptions (II-A) 2-81

•

2.5.1 Read Unique Context

Format:

! PALcode format

Operation:

IF {internal storage for process unique context} THEN
RO +- {process unique context}

ELSE
RO +- (HWPCB+72)

Exceptions:

None

Instruction mnemonics:

Read Unique Context

Description:

The READ_UNQ instruction causes the hardware process (thread) unique context
value to be placed in RO. If this value has not previously been written using a CALL_
PAL WRITE_UNQ or stored into the quadword in the HWPCB at [HWPCB+721
while the thread was inactive, the result returned in RO is UNPREDICTABLE.
Implementations can cache this unique context value while the hardware process is
active. The unique context may be thought of as a "slow register." Typically, this
value will be used by software to establish a unique context for a given thread of
execution.

2-82 OpenVMS AXP Software (II-A)

2.5.2 Write Unique Context

Format:

! PALcode format

Operation:

!R16 contains value to be written to the hardware process
unique context

IF {internal storage for process unique context} THEN
{process unique context} +- R16

ELSE
(HWPCB+72) +- R16

Exceptions:

None

Instruction mnemonics:

Write Unique Context

Description:

The WRITE_UNQ instruction causes the value ofR16 to be stored in internal storage
for hardware process (thread) unique context, if implemented, or in the HWPCB
at [HWPCB+72], if the internal storage is not implemented. When the process
is context switched, SWPCTX ensures that this value is stored in the HWPCB at •
[HWPCB+72]. Implementations can cache this unique context value in internal
storage while the hardware process is active. The unique context may be thought
of as a "slow register." Typically, this value will be used by software to establish a
unique context for a given thread of execution.

OpenVMS AXP PALcode Instruction Descriptions (II-A) 2-83

2.6 Privileged PALcode Instructions

Privileged instructions can be called in kernel mode only; otherwise, a privileged
instruction exception occurs. The following privileged instructions are provided:

Table 2-5: PALcode Privileged Instructions Summary

Mnemonic Operation

CFLUSH

CSERVE

DRAINA

HALT

LDQP

MFPR

MTPR

STQP

SWPCTX

SWPPAL

Cache flush

Console service

Drain aborts

See Common Architecture, Chapter 6

Halt processor

See Common Architecture, Chapter 6

Load quadword physical

Move from processor register

Move to processor register

Store quadword physical

Swap privileged context

Swap PALcode image

2-84 OpenVMS AXP Software (II-A)

2.6.1 Cache Flush

Format:

! PALcode format

Operation:

! R16 contains the Page Frame Number (PFN)
of the page to be flushed

IF PS<CM> NE 0 THEN
{privileged instruction exception}

{Flush page out of cache(s)}

Exceptions:

Privileged Instruction

Instruction mnemonics:

Cache Flush

Description:

The CFLUSH instruction may be used to flush an entire physical page specified by
the PFN in R16 from any data caches associated with the current processor. All
processors must implement this instruction.

On processors that implement a backup power option that maintains only the •
contents of memory during a powerfail, this instruction is used by the powerfail
interrupt handler to force data written by the handler to the battery backed-up
main memory. After a CFLUSH, the first subsequent load (on the same processor)
to an arbitrary address in the target page is either fetched from physical memory or
from the data cache of another processor.

In some multiprocessor systems, CFLUSH is not sufficient to ensure that the
data are actually written to memory and not exchanged between processor caches.
Additional platform-specific cooperation between the powerfail interrupt handlers
executing on each processor may be required.

On systems that implement other backup power options (including none), CFLUSH
may return without affecting the data cache contents.

To order CFLUSH properly with respect to preceding writes, an MB instruction is
needed before the CFLUSH; to order CFLUSH properly with respect to subsequent
reads, an MB instruction is needed after the CFLUSH.

OpenVMS AXP PALcode Instruction Descriptions (II-A) 2-85

2.6.2 Console Service

Format:

Operation:

! Implementation specific

IF PS<CM> NE 0 THEN
{Privileged instruction exception}

ELSE
{Implementation-dependent action}

Exceptions:

Privileged Instruction

Instruction Mnemonics:

! PALcode format

Description:

Console Service

This instruction is specific to each PALcode and console implementation and is not
intended for operating system use.

2-86 OpenVMS AXP Software (II-A)

2.6.3 Load Quadword Physical

Format:

Operation:

! PALcode format

! R16 contains the quadword-aligned physical address
! RO receives the data from memory

IF PS<CM> NE 0 THEN
{Privileged Instruction exception}

RO +- (R16) {physical access}

Exceptions:

Privileged Instruction

Instruction mnemonics:

Load Quadword Physical

Description:

The LDQP instruction fetches and writes to RO the quadword-aligned memory
operand, whose physical address is in R16.

If the operand address in R16 is not quadword aligned, the result is
UNPREDICTABLE.

OpenVMS AXP PALcode Instruction Descriptions (II-A) 2-87

•

2.6.4 Move From Processor Register

Format:

! PALcode format

Operation:

IF PS<CM> NE 0 THEN
{privileged instruction exception}

! R16 may contain an IPR specific source operand
{RO +- result of IPR specific function}

Exceptions:

Privileged Instruction

Instruction mnemonics:

CALL_PAL MFPR_xxx Move from Processor Register xxx

Description:

The MFPR_xxx instruction reads the internal processor register specified by the
PALcode function field and writes it to RO.

Registers RI, R16, and Rl7 contain unpredictable results after an MFPR.

See Chapter 5 for a description of each IPR.

2-88 OpenVMS AXP Software (II-A)

2.6.5 Move to Processor Register

Format:

! PALcode format

Opera~ion:

IF PS<CM> NE 0 THEN
{privileged instruction exception}

! R16 may contain an IPR specific source operand

{RO +- result of IPR specific function}
{IPR +- result of IPR specific function}

Exceptions:

Privileged Instruction

Instruction mnemonics:

CALL_PAL MTPR_xxx Move to Processor Register xxx

Description:

The MTPR_xxx instruction writes the IPR-specific source operands in integer
registers Rl6 and R17 (R17 reserved for future use) to the internal processor register
specified by the PALcode function field. The effect produced by loading a processor
register is guaranteed to be active on the next instruction.

Registers Rl, R16, and Rl7 contain unpredictable results after an MTPR. The MTPR
may return results in RO. If the specific IPR being accessed does not return results
in RO, then RO contains an unpredictable result after an MTPR.

See Chapter 5 for a description of each IPR.

OpenVMS AXP PALcode Instruction Descriptions (II-A) 2-89

•

2.6.6 Store Quadword Physical

Format:

Operation:

! PALcode format

! R16 contains the quadword aligned physical address
! R17 contains the data to be written

IF PS<CM> NE 0 then
{Privileged Instruction exception}

(R16) +- R17 {physical access}

Exceptions:

Privileged Instruction

Instruction mnemonics:

Store Quadword Physical

Description:

The STQP instruction writes the quadword contents of R17 to the memory location
whose physical address is in R16.

If the operand address in R16 is not quadword aligned, the result is
UNPREDICTABLE.

2-90 OpenVMS AXP Software (II-A)

2.6.7 Swap Privileged Context

Format:

PALcode format

Operation:

Rl6 contains the physical address of the new HWPCB.

check HWPCB alignment

IF Rl6<6:0> NE 0 THEN
{reserved operand exception}

IF {PS<CM> NE O} THEN
{privileged instruction exception}

! Store old HWPCB contents

(IPR_PCBB + HWPCB_KSP) +- SP
IF {internal registers for stack pointers} THEN

BEGIN
(IPR_PCBB + HWPCB_ESP) +- IPR_ESP
(IPR_PCBB + HWPCB_SSP) +- IPR_SSP
(IPR_PCBB + HWPCB_USP) +- IPR_USP

END

IF {internal registers for ASTxx} THEN
BEGIN

(IPR_PCBB + HWPCB_ASTSR) +- IPR_ASTSR
(IPR_PCBB + HWPCB_ASTEN) +- IPR_ASTEN

END
tmpl +- PCC
tmp2 +- ZEXT(tmpl<3I:0»
tmp3 +- ZEXT(tmpI<63:32»
(IPR_PCBB + HWPCB_PCC) +- {tmp2 + tmp3}<3l:0>
IF {internal storage for process unique value} THEN

BEGIN
(IPR_PCBB + HWPCB_UNQ) +- process unique value

END

Load new HWPCB contents

IPR_PCBB +- R16

IF {ASNs not implemented in virtual instruction cache} THEN
{flush instruction cache}

IF {ASNs not implemented in TB} THEN
IF {IPR_PTBR NE (IPR_PCBB + HWPCB_PTBR)} THEN

{invalidate trans. buffer entries with PTE<ASM> EQ O}
ELSE

IPR_ASN +- (IPR_PCBB + HWPCB_ASN)

OpenVMS AXP PALcode Instruction Descriptions (II-A) 2-91

•

SP +- (IPR_PCBB + HWPCB_KSP)
IF {internal registers for stack pointers} THEN

BEGIN
IPR_ESP +- (IPR_PCBB + HWPCB_ESP)
IPR_SSP +- (IPR_PCBB + HWPCB_SSP)
IPR_USP +- (IPR_PCBB + HWPCB_USP)

END

IPR_PTBR +- (IPR_PCBB + HWPCB_PTBR)

IF {internal registers for ASTxx} THEN
BEGIN

IPR_ASTSR +- (IPR_PCBB + HWPCB_ASTSR)
IPR_ASTEN +- (IPR_PCBB + HWPCB_ASTEN)

END

IPR_FEN +- (IPR_PCBB + HWPCB_FEN)
tmp4 +- ZEXT((IPR_PCBB + HWPCB_PCC)<31:0»
tmp4 +- tmp4 - tmp2
PCC<63:32> +- tmp4<31:0>

IF {internal storage for process unique value} THEN
BEGIN

process unique value +- (IPR_PCBB + HWPCB_UNQ)
END

IF {internal storage for Data Alignment trap setting} THEN
BEGIN

DAT +- (IPR_PCBB + HWPCB_DAT)
END

Exceptions:

Reserved Operand

Privileged Instruction

Instruction mnemonics:

Swap Privileged Context

Description:

The SWPCTX instruction returns ownership of the current Hardware Privileged
Context Block (HWPCB) to the operating system and passes ownership of the new
HWPCB to the processor. The HWPCB is described in Chapter 4.

SWPCTX saves the privileged context from the internal processor registers into the
HWPCB specified by the physical address in the PCBB internal processor register.
It then loads the privileged context from the new HWPCB specified by the physical
address in RIG. The actual sequence of the save and restore operation is not specified
so any overlap of the current and new HWPCB storage areas produces UNDEFINED
results.

The privileged context includes the four stack pointers, the Page Table Base Register
(PTBR), the Address Space Number (ASN), the AST enable and summary registers,

2-92 OpenVMS AXP Software (II-A)

the Floating-point Enable Register (FEN), the Performance Monitor (PME) register,
the Data Alignment Trap (DAT) register, and the Charged Process Cycles; the
number of PCC register counts that are charged to a process (modulo 2**32).

PTBR is never saved in the HWPCB and it is UNPREDICTABLE whether or not
ASN is saved. These values cannot be changed for a running process. The process
integer and floating registers are saved and restored by the operating system. See
Figure 4-1 for the HWPCB format.

Notes:

• Any change to the current HWPCB while the processor has ownership results in
UNDEFINED operation.

• All the values in the current HWPCB can be read through IPRs, except the
Charged Process Cycles.

• If the HWPCB is read while ownership resides with the processor, it is
UNPREDICTABLE whether the original or an updated value of a field is read.
The processor can update an HWPCB field at any time. The decision as to
whether or not a field is updated is made individually for each field.

• If the enabling conditions are present for an interrupt at the completion of this
instruction, the interrupt occurs before the next instruction.

• PALcode sets up the PCBB at boot time to point to the HWPCB storage area
in the Hardware Restart Parameter Block (HWRPB). See Console Interface (III),
Chapter 2.

• The operation is UNDEFINED if SWPCTX accesses a non-memory-like region.

• A reference to nonexistent memory causes a machine check. Unimplemented
physical address bits are SBZ. The operation is UNDEFINED if any of these bits
are set.

Note:
Processors may keep a copy of each of the per-process stack pointers in
internal registers. In those processors, SWPCTX stores the internal registers
into the HWPCB. Processors that do not keep a copy of the stack pointers in
internal registers keep only the stack pointer for the current access mode in
SP and switch this with the HWPCB contents whenever the current access
mode changes.

OpenVMS AXP PALcode Instruction Descriptions (II-A) 2-93

•

2.6.8 Swap PALcode Image

Format:

! PALcode format

Operation:

R16 contains the new PALcode identifier
R17:R21 contain implementation-specific entry parameters
RO receives status:

o Success (PALcode was switched)
1 Unknown PALcode variant
2 Known PALcode variant, but PALcode not loaded

IF (PS<CM> NE 0) then
{Privileged instruction exception}

ELSE
IF {R16 < 256} THEN

BEGIN
IF {R16 invalid} THEN

RO.- 1
{Return}

ELSE IF {PALcode not loaded} THEN
RO ~ 2
{Return}

ELSE
tmpl ~ {PALcode base}

END
ELSE

tmpl = R16
{Flush instruction cache}
{Invalidate all translation buffers}
{Perform additional PALcode variant-specific initialization}
{Transfer control to PALcode entry at physical address = tmpl}

Exceptions:

Privileged Instruction

Instruction mnemonics:

Swap PALcode Image

Description:

The SWPPAL instruction causes the current (active) PALcode to be replaced by the
specified new PALcode image. This instruction is intended for use by operating

2-94 OpenVMS AXP Software (II-A)

systems only during bootstraps and by consoles during transitions to console I/O
mode.

The PALcode descriptor contained in R16 is interpreted as either a PALcode variant
or the base physical address of the new PALcode image. If a variant, the PALcode
image must have been previously loaded. No PALcode loading occurs as a result of
this instruction.

After successful PALcode switching, the register contents are determined by the
parameters passed in R17 through R21 or are UNPREDICTABLE. A common
parameter is the address of a new HWPCB. In this case, the stack pointer register
and PTBR are determined by the contents of that HWPCB; the contents of other
registers such as R16 through R21 may be UNPREDICTABLE.

See Part III, Console Interface for information on using this instruction.

OpenVMS AXP PALcode Instruction Descriptions (II-A) 2-95

•

Chapter 3

OpenVMS AXP Memory Management (II-A)

3.1 Introduction

Memory management consists of the hardware and software that control the
allocation and use of physical memory. Typically, in a multiprogramming system,
several processes may reside in physical memory at the same time (see Chapter 4).
OpenVMS AXP uses memory protection and multiple address spaces to ensure that
one process will not affect either other processes or the operating system.

To improve further software reliability, four hierarchical access modes provide
memory access control. They are, from most to least privileged: kernel, executive,
supervisor, and user. Protection is specified at the individual page level, where a
page may be inaccessible, read-only, or read/write for each of the four access modes.
Accessible pages can be restricted to have only data or instruction access.

A program uses virtual addresses to access its data and instructions. However, before
these virtual addresses can be used to access memory, they must be translated into
physical addresses. Memory management software maintains tables of mapping
information (page tables) that keep track of where each virtual page is located in
physical memory. The processor utilizes this mapping information when it translates
virtual addresses to physical addresses.

Therefore, memory management provides mechanisms for both memory protection
and memory mapping. The OpenVMS AXP memory management architecture is
designed to meet several goals: •

• Provide a large address space for instructions and data

• Allow programs to run on hardware with physical memory smaller than the
virtual memory used

• Provide convenient and efficient sharing of instructions and data

• Allow sparse use of a large address space without excessive page table overhead

• Contribute to software reliability

• Provide independent read and write access protection

3.2 Virtual Address Space

A virtual address is a 64-bit unsigned integer that specifies a byte location within
the virtual address space. Implementations subset the address space supported to
one of four sizes (43, 47, 51, or 55 bits) as a function of page size. The minimal
virtual address size supported is 43 bits. If an implementation supports less than

OpenVMS AXP Memory Management (II-A) 3-1

64-bit virtual addresses, it must check that all the VA<63:VA_SIZE> bits are equal
to VA<VA_SIZE-l>. That gives two disjoint ranges for valid virtual addresses.
For example, for a 43-bit virtual address space, valid virtual addresses ranges
are 0..3FF FFFF FFFF16 and FFFF FCOO 0000 000016..FFFF FFFF FFFF FFFF16.
Accesses to virtual addresses outside of the valid virtual address ranges for an
implementation cause an access violation exception.

The virtual address space is broken into pages, which are the units of relocation,
sharing, and protection. The page size ranges from 8K bytes to 64K bytes. System
software should, therefore, allocate regions with differing protection on 64K-byte
virtual address boundaries to ensure image compatibility across all Alpha AXP
implementations.

Memory management provides the mechanism to map the active part of the virtual
address space to the available physical address space. The operating system controls
the virtual-to-physical address mapping tables, and saves the inactive parts of the
virtual address space on external storage media.

3.2.1 Virtual Address Format

The processor generates a 64-bit virtual address for each instruction and operand
in memory. The virtual address consists of three level-number fields, and a byte_
within_page field (Figure 3-1).

Figure 3-1: Virtual Address Format

63

Sext(Level1 <Level Size-1 » Level1 Level2 Level3

The byte_within_page field can be either 13, 14, 15, or 16 bits depending on a
particular implementation. Thus, the allowable page sizes are 8K bytes, 16K bytes,
32K bytes, and 64K bytes. Each level-number field contains O-n bits, where n is, for
example, 9 with an 8K-byte page size. The level-number fields are the same size for
a given implementation.

The level number fields are a function of the page size; all page table entries at any
given level do not exceed one page. The PFN field in the PTE is always 32 bits
wide. Thus, as the page size grows the virtual and physical address size also grows
(Table 3-1).

3-2 OpenVMS AXP Software (II-A)

Table 3-1: Virtual Address Options

Page Byte Level Virtual Physical
Size Offset Size Address Address
(bytes) (bits) (bits) (bits) (bits)

8K 13 10 43 45

16K 14 11 47 46

32 K 15 12 51 47

64K 16 13 55 48

3.3 Physical Address Space

Physical addresses are at most 48 bits. A processor may choose to implement a
smaller physical address space by not implementing some number of high order
bits.

The two most significant implemented physical address bits delineate the four
regions in the physical address space. Implementations use these bits as appropriate
for their systems. For example, in a workstation with a 30-bit physical address space,
bit <29> might select between memory and non-memory-like regions, and bit <28>
could enable or disable cacheing. (See Common Architecture, Chapter 5.)

3.4 Memory Management Control

Memory management is always enabled. Implementations must provide an
environment for PALcode to service exceptions and to initialize and boot the
processor. For example PALcode might run with I-stream mapping disabled and
use the privileged CALL_PAL LDQP and STQP instructions to access data stored in
physical addresses.

3.5 Page Table Entries

The processor uses a quadword Page Table Entry (PTE), as shown in Figure 3-2,
to translate virtual addresses to physical addresses. A PTE contains hardware and
software control information and the physical Page Frame Number.

•
Figure 3-2: Page Table Entry

1615141312 1110 9 8 7 6 5 4 3 2 1 0'\
"-

rved US EK US E KR AF F F
r WW WW RR RR S GH SO OOV
are EE EE EE EEV ME WR

'\1

63

32C331Rese

PFN to
________________ Softw

OpenVMS AXP Memory Management (II-A) 3-3

Fields in the page table entry are interpreted as shown in Table 3-2.

Table 3-2: Page Table Entry

Bits Description

63-32

31-16"

15

Page Frame Number (PFN)

The PFN field always points to a page boundary. If V is set, the PFN is
concatenated with the byte_within_page bits of the virtual address to obtain the
physical address (see Section 3.7). If V is clear, this field may be used by software.

Reserved for software.

User Write Enable (UWE)

This bit enables writes from user mode. If this bit is a 0 and a STORE is attempted
while in user mode, an Access Violation occurs. This bit is valid even when V=O.

Note:

If a write-enable bit is set and the corresponding read-enable bit is not, the
operation of the processor is UNDEFINED.

14 Supervisor Write Enable (SWE)

This bit enables writes from supervisor mode. If this bit is a 0 and a STORE is
attempted while in supervisor mode, an Access Violation occurs. This bit is valid
even when V=O.

13 Executive Write Enable (EWE)

This bit enables writes from executive mode. If this bit is a 0 and a STORE is
attempted while in executive mode, an Access Violation occurs. This bit is valid
even when V=O.

12 Kernel Write Enable (KWE)

This bit enables writes from kernel mode. If this bit is a 0 and a STORE is
attempted while in kernel mode, an Access Violation occurs. This bit is valid even
when v=o.

11 User Read Enable (URE)

This bit enables reads from user mode. If this bit is a 0 and a LOAD or instruction
fetch is attempted while in user mode, an Access Violation occurs. This bit is valid
even when V=O.

10 Supervisor Read Enable (SRE)

This bit enables reads from supervisor mode. If this bit is a 0 and a LOAD or
instruction fetch is attempted while in supervisor mode, an Access Violation occurs.
This bit is valid even when V=O.

9 Executive Read Enable (ERE)

This bit enables reads from executive mode. If this bit is a 0 and a LOAD or
instruction fetch is attempted while in executive mode, an Access Violation occurs.
This bit is valid even when V=O.

3-4 OpenVMS AXP Software (II-A)

Table 3-2 (Cant.): Page Table Entry

Bits Description

8 Kernel Read Enable (KRE)

This bit enables reads from kernel mode. If this bit is a 0 and a LOAD or
instruction fetch is attempted while in kernel mode, an Access Violation occurs.
This bit is valid even when V=O.

7 Reserved for future use by Digital.

Programming Note:

The reserved bit will be used by future hardware systems and should not be
used by software even if PTE<V> is clear.

6-5 Granularity hint (GH)

Software may set these bits to a non-zero value to supply a hint to translation
buffer implementations that a block of pages can be treated as a single larger
page:

1. The block is an aligned group of8**N pages, where N is the value ofPTE<6:5>,
that is, a group of 1, 8, 64, or 512 pages starting at a virtual address with page_
size + 3*N low-order zeros.

2. The block is a group of physically contiguous pages that are aligned both
virtually and physically. Within the block, the low 3*N bits of the PFNs
describe the identity mapping and the high 32-3*N PFN bits are all equal.

3. Within the block, all PTEs have the same values for bits <15:0>, that is,
protection, fault, granularity, and valid bits.

Hardware may use this hint to map the entire block with a single TB entry, instead
of 8, 64, or 512 separate TB entries.

It is UNPREDICTABLE which PTE values within the block are used if the
granularity bits are set inconsistently.

Programming Note:

A granularity hint might be appropriate for a large memory structure such as
a frame buffer or nonpaged pool that in fact is mapped into contiguous virtual
pages with identical protection, fault, and valid bits.

4 Address Space Match (ASM)

When set, this PTE matches all Address Space Numbers. For a given VA,
ASM must be set consistently in all processes, otherwise the address mapping
is UNPREDICTABLE.

3 Fault on Execute (FOE)

When set, a Fault on Execute exception occurs on an attempt to execute an
instruction in the page.

OpenVMS AXP Memory Management (II-A) 3-5

•

Table 3-2 (Cant.): Page Table Entry

Bits Description

2 Fault on Write (FOW)

When set, a Fault on Write exception occurs on an attempt to write any location
in the page.

1 Fault on Read (FOR)

When set, a Fault on Read exception occurs on an attempt to read any location in
the page.

o Valid (V)

Indicates the validity of the the PFN field. When V is set, the PFN field is valid for
use by hardware. When V is clear, the PFN field is reserved for use by software.
The V bit does not affect the validity of PTE<15:1> bits.

3.5.1 Changes to Page Table Entries

The operating system changes PTEs as part of its memory management functions.
For example, the operating system may set or clear the valid bit, change the PFN
field as pages are moved to and from external storage media, or modify the software
bits. The processor hardware never changes PTEs.

Software must guarantee that each PTE is always internally consistent. Changing
a PTE one field at a time may give incorrect system operation, for example,
setting PTE<V> with one instruction before establishing PTE<PFN> with another.
Execution of an interrupt service routine between the two instructions could use an
address that would map using the inconsistent PTE. Software can solve this problem
by building a complete new PTE in~ a register and then moving the new PTE to the
page table using a Store Quadword instruction (STQ).

Multiprocessing complicates the problem. Another processor could be reading (or
even changing) the same PTE that the first processor is changing. Such concurrent
access must produce consistent results. Software must use some form of software
synchronization to modify PTEs that are already valid. Once a processor has
modified a valid PTE, it is possible that other processors in a multiprocessor system
may have old copies of that PTE in their Translation Buffer. Software must notify
other processors of changes to PTEs.

Software may write new values into invalid PTEs using quadword store instructions
(STQ). Hardware must ensure that aligned quadword reads and writes are atomic
operations. The following procedure must be used to change any of the PTE bits
<15:0> of a shared valid PTE (PTE<0>=1) such that an access that was allowed
before the change is not allowed after the change.

1. The PTE<O> is cleared without changing any of the PTE bits <63:32> and <15:1>.

2. All processors do a TBIS for the VA mapped by the PTE that changed. The VA
used in the TBIS must assu~e that the PTE granularity hint bits are zero.

3-6 OpenVMS AXP Software (II-A)

3. After all processors have done the TBIS, the new PTE may be written changing
any or all fields.

Programming Note:

The procedure above allows queue instructions that have probed in order to check
that all can complete, to service a TB miss. The queue instructions use the PTE
even though the V bit is clear, if the V bit was set during the instruction's initial
probe flow.

3.6 Memory Protection

Memory protection is the function of validating whether a particular type of access
is allowed to a specific page from a particular access mode. Access to each page is
controlled by a protection code that specifies, for each access mode, whether read or
write references are allowed.

The processor uses the following to determine whether an intended access is allowed:

• The virtual address, which is used to index page tables

• The intended access type (read data, write data, or instruction fetch)

• The current access mode from the Processor Status

If the access is allowed and the address can be mapped (the Page Table Entry is
valid), the result is the physical address that corresponds to the specified virtual
address.

For protection checks, the intended access is read for data loads and instruction
fetch, and write for data stores.

If an operand is an address operand, then no reference is made to memory. Hence,
the page need not be accessible nor map to a physical page.

3.6.1 Processor Access Modes

There are four processor modes:

• Kernel

• Executive

• Supervisor

• User

The access mode of a running process is stored in the Current Mode bits of the
Processor Status (PS) (see Section 6.2).

3.6.2 Protection Code

Every page in the virtual address space is protected according to its use. A program
may be prevented from reading or writing portions of its address space. Each page
has an associated protection code that describes the accessibility of the page for

OpenVMS AXP Memory Management (II-A) 3-7

I

each processor mode. The code allows a choice of read or write protection for each
processor mode.

• Each mode's access can be read/write, read-only, or no-access.

• Read and write accessibility are specified independently.

• The protection of each mode can be specified independently.

The protection code is specified by 8 bits in the PTE (see Table 3-2).

The OpenVMS AXP architecture allows a page to be designated as execute only by
setting the read enable bit for the access mode and by setting the fault on read and
write bits in the PTE.

3.6.3 Access Violation Fault

An Access Violation fault occurs if an illegal access is attempted, as determined by
the current processor mode and the page's protection field.

3.7 Address Translation

The page tables can be accessed from physical memory, or (to reduce overhead)
through a mapping to a linear region of the virtual address space. All
implementations must support the virtual access method and are expected to use it
as the primary access method to enhance performance.

The following sections describe both access methods.

3.7.1 Physical Access for Page Table Entries

Physical address translation is performed by accessing entries in a three-level page
table structure. The Page Table Base Register (PTBR) contains the physical Page
Frame Number of the highest level (Levell) page table. Bits <levell> of the virtual
address are used to index into the first level page table to obtain the physical page
frame number of the base of the second level (Level 2) page table. Bits <leveI2> of
the virtual address are used to index into the second level page table to obtain the
physical page frame number of the base of the third level (Level 3) page table. Bits
<leveI3> of the virtual address are used to index the third level page table to obtain
the physical Page Frame Number (PFN) of the page being referenced. The PFN is
concatenated with virtual address bits <byte_within_page> to obtain the physical
address of the location being accessed.

Ifpart of any page table resides in I/O space, or in nonexistent memory, the operation
of the processor is UNDEFINED.

If the first-level or second-level PTE is valid, the protection bits are ignored; the
protection code in the third-level PTE is used to determine accessibility. If a first
level or second-level PTE is invalid, an Access Violation occurs if the PTE<KRE>
equals zero. An Access Violation on a first-level or second-level PTE implies that all
lower-level page tables mapped by that PTE do not exist.

3-8 OpenVMS AXP Software (II-A)

Programming Note:

This mapping scheme does not require multiple contiguous physical pages. There
are no length registers. With a page size of 8K bytes, 3 pages (24K bytes) map
8M bytes of virtual address space; 1026 pages (approximately 8M bytes) map an
8G-byte address space; and 1,049,601 pages (approximately 8G bytes) map the
entire 8T byte 2**43 byte address space.

The algorithm to generate a physical address from a virtual address follows:

IF {SEXT(VA<63:VA_SIZE» NEQ SEXT(VA<VA_SIZE-l>} THEN
{initiate Access Violation fault}

! Read Physical

level1-pte +- ({PTBR * page_size) + {8 * VA<levell_number>})

IF levell-pte<V> EQ 0 THEN
IF level1-pte<KRE> EQ 0 THEN

{initiate Access Violation fault}
ELSE

{initiate Translation Not Valid fault}

Read Physical

leve12-pte +-
({levell-pte<PFN> * page_size) + {8 * VA<leve12_number>})

IF leve12-pte<V> EQ 0 THEN
IF leve12-pte<KRE> EQ 0 THEN

{initiate Access Violation fault}
ELSE

{initiate Translation Not Valid fault}

Read Physical

leve13-pte +-
({leve12-pte<PFN> * page_size} + {8 * VA<leve13_number>})

IF {{{leve13-pte<UWE> EQ O} AND {write access} AND {PS<CM> EQ 3}} OR
{{leve13-pte<URE> EQ O} AND {read access} AND {PS<CM> EQ 3}} OR

I{{leve13-pte<SWE> EQ O} AND {write access} AND {PS<CM> EQ 2}} OR
{{leve13-pte<SRE> EQ O} AND {read access} AND {PS<CM> EQ 2}} OR
{{leve13-pte<EWE> EQ O} AND {write access} AND {PS<CM> EQ l}} OR
{{leve13-pte<ERE> EQ O} AND {read access} AND {PS<CM> EQ l}} OR
{{leve13-pte<KWE> EQ O} AND {write access} AND {PS<CM> EQ OJ} OR
{{leve13-pte<KRE> EQ O} AND {read access} AND {PS<CM> EQ OJ}}

THEN
{initiate Access Violation fault}

ELSE
IF leve13-pte<V> EQ 0 THEN

{initiate Translation Not Valid fault}

IF {leve13-pte<FOW> EQ l} AND { write access} THEN
{initiate Fault On Write fault}

IF {leve13-pte<FOR> EQ l} AND { read access} THEN
{initiate Fault On Read fault}

IF {leve13-pte<FOE> EQ l} AND { execute access} THEN
{initiate Fault On Execute fault}

Physical_Address +-

{leve13-pte<PFN> * page_size} OR VA<byte_within-page>

OpenVMS AXP Memory Management (II-A) 3-9

3.7.2 Virtual Access for Page Table Entries

To reduce the overhead associated with the address translation in a three-level page
table structure, the page tables are mapped into a linear region ofthe virtual address
space. The virtual address of the base of the page table structure is set on a system
wide basis and is contained in the VPTB IPR.

When a native mode DTB or ITB miss occurs, the TBMISS flows attempt to load the
Level 3 page table entry using a single virtual mode load instruction.

The algorithm involving the manipulation of the missing VA is:

tmp +- left_shift (VA, {64 - {{lg(PageSize) *4} -9 }})
tmp +-

right_shift(tmp,{64 - {{lg(PageSize)*4} -9} + 19(PageSize) -3})
tmp +- VPTB OR tmp
tmp<2 : 0> +- 0

At this point, tmp contains the VA of the Level 3 page table entry. A LDQ from that
VA will result in the acquistion of the PTE needed to satisfy the initial TBMISS
condition.

However, in the PALcode environment, if a TBMISS occurs during an attempt to
fetch the Level 3 PTE, then it is necessary to use the longer sequence of three
dependent loads described in Section 3.7.

Chapter 5 contains the description of the VPTB IPR used to contain the virtual
address of the base of the page table structure.

The mapping of the page tables necessary for the correct function of the algorithm
is done as follows:

1. Select a 2(3*1g(page_size/8»+3) byte-aligned region (an address with 3*lg(page_size
/8)+3 low order zeros) in the virtual address space. This value will be written
into the VPTB register.

2. Create a Level 1 PTE to map the page tables as follows:

Levell_PTE +- 0 ! Init all fields to 0
Levell_PTE<63:32> +- PFN of Levell Pagetable

! Set PFN to PFN of levell pagetable
Levell_PTE<8> +- 1 ! Kernel Read Enable (KRE)
Levell_PTE<O> +- 1 ! Valid bit

3. Write the created Levell PTE into the Levell page table entry that corresponds
to the VPTB value.

4. Set all Levelland Level 2 Valid PTEs to allow kernel read access.

5. Write the VPTB register with the selected base value.

Note:

No validity checks need be made on the value stored in the VPTB in a running
system. Therefore, if the VPTB contains an invalid address, the operation is
UNDEFINED.

3-10 OpenVMS AXP Software (II-A)

3.8 Translation Buffer

In order to save actual memory references when repeatedly referencing the
same pages, hardware implementations include a translation buffer to remember
successful virtual address translations and page states.

When the process context is changed, a new value is loaded into the Address
Space Number (ASN) internal processor register with a Swap Privileged Context
instruction (CALL_PAL SWPCTX); see Section 2.6 and Chapter 4. This causes
address translations for pages with PTE<ASM> clear to be invalidated on a processor
that does not implement address space numbers. Additionally, when the software
changes any part (except for the Software field) of a valid Page Table Entry, it must
also move a virtual address within the corresponding page to the Translation Buffer
Invalidate Single (TBIS) internal processor register with the MTPR instruction (see
Chapter 5).

Implementation Note:

Some implementations may invalidate the entire Translation Buffer on an MTPR
to TBIS. In general, implementations may invalidate more than the required
translations in the TB.

The entire Translation Buffer can be invalidated by doing a write to Translation
Buffer Invalidate All register (CALL_PAL MTPR_TBIA), and all ASM=O entries can
be invalidated by doing a write to Translation Buffer Invalidate All Process register
(CALL_PAL MTPR_TBIAP). (See Chapter 5.)

The Translation Buffer must not store invalid PTEs. Therefore, the software is not
required to invalidate Translation Buffer entries when making changes for PTEs
that are already invalid.

After software changes a valid first- or second-level PTE, software must flush the
translation for the corresponding page in the virtual page table. Then software must I
flush the translations of all valid pages mapped by that page. In the case of a change
to a first-level PTE, this action must be taken through a second iteration.

The TBCHK internal processor register is available for interrogating the presence
of a valid translation in the Translation Buffer (see Chapter 5).

Implementation Note:

Hardware implementors should be aware that a single, direct-mapped TB has a
potential problem when a load/store instruction and its data map to the same TB
location. If TB misses are handled in PALcode, there could be an endless loop
unless the instruction is held in an instruction buffer or a translated physical
PC is maintained by the hardware.

OpenVMS AXP Memory Management (II-A) 3-11

3.9 Address Space Numbers

The Alpha AXP architecture allows a processor to optionally implement address
space numbers (process tags) to reduce the need for invalidation of cached address
translations for process specific addresses when a context switch occurs. The
supported ASN range is O..MAX_ASN.

Note:

If an ASN outside of the range OooMAX_ASN is assigned to a process, the
operation of the processor is UNDEFINED.

The address space number for the current process is loaded by software in the
Address Space Number (ASN) internal processor register with a Swap Privileged
Context instruction. ASNs are processor specific and the hardware makes no attempt
to maintain coherency across multiple processors. In a multiprocessor system,
software is responsible for ensuring the consistency of TB entries for processes that
might be rescheduled on different processors.

Programming Note:

System software should not assume that the number of ASNs is a power of two.
This allows, for example, hardware to use N TB tag bits to encode (2**N}-3 ASN
values, one value for ASM=l PTEs, and one for invalid.

There are several possible ways of using ASNs that result from several
complications in a multiprocessor system. Consider the case in which a process
that executed on processor 1 is rescheduled on processor 2. If a page is deleted
or its protection is changed, the TB in processor 1 has stale data. One solution
is to send an interprocessor interrupt to all the processors on which this process
could have run and cause them to invalidate the changed PTE. That results in
significant overhead in a system with several processors. Another solution is to
have software invalidate all TB entries for a process on a new processor before
it can begin execution, if the process executed on another processor during its
previous execution. That ensures the deletion of possibly stale TB entries on the
new processor. A third solution is to assign a new ASN whenever a process is
run on a processor that is not the same as the last processor on which it ran.

3.10 Memory Management Faults

Five types of faults are associated with memory access and protection:

• Access Control Violation (ACV)

Taken when the protection field of the third-level PTE that maps the data
indicates that the intended page reference would be illegal in the specified access
mode. An Access Control Violation fault is also taken if the KRE bit is zero in
an invalid first or second level PTE.

• Fault on Read (FOR)

Occurs when a read is attempted with PTE<FOR> set.

3-12 OpenVMS AXP Software (II-A)

• Fault on Write (FOW)

Occurs when a write is attempted with PTE<FOW> set.

• Fault on Execute (FOE)

Occurs when instruction execution is attempted with PTE<FOE> set.

• Translation Not Valid (TNV)

Taken when a read or write reference is attempted through an invalid PTE in a
first-, second-, or third-level page table.

See Chapter 6 for a detailed description of these faults.

Those five faults have distinct vectors in the System Control Block. The Access
Violation (ACV) fault takes precedence over the faults T~ FOR, FOW, and FOE.
The Translation Not Valid (TNV) fault takes precedence over the faults FOR, FOW,
and FOE.

The faults FOR and FOW can occur simultaneously in the CALL_PAL queue
instructions, in which case the order that the exceptions are taken is
UNPREDICTABLE (see Section 2.1).

OpenVMS AXP Memory Management (II-A) 3-13

I

Chapter 4

OpenVMS AXP Process Structure (II-A)

4.1 Process Definition

A process is the basic entity that is scheduled for execution by the processor. A
process represents a single thread of execution and consists of an address space and
both hardware and software context.

The hardware context of a process is defined by:

• Thirty-one integer registers and 31 floating-point registers

• Processor Status (PS)

• Program Counter (PC)

• Four stack pointers

• Asynchronous System Trap Enable and summary registers (ASTEN, ASTSR)

• Process Page Table Base Register (PTBR)

• Address Space Number (ASN)

• Floating Enable Register (FEN)

• Charged Process Cycles

• Process Unique value

• Data Alignment Trap (DAT)

• Performance Monitoring Enable Register (PME)

The software context of a process is defined by operating system software and is
system dependent.

A process may share the same address space with other processes or have an address
space of its own. There is, however, no separate address space for system software,
and therefore, the operating system must be mapped into the address space of each
process (see Chapter 3).

In <?rder for a process to execute, its hardware context must be loaded into the integer
registers, floating-point registers, and internal processor registers. When a process
is being executed, its hardware context is continuously updated. When a process is
not being executed, its hardware context is stored in memory.

Saving the hardware context of the current process in memory, followed by loading
the hardware context for a new process, is termed context switching. Context

OpenVMS AXP Process Structure (II-A) 4-1

I

switching occurs as one process after another is scheduled by the operating system
for execution.

4.2 Hardware Privileged Process Context

The hardware context of a process is defined by a privileged part that is context
switched with the Swap Privileged Context instruction (SWPCTX) (see Section 2.6),
and a nonprivileged part that is context switched by operating system software.

When a process is not executing, its privileged context is stored in a 128-byte
naturally aligned memory structure called the Hardware Privileged Context Block
(HWPCB). (See Figure 4-1.)

Figure 4-1: Hardware Privileged Context Block

636261 3231 1615 8 7 431 0

Kernel Stack Pointer (KSP)

Executive Stack Pointer (ESP)

Supervisor Stack Pointer (SSP)

User Stack Pointer (USP)

Page Table Base Register (PTBR)

I ASN

AST AST
SR EN

DP F
AM E
TE N

I Charged Process Cycles

Process Unique Value

PALcode Scratch Area of 6 Quadwords

:HWPCB

:+8

:+16

:+24

:+32

:+40

:+48

:+56

:+64

:+72

:+80

The Hardware Privileged Context Block (HWPCB) for the current process is specified
by the Privileged Context Block Base register (PCBB). (See Chapter 5.)

The Swap Privileged Context instruction (SWPCTX) saves the privileged context of
the current process into the HWPCB specified by PCBB, loads a new value into
PCBB, and then loads the privileged context of the new process into the appropriate
hardware registers.

The new value loaded into PCBB, as well as the contents of the Privileged Context
Block, must satisfy certain constraints or an UNDEFINED operation results:

4-2 OpenVMS AXP Software (II-A)

1. The physical address loaded into PCBB must be 128-byte aligned and describes
16 contiguous quadwords that are in a memory-like region. (See Common
Architecture, Chapter 5.)

2. The value of PTBR must be the Page Frame Number of an existent page that is
in a memory-like region.

It is the responsibility of the operating system to save and load the nonprivileged
part of the hardware context.

The SWPCTX instruction returns ownership of the current HWPCB to operating
system software and passes ownership ofthe new HWPCB from the operating system
to the processor. Any attempt to write a HWPCB while ownership resides with the
processor has UNDEFINED results. If the HWPCB is read while ownership resides
with the processor, it is UNPREDICTABLE whether the original or an updated
value of a field is read. The processor can update an HWPCB field at ~ny time. The
decision as to whether or not a field is updated is made individually for each field.

If ASNs are not implemented, the ASN field is not read or written by PALcode.

The FEN bit reflects the setting of the FEN IPR.

Setting the PME bit alerts any performance hardware or software in the system to
monitor the performance of this process.

The DAT bit controls whether data alignment traps that are fixed up in PALcode
are reported to the operating system. If the bit is clear, the trap is reported. If the
bit is set, after the fixup, return is to the user. See Section 6.6.

The Charged Process Cycles is the total number of PCC register counts that are
charged to the process (modulo 2**32). When a process context is loaded by the
SWPCTX instructions, the contents of the PCC count field (PCC_CNT) is subtracted
from the contents of HWPCB[64]<31:0> and the result is written to the PCC offset
field (PCC_OFF):

PCC<63:32> +- (HWPCB[64]<31:0> PCC<31:0»

When a process context is saved by the SWPCTX instruction, the charged process
cycles is computed by performing an unsigned add of PCC<63:32> and PCC<31:0>.
That value is written to HWPCB[64]<31:0>.

Software Programming Note:

The following example returns in RO the current PCC register count (modulo
2**32) for a process. Care is taken not to cause an unwanted sign extension.

I

RPCC
SLL
ADDQ
SRL

RO
RO, #32, Rl
RO, Rl, RO
RO, #32, RO

Read the processor cycle counter
Line up the offset and count fields
Do add
Zero extend the cycle count to 64 bits

The Process Unique value is that value used in support of multithread
implementations. The value is stored in the HWPCB when the process is not active.

OpenVMS AXP Process Structure (II-A) 4-3

When the process is active, the value may be cached in hardware internal storage
or kept in the HWPCB only.

4.3 Asynchronous System Traps (AST)

Asynchronous System Traps (ASTs) are a means of notifying a process of events that
are not synchronized with its execution but that must be dealt with in the context
of the process with minimum delay.

Asynchronous System Traps (ASTs) interrupt process execution and are controlled by
the AST Enable (ASTEN) and AST Summary (ASTSR) internal processor registers.
(See Chapter 5.)

Th~ AST Enable register (ASTEN) contains an enable bit for each of the four
processor access modes. When the bit corresponding to an access mode is set,
ASTs for that mode are enabled. The AST enable bit for an access mode may be
changed by executing a Swap AST Enable instruction (SWASTEN;I-see Section 2.6),
or by executing a Move to Processor Register instruction specifying ASTEN (MTPR
ASTEN; see Chapter 5).

The AST Summary Register (ASTSR) contains a pending bit for each of the four
processor access modes. When the bit corresponding to an access mode is set, an
AST is pending for that mode.

Kernel mode software may request an AST for a particular access mode by executing
a Move to Processor Register instruction specifying ASTSR (MTPR ASTSR; see
Chapter 5).

Hardware or PALcode monitors the state of ASTEN, ASTSR, PS<CM>, and
PS<IPL>. If PS<IPL> is less than 2, and there is an AST pending and enabled
for an access mode that is less than or equal to PS<CM> (that is, an equal or more
privileged access mode), an AST is initiated at IPL 2.

ASTs that are pending and enabled for a less privileged access mode are not allowed
to interrupt execution in a more privileged access mode.

4.4 Process Context Switching

Process context switching occurs as one process after another is scheduled for
execution by operating system software. Context switching requires the hardware
context of one process to be saved in memory followed by the loading of the hardware
context for another process into the hardware registers.

The privileged hardware context is swapped with the CALL_PAL Swap Privileged
Context instruction (SWPCTX). Other hardware context must be saved and restored
by operating system software.

The sequence in which process context is changed is important because the SWPCTX
instruction changes the environment in which the context switching software itself
is executing. Also, although'not enforced by hardware, it is advisable to execute the
actual context switching software in an environment that cannot be context switched
(that is, at an IPL high enough that rescheduling cannot occur).

4-4 OpenVMS AXP Software (II-A)

The SWPCTX instruction is the only method provided for loading certain internal
processor registers. The SWPCTX instruction always saves the privileged context of
the old process and loads the privileged context of a new process. Therefore, a valid
HWPCB must be available to save the privileged context of the old process as well
as load the privileged context of the new process.

At system initialization, a valid HWPCB is constructed in the Hardware Restart
Parameter Block (HWRPB) for the primary processor. (See Console Interface (III),
Chapter 2.) Thereafter, it is the responsibility of operating system software to ensure
a valid HWPCB when executing a SWPCTX instruction.

OpenVMS AXP Process Structure (II-A) 4-5

I

Chapter 5

OpenVMS AXP Internal Processor Registers (II-A)

5.1 Internal Processor Registers

This chapter describes the OpenVMS AXP Internal Processor Registers (IPRs).
These registers are read and written with Move from Processor Register (MFPR)
and Move to Processor Register (MTPR) instructions; see Section 2.6.

Those instructions accept an input operand in RI6 and return a result, if any, in
RO. Registers Rl, R16, and RI7 are UNPREDICTABLE after a CALL_PAL MxPR
routine. If a CALL_PAL MxPR routine does not return a result in RO, then RO is
also UNPREDICTABLE on return.

Some IPRs (for example, ASTSR, ASTEN, IPL) may be both read and written in a
combined operation by performing an MTPR instruction.

Internal Processor Registers mayor may not be implemented as actual hardware
registers. An implementation may choose any combination ofPALcode and hardware
to produce the architecturally specified function.

Internal Processor Registers are only accessible from kernel mode.

5.2 Stack Pointer Internal Processor Registers

The stack pointers for user, supervisor, and executive stacks are accessible as IPRs
through the CALL_PAL MTPR and MFPR instructions. An implementation may
retain some or all of these stack pointers only in the HWPCB. In this case, MTPR and •
MFPR for these registers must access the corresponding PCB locations. However,
implementations that have these stack pointers in internal hardware registers are
not required to access the corresponding HWPCB locations for MTPR and MFPR.
The HWPCB locations get updated when a SWPCTX instruction is executed.

An implementation may also choose to keep the kernel stack pointer (KSP) in an
internal hardware register (labelled IPR_KSP); however, this register is not directly
accessible through MTPR and MFPR instructions. Because access to the KS~

requires kernel mode, the actual KSP is the current mode stack pointer (R30); thus
access to KSP is provided through R30, and no MTPR or MFPR access is required.
PALcode routines can directly access IPR_KSP as needed.

At system initialization, the value of the KSP is taken from the initial HWPCB (see
Chapter 4). Table 5-1 summarizes the IPRs.

OpenVMS AXP Internal Processor Registers (II-A) 5-1

5.3 IPR Summary

Table 5-1: Internal Processor Register (IPR) Summary

Input Output Context
Register Name MnemonicAccessl RI6 RO Switched

Address Space Number ASN R number Yes

AST Enable ASTEN RJW* mask mask Yes

AST Summary Register ASTSR RJW* mask mask Yes

Data Align Trap Fixup DATFX W value Yes

Exec Stack Pointer ESP RJW address address Yes

Floating-point Enable FEN RJW value value Yes

Interprocessor Int. Request IPIR W number No

Interrupt Priority Level IPL RJW* value value No

Kernel Stack Pointer KSP None Yes

Machine Check Error Summary MCES RJW value value No

Performance Monitor PERFMON W* IMP IMP No

Privileged Context Block Base PCBB R address No

Processor Base Register PRBR RJW value value No

Page Table Base Register PTBR R frame Yes

System Control Block Base SCBB RJW frame frame No

Software Int. Request Register SIRR W level No

Software Int. Summary Register SISR R mask No

Supervisor Stack Pointer SSP RJW address address Yes

TB Check TBCHK R number status No

TB Invalid. All TBIA W No

TB Invalid. All Process TBIAP W No

TB Invalid. Single TBIS W address No

TB Invalid. Single Data TBISD W address No

TB Invalid. Single Instruct. TBISI W address No

User Stack Pointer USP RJW address address Yes

Virtual Page Table Base VPTB RJW address address No

Who-Am-I WHAMI R number No

lAccess symbols are defined in Table 5-2.

5-2 OpenVMS AXP Software (II-A)

Table 5-2: Internal Processor Register (IPR) Access Summary

Access
Type Meaning

R Access by MFPR only.

W Access by MTPR only.

RJW Access by MFPR or MTPR.

W* Read and Write access accomplished by MTPR. See Section 5.1 for details.

RJW* Access by MFPR or MTPR. Read and Write access accomplished by MTPR. See Section 5.1 for details.

None Not accessible by MTPR or MFPR; accessed by PALcode routines as needed.

OpenVMS AXP Internal Processor Registers (II-A) 5-3

•

5.3.1 Address Space Number (ASN)

Access:

Read

Operation:

IF {ASN are implemented} THEN
RO ~ ZEXT (ASN)

ELSE
RO ~ 0

Value at System Initialization:

Zero

Format:

Figure 5-1: Address Space Number Register (ASN)

~ 0

I
Address Space Number I

1-- _

AD

Description:

Address Space Numbers (ASNs) are used to further qualify Translation Buffer
references. See Chapter 3. If ASNs are implemented, the current ASN may be
read by executing an MFPR instruction specifying ASN.

As processes are scheduled for execution, the ASN for the next process to execute is
loaded using the Swap Privileged Context (SWPCTX) instruction. See Section 2.6.7
and Chapter 4.

The ASN register is an implicit operand to the CALL_PAL MFPR_IPR, TBCHK,
and TBISx PALcode instructions, in which it is used to qualify the virtual address
supplied in R16.

5-4 OpenVMS AXP Software (II-A)

5.3.2 AST Enable (ASTEN)

Access:

Read

Write*

Operation:

RO +- ZEXT (ASTEN<3:0» ! Read (MFPR)
RO +- ZEXT(ASTEN<3:0» ! Write* (MTPR)
ASTEN<3:0> +- {{ASTEN<3:0> AND R16<3:0>} OR R16<7:4>}
{check for pending ASTs}

Value at System Initialization:

Zero

Format:

Figure 5-2: AST Enable Register (ASTEN)

63 8 7 6 5 4 3 2 1 0

I
------------------------------,_US E KUSE K

IGN 0 0 0 0 C C C C
NNNNLLLL

Format of RO

63 4 3 2 1 0

I

-----EUSEK
RAZ E E E E

NNNN

Description:

The AST Enable Register records the AST enable state for each of the modes:
kernel (KEN), executive (EEN), supervisor (SEN) and user (DEN). By writing RI6
appropriately and then executing an MTPR instruction specifying ASTEN, the value
of ASTEN may be simultaneously read and modified. RI6 contains bit masks used
to determine the new value of ASTEN:

• Bits R16<O> and R16<4> control the new state of kernel enable.

• Bits R16<1> and R16<5> control the new state of executive enable.

OpenVMS AXP Internal Processor Registers (II-A) 5-5

•

• Bits R16<2> and R16<6> control the new state of supervisor enable.

• Bits R16<3> and R16<7> control the new state of user enable.

An MFPR to ASTEN reads the current value of the ASTEN and returns this value
in RO.

An MTPR to ASTEN begins by reading the current value of ASTEN and returning
this value in RO. The current value of ASTEN is then ANDed with bits R16<3:0>;
these bits preserve (if set to 1) or clear (if equal to 0) the current state of their
corresponding enable modes. The value produced by this operation is then ORed
with bits R16<7:4>; these bits turn on (if set to 1) or do not affect (if equal to 0) their
corresponding enable modes. The resulting value is then written to the ASTEN.

Note:

All AST enables can be cleared by loading a zero into R16 and executing an MTPR
instruction specifying ASTEN. To enable an AST for a given mode, load R16 with
a mask that has bits <3:0> set and one of the bits <7:4> corresponding to the
AST mode to be set. Then execute an MTPR instruction specifying ASTEN.

As processes are scheduled for execution, the state of the AST enables for the
next process to execute is loaded using the Swap Privileged Context (SWPCTX)
instruction. The Swap AST Enable (SWASTEN) instruction can be used to change
the enable state for the current access mode. See Section 2.1.12 and Chapter 4.

5-6 OpenVMS AXP Software (II-A)

5.3.3 AST Summary Register (ASTSR)

Access:

Read

Write*

Operation:

RO.- ZEXT (ASTSR<3 : 0» ! Read (MFPR)
RO.- ZEXT(ASTSR<3:0» ! Write* (MTPR)
ASTSR<3:0>.- {{ASTSR<3:0> AND R16<3:0>} OR R16<7:4>}
{check for pending ASTs}

Value at System Initialization:

Zero

Format:

Figure 5-3: AST Summary Register (ASTSR)

63 8 7 6 5 4 3 2 1 0

I
r-------------------------------:_u S E K USE K

IGN 0 0 0 0 C C C C
NNNNLLLL

A16

63 4 3 2 1 0Ir---------------R-A-Z--------------m
AO

Description:

The AST Summary Register records the AST pending state for each of the modes:
kernel (KPD), executive (EPD), supervisor (SPD), and user (UPD).

OpenVMS AXP Internal Processor Registers (II-A) 5-7

•

By writing R16 appropriately and then executing an MTPR instruction specifying
ASTSR, the value ofASTSR may be simultaneously read and modified. R16 contains
bit masks used to determine the new value of ASTSR:

• Bits RI6<0> and RI6<4> control the new state of kernel pending.

• Bits RI6<1> and RI6<5> control the new state of executive pending.

• Bits RI6<2> and RI6<6> control the new state of supervisor pending.

• Bits R16<3> and R16<7> control the new state of user pending.

An MFPR reads the current value of ASTSR and returns this value in RO.

An MT~R to ASTSR begins by reading the current value of ASTSR and returning
this value in RO. The current value of ASTSR is then ANDed with bits R16<3:0>;
these bits preserve (if set to 1) or clear (if equal to 0) the current state of their
corresponding pending modes. The value produced by this operation is then ORed
with bits R16<7:4>; these bits turn on ~f set to 1) or do not affect (if equal to 0) their
corresponding pending modes. The resulting value is then written to the ASTSR.

Note:

All AST requests can be cleared by loading a zero in R16 and executing an MTPR
instruction specifying ASTSR. To request an AST for a given mode, load R16 with
a mask that has bits <3:0> set and one of the bits <7:4> corresponding to the
AST mode to be set. Then execute an MTPR instruction specifying ASTSR.

As processes are scheduled for execution, the pending AST state for the next process
to execute is loaded using the Swap Privileged Context (SWPCTX) instruction. See
Section 2.6.7 and Chapter 4.

When the processor IPL is less than 2, and proper enabling conditions are present,
an AST interrupt is initiated at IPL 2 and the corresponding access mode bit in
ASTSR is cleared. See Section 6.7.6.

5-8 OpenVMS AXP Software (II-A)

5.3.4 Data Alignment Trap Fixup (DATFX)

Access:

Write

Operation:

DATFX ~ R16<O>
(HWPCB+56)<63> ~ DATFX

Value at System Initialization:

Zero

Format:

Figure 5-4: Data Alignment Trap Fixup (DATFX)

63 2 1 0I---------,rn
Description:

Data Alignment traps are fixed up in PALcode and are reported to the operating •
system under the control of the DAT bit. If the bit is zero, the trap is reported.
For the LDx_L and STx_C instructions, no fixup is possible and an illegal operand
exception is generated. For the description of the data alignment traps, see
Section 6.6.

OpenVMS AXP Internal Processor Registers (II-A) 5-9

5.3.5 Executive Stack Pointer (ESP)

Access:

ReadlWrite

Operation:

IF {internal registers for stack pointers} THEN
RO +- ESP

ELSE
RO +- (IPR PCBB + HWPCB_ESP)

IF {internal registers for stack pointers} THEN
ESP +- R16

ELSE
(IPR_PCBB + HWPCB_ESP) +- R16

Value at System Initialization:

Value in the initial HWPCB

Format:

Figure 5-5: Executive Stack Pointer (ESP)

Read

Write

~ 0

1L...- Sta_ckA_dd_ress 1

Description:

This register allows the stack pointer for executive mode (ESP) to be read and written
via MFPR and MTPR instructions that specify ESP.

The current stack pointer may be read and written directly by specifying scalar
register SP (R30).

As processes are scheduled for execution, the stack pointers for the next process to
execute are loaded using the Swap Privileged Context (SWPCTX) instruction. See
Section 2.6.7 and Chapter 4.

5-10 OpenVMS AXP Software (II-A)

5.3.6 Floating Enable (FEN)

Access:

ReadlWrite

Operation:

RO ~ ZEXT (FEN)

FEN ~ R16<O>
(HWPCB+56)<O> ~ FEN

Value at System Initialization:

Zero

Format:

Read

Write
Update PCB on Write

Figure 5-6: Floating Enable (FEN) Register

63 2 1 0

I~---------'rn

Description:

The floating-point unit can be disabled. If the Floating Enable Register (FEN) is
zero, all instructions that have floating registers as operands cause a floating-point
disabled fault. See Section 6.3.1.1.

OpenVMS AXP Internal Processor Registers (II-A) 5-11

•

5.3.7 Interprocessor Interrupt Request (IPIR)

Access:

Write

Operation:

IPIR +- R1G

Value at System Initialization:

Not applicable

Format:

Figure 5-7: Interprocessor Interrupt Request Register (IPIR)

~ 0

1.... pr_o_ce_ss_o_r_N_um_b_e_r ---11
R16

Description:

An interprocessor interrupt can be requested on a specified processor by writing
that processor's number into the IPIR register through an MTPR instruction. The
interrupt request is recorded on the target processor and is initiated when proper
enabling conditions are present.

Programming Note:

The interrupt need not be initiated before the next instruction is executed on the
requesting processor, even if the requesting processor is also the target processor
for the request.

For additional information on interprocessor interrupts, see Section 6.4.5.1.

5-12 OpenVMS AXP Software (II-A)

5.3.8 Interrupt Priority Level (IPL)

Access:

ReadIWrite*

Operation:

RO.- ZEXT{PS<IPL» Read
RO +- ZEXT(PS<IPL» Write*
PS<IPL> +- R16<4:0> Write
{check for pending ASTs or interrupts}

Value at System Initialization:

31

Format:

Figure 5-8: Interrupt Priority Level (IPL)

63 5 4 0I---SB-Z--8
Description:

An MFPR IPL returns the current interrupt priority level in RO. An MTPR IPL
returns the current interrupt priority level in RO and sets the interrupt priority
level to the value in R16. If proper enabling conditions are present, an interrupt or
AST is initiated prior to issuing the next instruction. See Sections 6.4.1 and 6.7.6.
R16<63:5> are defined as RAZlSBZ. Therefore, the presence of nonzero bits upon
write in R16<63:5> may cause UNDEFINED results.

OpenVMS AXP Internal Processor Registers (II-A) 5-13

•

5.3.9 Machine Check Error Summary Register (MCES)

Access:

Read/Write

Operation:

RO +- ZEXT(MCES)

IF {R16<O> EQ 1} THEN MCES<O> +- a
IF {R16<1> EQ 1} THEN MCES<l> +- a
IF {R16<2> EQ 1} THEN MCES<2> +- 0
MCES<3> +- R16<3>
MCES<4> +- R16<4>

Value at System Initialization:

Zero

Format:

Read

Write

Figure 5-9: Machine Check Error Summary Register (MCES)

63 32 31 5 4 3 2 1 0

I
IMP I Reserved ~

....._-------------_.&...,------------~

Description:

The use of the MCES IPR is described in Section 6.5.

MCK (MCES<O» is set by the hardware or PALcode when a processor or system
machine check occurs. SCE (MCES<I» is set by the hardware or PALcode when a
system correctable error occurs. PCE (MCES<2» is set by the hardware or PALcode
when a processor correctable error occurs.

Setting the corresponding bit(s) in RI6 clears MCK, SCE, and PCE. MCK is cleared
by the operating system machine check error handler and used by the hardware or
PALcode to detect double machine checks. SCE and PCE are cleared by the operating
system or processor system correctable error handlers; these bits are used to indicate
that the associated correctable error logout area may be reused by hardware or
PALcode. In the event of double correctable errors, PALcode does not overwrite

5-14 OpenVMS AXP Software (II-A)

the logout area and does not force the processor to enter console I/O mode. See
Section 6.5.1.

DPC (MCES<3» and DSC (MCES<4» are used to disable reporting of correctable
errors to system software. The generation and correction of the machine check are
not affected; only the report to system software is disabled. Setting DPC disables
reporting of processor-correctable machine checks. Setting DSC disables reporting
of system-correctable machine checks.

Implementation dependent (IMP) bits may be used to report implementation-specific
errors.

OpenVMS AXP Internal Processor Registers (II-A) 5-15

•

5.3.10 Performance Monitoring Register (PERFMON)

Access:

Write*

Operation:

R16 contains implementation specific input values
R17 contains implementation specific imput values
RO may return implementation specific values
Operations and actions taken are implementation specific

Value at System Initialization:

Implementation Dependent

Format:

Figure 5-10: Performance Monitoring Register (PERFMON)

~ 0

I IMP I

Description:

The arguments and actions of this performance monitoring function are platform and
chip dependent. The functions, when defined for an implementation, are described
in Appendix D.

RI6 and RI7 contain implementation dependent input values. Implementation
specific values may be returned in RO.

5-16 OpenVMS AXP Software (II-A)

5.3.11 Privileged Context Block Base (PCBB)

Access:

Read

Operation:

RO +- ZEXT(PCBB)

Value at System Initialization:

Address of processor's bootstrap HWPCB

Format:

Figure 5-11: Privileged Context Block Base Register (PCBB)

63 4847 0

11..- AA_Z ~I P_hY_S_iC_al_A_dd_re_s_s 1

AO

Description:

The Privileged Context Block Base Register contains the physical address of the
privileged context block for the current process. It may be read by executing an
MFPR instruction specifying PCBB.

PCBB is written by the Swap Privileged Context (SWPCTX) instruction. See
Section 2.6.7 and Chapter 4.

OpenVMS AXP Internal Processor Registers (II-A) 5-17

•

5.3.12 Processor Base Register (PRBR)

Access:

ReadIWrite

Operation:

RO ~ PRBR

PRBR ~ R16

Value at System Initialization:

UNPREDICTABLE

Format:

Read

Write

Figure 5-12: Processor Base Register (PRBR)

~ 0

I
Operating System-Dependent Value I

"'---- -------1

Description:

In a multiprocessor system, it is desirable for the operating system to be able to
locate a processor-specific data structure in a simple and straightforward manner.
The Processor Base Register provides a quadword of operating system-dependent
state that can be read and written via MFPR and MTPR instructions that specify
PRBR.

5-18 OpenVMS AXP Software (II-A)

5.3.13 Page Table Base Register (PTBR)

Access:

Read

Operation:

RO ~ PTBR

Value at System Initialization:

Value in the bootstrap HWPCB

Format:

Figure 5-13: Page Table Base Register (PTBR)

63 3231 0

11..-- RAz -----I-I p_age_Fra_rne_Nu_rnb_er__I

RO

Description:

The Page Table Base Register contains the page frame number of the first-level page
table for the current process. It may be read by executing an MFPR instruction
specifying PTBR. See Chapter 3.

As processes are scheduled for execution, the PTBR for the next process to execute is
loaded using the Swap Privileged Context (SWPCTX) instruction. See Section 2.6.7
and Chapter 4.

OpenVMS AXP Internal Processor Registers (II-A) 5-19

•

5.3.14 System Control Block Base (SCBB)

Access:

Read/Write

Operation:

RO +- ZEXT(SCBB)

SCBB +- R16

Value at System Initialization:

UNPREDICTABLE

Format:

Read

Write

Figure 5-14: System Control Block Base Register (SCBB)

63 3231 0

11-.. I_GN_'_RA_Z ---I..I p_a
9
_e_F_ra_m_e_N_um_b_e_r I

Description:

The System Control Block Base Register holds the Page Frame Number (PFN) of
the System Control Block, which is used to dispatch exceptions and interrupts, and
may be read and written by executing MFPR and MTPR instructions that specify
SCBB. See Section 6.6.

When SCBB is written, the specified physical address must be the PFN of a page
that is neither in 110 space nor nonexistent memory, or UNDEFINED operation will
result.

5-20 OpenVMS AXP Software (II-A)

5.3.15 Software Interrupt Request Register (SIRR)

Access:

Write

Operation:

IF R16<3:0> NE 0 THEN
SISR<R16<3:0» +- 1

Value at System Initialization:

Not applicable

Format:

Figure 5-15: Software Interrupt Request Register (SIRR)

63 4 3 0

I~--I-GN-----,B
R16

Description:

A software interrupt may be requested for a particular Interrupt Priority Level
(IPL) by executing an MTPR instruction specifying SIRR. Software interrupts may
be requested at levels 0 through 15 (requests at level 0 are ignored).

An MTPR SIRR sets the bit corresponding to the specified interrupt level in the
Software Interrupt Summary Register (SISR).

If proper enabling conditions are present, a software interrupt is initiated prior to
issuing the next instruction. See Sections 6.4.1 and 6.7.6.

OpenVMS AXP Internal Processor Registers (II-A) 5-21

•

5.3.16 Software Interrupt Summary Register (SISR)

Access:

Read

Operation:

RO +- ZEXT(SISR<15:0»

Value at System Initialization:

Zero

Format:

Figure 5-16: Software Interrupt Summary Register (SISR)

63 1615141312 1110 9 8 7 6 5 4 3 2 1 0

I I I I I I I I I I I I I I IR
RAZ RR RR RR RR RR RR RR RA

FE DC SA 9 8 7 6 5 4 3 2 1 Z

RO

Description:

The Software Interrupt Summary Register records the interrupt pending state for
each of the interrupt levels 1 through 15. The current interrupt pending state may
be read by executing an MFPR instruction specifying SISR.

MTPR SIRR (see SIRR) requests an interrupt at a particular interrupt level and
sets the corresponding pending bit in SISR.

When the processor IPL falls below the level of a pending request, an interrupt is
initiated and the corresponding bit in SISR is cleared; see Sections 6.4.1 and 6.7.6.

5-22 OpenVMS AXP Software (II-A)

5.3.17 Supervisor Stack Pointer (SSP)

Access:

ReadlWrite

Operation:

IF {internal registers for stack pointers} THEN
RO ~ SSP

ELSE
RO ~ (IPR_PCBB + HWPCB_SSP)

IF {internal registers for stack pointers} THEN
SSP ~ R16

ELSE
(IPR_PCBB + HWPCB_SSP) ~ R16

Value at System Initialization:

Value in the initial HWPCB

Format:

Read

Write

Figure 5-17: Supervisor Stack Pointer (SSP)

63 0

1~ S_ta_c_k_A_dd_r_es_s 1

Description:

The Supervisor Stack Pointer register allows the stack pointer for supervisor mode
(SSP) to be read and written via MFPR and MTPR instructions that specify SSP.

The current stack pointer may be read and written directly by specifying scalar
register SP (R30).

As processes are scheduled for execution, the stack pointers for the next process to
execute are loaded using the Swap Privileged Context (SWPCTX) instruction. See
Section 2.6.7 and Chapter 4.

OpenVMS AXP Internal Processor Registers (II-A) 5-23

•

5.3.18 Translation Buffer Check (TBCHK)

Access:

Read

Operation:

RO +- 0
IF {implemented} THEN

RO<O> +- {entry in TB for VA in R16}
ELSE

RO<63> +- 1

Value at System Initialization:

Correct results are always returned

Format:

Figure 5-18: Translation Buffer Check Register (TBCHK)

~ 0

I

Virtual Address I

R16
6362 2 10

~--------------R-AZ--------------~~

RO

Description:

The Translation Buffer Check Register provides the capability to determine if
a virtual address is present in the Translation Buffer by executing an MFPR
instruction specifying TBCHK. See Chapter 3.

The virtual address to be checked is specified in R16 and may be any address within
the desired page. If ASNs are implemented, only those Translation Buffer entries
that are associated with the current value of the ASN IPR will be checked for the
virtual address. The value read contains an indication of whether the function is
implemented and whether the virtual address is present in the Translation Buffer.

5-24 OpenVMS AXP Software (II-A)

If the function is not implemented, a value is returned with bit <63> set and bit <0>
clear. Otherwise, a value is returned with bit <63> clear, and with bit <0> indicating
whether the virtual address is present in (1) or absent from (0) the Translation
Buffer.

The TBCHK register can be used by system software for working set management.

OpenVMS AXP Internal Processor Registers (II-A) 5-25

I

5.3.19 Translation Buffer Invalidate All (TBIA)

Access:

Write

Operation:

{Invalidate all TB entries}

Value at System Initialization:

Not applicable

Format:

Figure 5-19: Translation Buffer Invalidate All Register (TBIA)

~ 0

I Unused I
"'-----------
R16

Description:

The Translation Buffer Invalidate All Register provides the capability to invalidate
all entries in the Translation Buffer by executing an MTPR instruction specifying
TBIA. See Chapter 3.

5-26 OpenVMS AXP Software (II-A)

5.3.20 Translation Buffer Invalidate All Process (TBIAP)

Access:

Write

Operation:

{Invalidate all TB entries with PTE<ASM> clear}

Value at System Initialization:

Not applicable

Format:

Figure 5-20: Translation Buffer Invalidate All Process Register (TBIAP)

~ 0

1~ unused 1
R16

Description:

The Translation Buffer Invalidate All Process Register provides the capability to
invalidate all entries in the Translation Buffer that do not have the ASM bit set by
executing an MTPR instruction specifying TBIAP. See Chapter 3.

Notes:
More entries may be invalidated by this operation.
implementations may flush the entire TB on a TBIAP.

For example, some •

OpenVMS AXP Internal Processor Registers (II-A) 5-27

5.3.21 Translation Buffer Invalidate Single (TBISx)

Access:

Write

Operation:

TBIS:
{Invalidate single Data TB entry using R16}
{Invalidate single Instruction TB entry using R16}

TBISD:
{Invalidate single Data TB entry using R16}

TBISI:
{Invalidate single Instruction TB entry using R16}

Value at System Initialization:

Not applicable

Format:

Figure 5-21: Translation Buffer Invalidate Single (TBIS)

~ 0

1o.- V_irt_u_a_1A_d_d_re_ss 1
R16

Description:

The Translation Buffer Invalidate Single Registers provide the capability to
invalidate a single entry in the Instruction Translation Buffer (TBISI), the Data
Translation Buffer (TBISD), or both translation buffers (TBIS). The virtual address
to be invalidated is passed in RI6 and may be any address within the desired page.

Notes:
More than the single entry may be invalidated by this operation. For example some
implementations may flush the entire TB on a TBIS. As a result, if the specified
address does not match any entry in the Translation Buffer, then it is implementation
dependent whether the state of the Translation Buffer is affected by the operation.

5-28 OpenVMS AXP Software (II-A)

5.3.22 User Stack Pointer (USP)

Access:

ReadlWrite

Operation:

IF {internal registers for stack pointers} THEN
RO +- USP

ELSE
RO +- (IPR_PCBB + HWPCB_USP)

IF {internal registers for stack pointers} THEN
USP +- R1G

ELSE
(IPR_PCBB + HWPCB_USP) +- R1G

Value at System Initialization:

Value in the initial HWPCB

Format:

Read

Write

Figure 5-22: User Stack Pointer (USP)

63 0

1 s_ta_c_k_A_dd_re_s_s 1

Description:

This register allows the stack pointer for user mode (USP) to be read and written
via MFPR and MTPR instructions that specify USP.

The current stack pointer may be read and written directly by specifying scalar
register SP (R30).

As processes are scheduled for execution, the two stack pointers for the next process
to execute are loaded using the Swap Privileged Context (SWPCTX) instruction. See
Section 2.6.7 and Chapter 4.

OpenVMS AXP Internal Processor Registers (II-A) 5-29

•

5.3.23 Virtual Page Table Base (VPTB)

Access:

ReadIWrite

Operation:

RO <f- VPTB

VPTB <f- R16

Value at System Initialization:

Read

Write

Initialized by the console in the bootstrap address space.

Format:

Figure 5-23: Virtual Page Table Base Register (VPTB)

~ 0

1..... V_A_O_fp_a_9_eT_a_b_le_S_tru_c_tu_re 1

AO

Description:

The Virtual Page Table Base Register contains the virtual address of the base of
the entire three-level page table structure. It may be read by executing an MFPR
instruction specifying VPTB. It is written at system initialization using an MTPR
instruction specifying VPTB. See Section 3.7.2 and Console Interface (]]]), Chapter
3 for initialization considerations.

5-30 OpenVMS AXP Software (II-A)

5.3.24 Who-Am-I (WHAMI)

Access:

Read

Operation:

RO +- WHAM!

Value at System Initialization:

Processor number

Format:

Figure 5-24: Who-Am-I Register (WHAMI)

~ 0

1 p_ro_c_es_s_or_N_u_m_b_er I

RO

Description:

The Who-Am-I Register provides the capability to read the current processor number •
by executing an MFPR instruction specifying WHAMI. The processor number
returned is in the range 0 to the number of processors minus one that can be
configured in the system. Processor number FFFF FFFF FFFF FFFF16 is reserved.

The current processor number is useful in a multiprocessing system to index
arrays that store per processor information. Such information is operating system
dependent.

OpenVMS AXP Internal Processor Registers (II-A) 5-31

Chapter 6

OpenVMS AXP Exceptions, Interrupts, and Machine
Checks (II-A)

6.1 Introduction

At certain times during the operation of a system, events within the system require
the execution of software outside the explicit flow of control. When such an
exceptional event occurs, an Alpha AXP processor forces a change in control flow
from that indicated by the current instruction stream. The notification process for
such events is of one of three types:

• Exceptions

These events are relevant primarily to the currently executing process and
normally invoke software in the context of the current process. The three types
of exceptions are faults, arithmetic traps, and synchronous traps. Exceptions are
described in Section 6.3.

• Interrupts

These events are primarily relevant to other processes, or to the system as a
whole, and are typically serviced in a systemwide context.

Some interrupts are ofsuch urgency that they require high-priority service, while
others must be synchronized with independent events. To meet these needs, each
processor has priority logic that grants interrupt service to the highest priority
event at any point in time. Interrupts are described in Section 6.4.

• Machine Checks

These events are generally the result of serious hardware failure. The registers
and memory are potentially in an indeterminate state such that the instruction
execution cannot necessarily be correctly restarted, completed, simulated, or
undone. Machine checks are described in Section 6.5.

For all such events, the change in flow of control involves changing the Program
Counter (PC), possibly changing the execution mode (current mode) and/or interrupt
priority level (IPL) in the Processor Status (PS), and saving the old values of the
PC and PS. The old values are saved on the target stack as part of an Exception,
Interrupt, or Machine Check Stack Frame. Collectively, those elements are described
in Section 6.2.

The service routines that handle exceptions, interrupts, and machine checks are
specified by entry points in the System Control Block (SCB), described in Section 6.6.

OpenVMS AXP Exceptions, Interrupts, and Machine Checks (II-A) 6-1

I

Return from an exception, interrupt, or machine check, is done via the CALL_PAL
REI instruction. As part of its work, CALL_PAL REI restores the saved values of
PC and PS and pops them off the stack.

6.1.1 Differences Between Exceptions, Interrupts, and Machine Checks
Generally, exceptions, interrupts, and machine checks are similar. However, there
are four important differences:

1. An exception is caused by the execution of an instruction. An interrupt is caused
by some activity in the system that may be independent of any instruction. A
machine check is associated with a hardware error condition.

2. The IPL ofthe processor is not changed when the processor initiates an exception.
The IPL is always raised when an interrupt is initiated. The IPL is always
raised when a machine check is initiated, and for all machine checks other than
system correctable, is raised to 31 (highest priority level). (For system correctable
machine checks, the IPL is raised to 20.)

3. Exceptions are always initiated immediately, no matter what the processor IPL
is. Interrupts are deferred until the processor IPL drops below the IPL of the
requesting source. Machine checks can be initiated immediately or deferred,
depending on error conditions.

4. Some exceptions can be selectively disabled by selecting instructions that do
not check for exception conditions. If an exception condition occurs in such an
instruction, the condition is totally ignored and no state is saved to signal that
condition at a later time.

If an interrupt request occurs while the processor IPL is equal to or greater than
that of the interrupting source, the condition will eventually initiate an interrupt
if the interrupt request is still present and the processor IPL is lowered below
that of the interrupting source.

Machine checks cannot be disabled. Machine checks can be initiated immediately
or deferred, depending on the error condition. Also, they can be deliberately
generated by software.

6.1.2 Exceptions, Interrupts, and Machine Checks Summary
Table 6-1 summarizes the actions taken on an exception, interrupt, or machine
check. The remaining sections in this chapter describe those actions in greater
detail.

• The "SavedPC" column describes what is saved in the "PC" field of the exception
or interrupt or machine check stack frame.

1. "Current" indicates the PC of the instruction at which the exception or
interrupt or machine check was taken,

2. "Next" indicates the PC of the successor instruction.

6-2 OpenVMS AXP Software (II-A)

• The "NewMode" column specifies the mode and stack that the exception or
interrupt or machine check routine will start with. For change mode traps,
"MostPrv" indicates the more privileged of the current and new modes.

• The "R2" column specifies the value with which R2 is loaded, after its original
value has been saved in the exception or interrupt or machine check stack frame.
The SCB vector quadword, "SCBv", is loaded into R2 for all interrupts and
exceptions and machine checks.

• The "R3" column specifies the value with which R3 is loaded, after its original
value has been saved in the exception or interrupt or machine check stack frame.
The SCB parameter quadword, "SCBp", is loaded into R3 for all interrupts and
exceptions and machine checks.

• The "R4" column specifies the value with which R4 is loaded, after its original
value has been saved in the exception or interrupt or machine check stack frame.
If the "R4" column is blank the value in R4 is UNPREDICTABLE on entry to an
interrupt or exception.

1. "VA" indicates the exact virtual address that triggered a memory management
fault or data alignment trap.

2. "Mask" indicates the Register Write Mask.

3. "LAOff" indicates the offset from the base of the logout area in the HWRPB
(see Section 6.5.2).

• The "R5" column specifies the value with which R5 is loaded, after its original
value has been saved in the exception or interrupt or machine check stack frame.
If the "R5" column is blank the value in R5 is UNPREDICTABLE on entry to an
interrupt or exception or machine check.

1. "MMF" indicates the Memory Management Flags.

2. "Exc" indicates the Exception Summary parameter.

3. "RW" indicates ReadILoad =0 Write/Store =1 for data alignment traps I

OpenVMS AXP Exceptions, Interrupts, and Machine Checks (II-A) 6-3

Table 6-1: Exceptions, Interrupts, and Machine Checks Summary

SavedPC NewMode R2 R3 R4 R5

Exceptions • Faults

Floating Disabled Fault Current Kernel SCBv SCBp

Memory Management Faults

Access Control Violation Current Kernel SCBv SCBp VA MMF

Translation Not Valid Current Kernel SCBv SCBp VA MMF

Fault on Read Current Kernel SCBv SCBp VA MMF

Fault on Write Current Kernel SCBv SCBp VA MMF

Fault on Execute Current Kernel SCBv SCBp VA MMF

Exceptions • Arithmetic Traps

Arithmetic Traps Next Kernel SCBv SCBp Mask Exc

Exceptions • Synchronous Traps

Breakpoint Trap Next Kernel SCBv SCBp

Bugcheck Trap Next Kernel SCBv SCBp

Change Mode to KlEISIU Next MostPrv SCBv SCBp

Illegal Instruction Next Kernel SCBv SCBp

Illegal Operand Next Kernel SCBv SCBp

Data Alignment Trap Next Kernel SCBv SCBp VA RW

Interrupts

Asynch System Trap (4) Current Kernel SCBv SCBp

Interval Clock Current Kernel SCBv SCBp

Interprocessor Interrupt Current Kernel SCBv SCBp

Software Interrupts Current Kernel SCBv SCBp

Performance Current Kernel SCBv SCBp IMP IMP
monitor

Passive Release Current Kernel SCBv SCBp

Powerfail Current Kernel SCBv SCBp

I/O Device Current Kernel SCBv SCBp

6-4 OpenVMS AXP Software (II-A)

Table 6-1 (Cont.): Exceptions, Interrupts, and Machine Checks Summary

SavedPC NewMode R2 R3 R4 R5

Machine Checks

Processor Correctable

System Correctable

System

Processor

Current Kernel SCBv SCBp LAOff

Current Kernel SCBv SCBp LAOff

Current Kernel SCBv SCBp LAOff

Current Kernel SCBv SCBp LAOff

I

OpenVMS AXP Exceptions, Interrupts, and Machine Checks (II-A) 6-5

6.2 Processor State and ExceptionnnterruptiMachine Check Stack
Frame

Processor state consists of a quadword of privileged information called the Processor
Status (PS) and a quadword containing the Program Counter (PC), which is the
virtual address of the next instruction.

When an exception, interrupt, or machine check is initiated, the current processor
state during the exception, interrupt, or machine check must be preserved. This is
accomplished by automatically pushing the PS and the PC on the target stack.

Subsequently, instruction execution can be continued at the point of the exception,
interrupt, or machine check by executing a CALL_PAL REI instruction (see
Section 2.1.10).

Process context such as memory mapping information is not saved or restored on
each exception, interrupt, or machine check. Instead, it is saved and restored when
process context switching is performed. Other processor status is changed even less
frequently (see Chapter 4).

6.2.1 Processor Status
The PS can be explicitly read with the CALL_PAL RD_PS instruction. The PS<SW>
field can be explicitly written with the CALL_PAL WR_PS_SW instruction. See
Section 2.1.

The terms current PS and saved PS are used to distinguish between this status
information when it is stored internal to the processor and when copies of it are
materialized in memory.

Figure 6-1: Current Processor Status (PS Register)

63 1312 8 7 6 5 4 3 2 1 01------------M-e-z------------.,EmHB
Figure 6-2: Saved Processor Status (PS on Stack)

63 62 5655

~SP_ALlGNI

6-6 OpenVMS AXP Software (II-A)

Mez 1312 8 7 6 5 4 3 2 1 0

EIHB

Table 6-2: Processor Status Register Summary

Bits Description

63-62

61-56

55-13

12-8

7

Reserved to Digitial, MBZ.

Stack alignment (SP_ALIGN). The previous stack byte alignment within a 64 byte
aligned area, in the range 0 to 63. This field is set in the saved PS during the act
of taking an exception or interrupt; it is used by the CALL_PAL REI instruction to
restore the previous stack byte alignment.

Reserved to Digital, MBZ.

Interrupt priority level (IPL). The current processor priority, in the range 0 to 31.

Virtual machine monitor (VMM). When set, the processor is executing in a virtual
machine monitor. When clear, the processor is running in either real or virtual
machine mode.

Programming Note:

This bit is only meaningful when running with PALcode that implements virtual
machine capabilities.

6-5 Reserved to Digital, MBZ.

4-3 Current mode (CM). The access mode of the currently executing process as follows:

0 Kernel

1 Executive

2 Supervisor

3 User

2

1-0

Interrupt pending (IP). Set when an interrupt (software or hardware but not AST)
is initiated; indicates an interrupt is in progress.

Reserved for Software (SW). These bits are reserved for software use and can be
read and written at any time by the software, regardless of the current mode. The
value of these bits is ignored by the hardware. The software field is set to zero at
the initiation of either an exception or an interrupt. I

At bootstrap, the initial value of PS is set to 1F0016. Previous stack alignment is
zero, IPL is 31, VMM is clear, CM is kernel, and the SW and IP fields are zero.

6.2.2 Program Counter

The PC (Figure 6-3) is a 64-bit virtual address. All instructions are aligned on
longword boundaries and, therefore, hardware can assume zero for the two low
order PC bits.

The PC can be explicitly read with the Unconditional Branch (BR) instruction. All
branching instructions also load a new value into the PC.

The PC is discussed in Section 6.2.6.

OpenVMS AXP Exceptions, Interrupts, and Machine Checks (II-A) 6-7

Figure 6-3: Program Counter (PC)

,63 ..::..2 1 0

1
1......---- IAl~1_ Instruction Virtual Address <63:2> l£J

6.2.3 Processor Interrupt Priority Level (IPL)
Each processor has 32 interrupt priority levels (IPLs) divided into 16 software levels
(numbered 0 to 15), and 16 hardware levels (numbered 16 to 31). User applications
and most operating system software run at IPL 0, which may be thought of as
process level. Higher numbered interrupt levels have higher priority; that is, any
request at an interrupt level higher than the processor's current IPL will interrupt
immediately, but requests at lower or equal levels are deferred.

Interrupt levels 0 to 15 exist solely for use by software. No hardware event can
request an interrupt on these levels. Conversely, interrupt levels 16 to 31 exist
solely for use by hardware. Serious system failures, such as a machine check abort,
however, raise the IPL to the highest level (31), to minimize processor interruption
until the problem is corrected, and execute in kernel mode on the kernel stack.

6.2.4 Protection Modes
Each processor has four protection modes: kernel, executive, supervisor, and user.
Per-page memory protection varies as a function of mode (for example, a page can
be made read-only in user mode, but read-write in supervisor, executive, or kernel
mode).

For each process, a separate stack is associated with each mode. Corruption of one
stack does not affect use of the other stacks.

Some instructions, termed privileged instructions, may be executed only in kernel
mode.

6.2.5 Processor Stacks
Each processor has four stacks. There are four process-specific stacks associated
with the four modes of the current process. At any given time, only one of these
stacks is actively used as the current stack.

6.2.6 Stack Frames
When an exception, interrupt, or machine check occurs, a stack frame (Figure 6-4)
is pushed on the target stack. Regardless of the type of event notification, this
stack frame consists of a 64-byte-aligned structure that contains the saved contents
of registers R2..R7, the Program Counter (PC), and the Processor Status (PS).
Registers R2 and R3 are then loaded with vector and parameter from the SCB for the
exception, interrupt, or machine check. Registers R4 and R5 may be loaded with data
pertaining to the exception, interrupt, or machine check. The specific data loaded is
described below in conjunction with each exception, interrupt, or machine check; if

6-8 OpenVMS AXP Software (II-A)

no specific data is specified, the contents ofR4 and R5 are UNPREDICTABLE. After
the stack is built, the contents of registers R6 and R7 are UNPREDICTABLE.

The Program Counter value that is saved in the stack frame is:

• For faults, the instruction that encountered the exception.

• For traps, the next instruction.

• For interrupts and (on a best-effort basis) machine checks, the instruction that
would have been issued if the interrupt or machine-check condition had not
occurred.

Return from an exception, interrupt, or machine check is done via the CALL_PAL
REI instruction, which restores the saved values of PC, PS, and R2..R7. Thus, the
CALL_PAL REI instruction:

• For faults, re-executes the faulting instruction.

• For traps, executes the next instruction.

• For interrupts, executes the instruction that would have been executed if the
interrupt had not occurred.

• For machine checks, continues execution from the point at which the machine
check was taken.

Figure 6-4: Stack Frame

63

R2

A3

A4

R5

A6

R7

Program Counter (PC)

Processor Status (PS)

:SP

:+08

:+16

I:+24

:+32

:+40

:+48

:+56

6.3 Exceptions

Exception service routines execute in response to exception conditions caused by
software. Most exception service routines execute in kernel mode, on the kernel
stack; all exception service routines execute at the current processor IPL. Change
mode exception routines for CHMU/CHMS/CHME execute in the more privileged
of the current mode or the target mode (U/SIE), on the matching stack. Exception

OpenVMS AXP Exceptions, Interrupts, and Machine Checks (II-A) 6-9

service routines are usually coded to avoid exceptions; however, nested exceptions
can occur.

Types of Exceptions
There are three types of exceptions:

• A fault is an exception condition that occurs during an instruction and leaves
the registers and memory in a consistent state such that elimination of the fault
condition and subsequent re-execution of the instruction will give correct results.
Faults are not guaranteed to leave the machine in exactly the same state it was
in immediately prior to the fault, but rather in a state such that the instruction
can be correctly executed if the fault condition is removed. The PC saved in the
exception stack frame is the address of the faulting instruction. A CALL_PAL
REI instruction to this PC will reexecute the faulting instruction.

• An arithmetic trap is an exception condition that occurs at the completion of
the operation that caused the exception. Because several instructions may be
in various stages of execution at any point in time, it is possible for multiple
arithmetic traps to occur simultaneously. The PC that is saved in the exception
frame on traps is that of the next instruction that would have been issued if the
trapping condition(s) had not occurred. This is not necessarily the address of the
instruction immediately following the one(s) encountering the trap condition, and
intervening instructions may have changed operands or other state used by the
instruction(s) encountering the trap condition(s). A CALL_PAL REI instruction
to this PC will not reexecute the trapping instruction(s), nor will it reexecute
any intervening instructions; it will simply continue execution from the point at
which the trap was taken.

In general, it is difficult to fix up results and continue program execution at the
point of an arithmetic trap. Software can force a trap to be continued more easily
without the need for complicated fixup code. This is accomplished by following
a set of code-generation restrictions in code that could cause arithmetic traps
that are to be completed by a software trap handler, including specifying the /S
software completion modifier in each such instruction. See Common Architecture,
Chapter 4, Imprecise / Software Completion Trap Modes.

The AND of all the software completion modifiers for trapping instructions is
provided to the arithmetic trap handler in the exception summary SWC bit. If
SWC is set, a trap handler may find the trigger instruction by scanning backward
from the trap PC until each register in the register write mask has been an
instruction destination. The trigger instruction is the first instruction in I-stream
order to get a trap within a trap shadow (See Common Architecture, Chapter 4,
Imprecise / Software Completion Trap Modes for the definition of trap shadow).
If the SWC bit is clear, no fixup is possible. (The trigger instruction may have
been followed by a taken branch, so the trap PC cannot be used to find it.)

• A synchronous trap is an exception condition that occurs at the completion of
the operation that caused the exception (or, if the operation can only be partially
carried out, at the completion of that part of the operation), and no subsequent
instruction is issued before the trap occurs.

6-10 OpenVMS AXP Software (II-A)

Synchronous traps are divided into data alignment traps and all other
synchronous traps.

6.3.1 Faults

The six types of faults signal that an instruction or its operands are in some way
illegal. These faults are all initiated in kernel mode and push an exception stack
frame onto the stack. Upon entry to the exception routine, the saved PC (in the
exception stack frame) is the virtual address of the faulting instruction.

The six faults include the Floating Disable Fault described in the next section and
five memory management faults.

Memory management faults occur when a virtual address translation encounters an
exception condition. This can occur as the result of instruction fetch or during a load
or store operation.

Immediately following a memory management fault, register R4 contains the exact
virtual address encountering the fault condition.

The register R5 contains the "MM Flag" quadword.

"MM Flag" is set as follows:

0000 0000 0000 000016 for a faulting data read

0000 0000 0000 000116 for a faulting I-fetch operation

8000 0000 0000 000016 for a faulting write operation

The faulting instruction is the instruction whose fetch faulted, or the load, store, or
PALcode instruction that encountered the fault condition.

Chapter 3 describes the Alpha AXP memory management architecture in more
detail.

6.3.1.1 Floating Disabled Fault I
A Floating Disabled Fault is an exception that occurs when an attempt is made to
execute a floating-point instruction and the floating-point enable (FEN) bit in the
HWPCB is not set.

6.3.1.2 Access Control Violation (ACV) Fault

An ACV fault is a memory management fault that indicates that an attempted access
to a virtual address was not allowed in the current mode.

ACV faults usually indicate program errors, but in some cases, such as automatic
stack expansion, can indicate implicit operating system functions.

ACV faults take precedence over Translation Not Valid, Fault on Read, Fault on
Write, and Fault on Execute faults.

ACV faults take precedence over Translation Not Valid faults so that a malicious
user could not degrade system performance by causing spurious page faults to pages
for which no access is allowed.

OpenVMS AXP Exceptions, Interrupts, and Machine Checks (II-A) 6-11

6.3.1.3 Translation Not Valid (TNV)

A TNV fault is a memory management fault that indicates that an attempted access
was made to a virtual address whose Page Table Entry (PTE) was not valid.

Software may use TNV faults to implement virtual memory capabilities.

6.3.1.4 Fault on Read (FOR)

An FOR fault is a memory management fault that indicates that an attempted data
read access was made to a virtual address whose Page Table Entry (PTE) had the
Fault on Read bit set.

As a part of initiating the FOR fault, the processor invalidates the Translation Buffer
entry that caused the fault to be generated.

Implementation Note:

This allows an implementation only to invalidate entries from the Data-stream
Translation Buffer on Fault On Read faults.

The Translation Buffer may reload and cache the old PTE value between the time
the FOR fault invalidates the old value from the Translation Buffer and the time
software updates the PTE in memory. Software that depends on the processor
provided invalidate must thus be prepared to take another FOR fault on a page
after clearing the page's PTE<FOR> bit. The second fault will invalidate the stale
PTE ·from the Translation Buffer, and the processor cannot load another stale copy.
Thus, in the worst case, a multiprocessor system will take an initial FOR fault and
then an additional FOR fault on each processor. In practice, even a single repetition
is unlikely.

Software may use FOR faults to implement watchpoints, to collect page usage
statistics, and to implement execute-only pages.

6.3.1.5 Fault on Write (FOW)

A FOW fault is a memory management fault that indicates that an attempted data
write access was made to a virtual address whose Page Table Entry (PTE) had the
Fault On Write bit set.

As a part of initiating the FOW fault, the processor invalidates the Translation
Buffer entry that caused the fault to be generated.

Implementation Note:

This allows an implementation only to invalidate entries from the Data-stream
Translation Buffer on Fault On Write faults.

Note that the Translation Buffer may reload and cache the old PTE value between
the time the FOW fault invalidates the old value from the Translation Buffer and the
time software updates the PTE in memory. Software that depends on the processor
provided invalidate must thus be prepared to take another FOW fault on a page
after clearing the page's PTE<FOW> bit. The second fault will invalidate the stale
PTE from the Translation Buffer, and the processor cannot load another stale copy.
Thus, in the worst case, a multiprocessor system will take an initial FOW fault and

6-12 OpenVMS AXP Software (II-A)

then an additional FOW fault on each processor. In practice, even a single repetition
is unlikely.

Software may use FOW faults to maintain modified page information, to implement
copy on write and watchpoint capabilities, and to collect page usage statistics.

6.3.1.6 Fault on Execute (FOE)

An FOE fault is a memory management fault that indicates that an attempted
instruction stream access was made to a virtual address whose Page Table Entry
(PTE) had the Fault On Execute bit set.

As a part of initiating the FOE fault, the processor invalidates the Translation Buffer
entry that caused the fault to be generated.

Implementation Note:

This allows an implementation only to invalidate entries from the Instruction
stream Translation Buffer on Fault On Execute faults.

Note that the Translation Buffer may reload and cache the old PTE value between
the time the FOE fault invalidates the old value from the Translation Buffer and the
time software updates the PTE in memory. Software that depends on the processor
provided invalidate must thus be prepared to take another FOE fault on a page after
clearing the page's PTE<FOE> bit. The second fault will invalidate the stale PTE
from the Translation Buffer, and the processor cannot load another stale copy. Thus,
in the worst case, a multiprocessor system will take an initial FOE fault and then
an additional FOE fault on each processor. In practice, even a single repetition is
unlikely.

Software may use FOE faults to implement access mode changes and protected entry
to kernel mode, to collect page usage statistics, and to detect programming errors
that try to execute data.

6.3.2 Arithmetic Traps

An arithmetic trap is an exception that occurs as the result of performing an
arithmetic or conversion operation.

If integer register R31 or floating-point register F31 is specified as the destination of
an operation that can cause an arithmetic trap, it is UNPREDICTABLE whether the
trap will actually occur, even if the operation would definitely produce an exceptional
result. If the operation causes an arithmetic trap, the bit that corresponds to R31
or F31 in the Register Write Mask is UNPREDICTABLE.

Arithmetic traps are initiated in kernel mode and push the exception stack frame
on the kernel stack. The Register Write Mask is saved in R4, and the Exception
Summary parameter is saved in R5. These are described below.

When an arithmetic exception condition is detected, several instructions may be
in various stages of execution. These instructions are allowed to complete before
the arithmetic trap can be initiated. Some of these instructions may themselves
cause further arithmetic traps. Thus, it is possible for several arithmetic traps to
be reported simultaneously.

OpenVMS AXP Exceptions, Interrupts, and Machine Checks (II-A) 6-13

I

It is also possible for the result of an instruction that causes an arithmetic trap to
be used as an operand in a subsequent instruction before the trap is taken. If this
would produce undesired behavior, software is responsible for inserting appropriate
TRAPB or EXCB instructions to cause the trap to be recognized before the result is
used.

Integer exceptional results (integer overflow) can be forwarded to the address
calculation for load and store instructions, to the address calculation for jump
instructions, as the source data for a store instruction, or as the source data for a
conditional branch instruction. This can result in the generation of an inappropriate
address, the storing of exceptional results in memory, or an unintended branch.
If this would produce undesired behavior, software is responsible for inserting
appropriate TRAPB instructions to cause the trap to be recognized before the result
is used.

6.3.2.1 Exception Summary Parameter

The Exception Summary parameter shown in (Figure 6-5) and described in Table 6-3
records the various types of arithmetic traps that can occur together. These types of
traps are described in subsections below.

Figure 6-5: Exception Summary

63 7 6 5 4 3 2 1 0

I

r-----------------------------.I I U 0 0 IS
Zero 0 N N V Z N

VEFFEVC

Table 6-3: Exception Summary
Bit Description

63-7 Zero.

6 Integer Overflow (IOV)

An integer arithmetic operation or a conversion from floating to integer overflowed the
destination precision.

5 Inexact Result (INE)

A floating arithmetic or conversion operation gave a result that differed from the
mathematically exact result.

4 Underflow (UNF)

A floating arithmetic or conversion operation underflowed the destination exponent.

3 Overflow (OVF)

A floating arithmetic or conversion operation overflowed the destination exponent.

6-14 OpenVMS AXP Software (II-A)

Table 6-3 (Cont.): Exception Summary

Bit Description

2 Division by Zero (DZE)

An attempt was made to perform a floating divide operation with a divisor of zero.

1 Invalid Operation (INV)

An attempt was made to perform a floating arithmetic, conversion, or comparison
operation, and one or more of the operand values were illegal.

o Software Completion (SWC)

Is set when all of the other arithmetic exception bits were set by floating-operate
instructions with the IS software completion trap modifier set. See Common
Architecture, Chapter 4, Imprecise I Software Completion Trap Modes, for rules about
setting the IS modifier in code that may cause an arithmetic trap, and Section 6.3 for
rules about using the SWC bit in a trap handler.

6.3.2.2 Register Write Mask

The Register Write Mask parameter records all registers that were targets of
instructions that set the bits in the exception summary register. There is a one
to-one correspondence between bits in the Register Write Mask quadword and the
register numbers. The quadword records, starting at bit 0 and proceeding right
to left, which of the registers RO through R31, then FO through F31, received an
exceptional result.

Note:

For a sequence such as:

ADDF Fl,F2,F3
MULF F4,F5,F3

if the add overflows and the multiply does not, the OVF bit is set in the exception
summary, and the F3 bit is set in the register mask, even though the overflowed
sum in F3 can be overwritten with an in-range product by the time the trap is
taken. (This code violates the destination reuse rule for software completion. See
Common Architecture, Chapter 4, Imprecise / Software Completion Trap Modes,
for the destination reuse rules.)

The PC value saved in the exception stack frame is the virtual address of the next
instruction. This is defined as the virtual address of the first instruction not executed
after the trap condition was recognized.

6.3.2.3 Invalid Operation (INV) Trap

An INV trap is reported for most floating-point operate instructions with an input
operand that is a VAX reserved operand, VAX dirty zero, IEEE NaN, IEEE infinity,
or IEEE denormal.

Floating INV traps are always enabled. If this trap occurs, the result register is
written with an UNPREDICTABLE value.

OpenVMS AXP Exceptions, Interrupts, and Machine Checks (II-A) 6-15

I

6.3.2.4 Division by Zero (DZE) Trap

A DZE trap is reported when a finite number is divided by zero. Floating DZE
traps are always enabled. If this trap occurs, the result register is written with an
UNPREDICTABLE value.

6.3.2.5 Overflow (OVF) Trap

An OVF trap is reported when the destination's largest finite number is exceeded in
magnitude by the rounded true result. Floating OVF traps are always enabled. If
this trap occurs, the result register is written with an UNPREDICTABLE value.

6.3.2.6 Underflow (UNF) Trap

A UNF trap is reported when the destination's smallest finite number exceeds in
magnitude the non-zero rounded true result. Floating UNF trap enable can be
specified in each floating-point operate instruction. If underflow occurs, the result
register is written with a true zero.

6.3.2.7 Inexact Result (INE) Trap

An INE trap is reported if the rounded result of an IEEE operation is not exact.
INE trap enable can be specified in each IEEE floating-point operate instruction.
The unchanged result value is stored in all cases.

6.3.2.8 Integer Overflow (IOV) Trap

An IOV trap is reported for any integer operation whose true result exceeds the
destination register size. IOV trap enable can be specified in each arithmetic integer
operate instruction and each floating-point convert-to-integer instruction. If integer
overflow occurs, the result register is written with the truncated true result.

6.3.3 Synchronous Traps
A synchronous trap is an exception condition that occurs at the completion of the
operation that caused the exception (or, if the operation can only be partially carried
out, at the completion of that part of the operation), but no successor instruction is
allowed to start. All traps that are not arithmetic traps are synchronous traps.

Some synchronous traps are caused by PALcode instructions: BPT, BUGCHK,
CHMU, CHMS, CHME, and CHMK. For synchronous traps, the PC saved in the
exception stack frame is the address of the instruction immediately following the one
causing the trap condition. A CALL_PAL REI instruction to this PC will continue
without reexecuting the trapping instruction. The following subsections describe the
synchronous traps in detail.

6.3.3.1 Data Alignment Trap

All data must be naturally aligned or an alignment trap may be generated. Natural
alignment means that data bytes are on byte boundaries, data words are on word
boundaries, data longwords are on longword boundaries, and data quadwords are
on quadword boundaries.

6-16 OpenVMS AXP Software (II-A)

A Data Alignment trap is generated by the hardware when an attempt is made to
load or store a longword or quadword to/from a register using an address that does
not have the natural alignment of the particular data reference.

Data alignment traps are fixed up by the PALcode and are optionally reported to the
operating system under the control of the DAT bit. If the bit is zero, the trap will
be reported. If the bit is set, after the alignment is corrected, control is returned to
the user. In either case, if the PALcode detects a LDx_L or STx_C instruction, no
correction is possible and an illegal operand exception is generated.

Note:

In the case of concurrently pending data alignment and arithmetic traps, it is
assumed that the arithmetic trap is reported before PALcode data alignment
fixup is performed. Otherwise, it would not be possible to back up the PC for the
synchronous data alignment trap as required by Section 6.7.4.

The system software is notified via the generation ofa kernel mode exception through
the Unaligned_Access SCB vector (28016) The virtual address of the unaligned data
being accessed is stored in R4. R5 indicates whether the operation was a read or a
write (0 =readlload 1 =write/store).

PALcode may write partial results to memory without probing to make sure all
writes will succeed when dealing with unaligned store operations.

If a memory management exception condition occurs while reading or writing part
of the unaligned data, the appropriate memory management fault is generated.

Software should avoid data misalignment whenever possible since the emulation
performance penalty may be as large as 100-to-1.

The Data Alignment trap control bit is included in the HWPCB at offset HWPCB[56] ,
bit 63. In order to change this bit for the currently executing process, the DATFX
IPR may be written via a CALL_PAL MTPR_DATFX instruction. This operation
will also update the value in the HWPCB.

6.3.3.2 Other Synchronous Traps

With the traps described in this subsection, the SCB vector quadword is saved in
R2 and the SCB parameter quadword is saved in R3. The change mode traps are
initiated in the more privileged of the current mode and the target mode, while the
other traps are initiated in kernel mode.

6.3.3.2.1 Breakpoint Trap

A Breakpoint trap is an exception that occurs when a CALL_PAL BPT instruction
is executed (see Section 2.1.1). Breakpoint traps are intended for use by debuggers
and can be used to place breakpoints in a program.

Breakpoint traps are initiated in kernel mode so that system debuggers can capture
breakpoint traps that occur while the user is executing system code.

OpenVMS AXP Exceptions, Interrupts, and Machine Checks (II-A) 6-17

•

6.3.3.2.2 Bugcheck Trap

A Bugcheck trap is an exception that occurs when a CALL_PAL BUGCHK
instruction is executed (see Section 2.1.2). Bugchecks are used to log errors detected
by software.

6.3.3.2.3 Illegal Instruction Trap

An Illegal Instruction trap is an exception that occurs when an attempt is made to
execute an instruction when:

• It has an opcode that is reserved to Digital or reserved to PALcode.

• It is a subsetted opcode that requires emulation on the host implementation.

• It is a privileged instruction and the current mode is not kernel.

• It has an unused function code for those opcodes defined as reserved in the
Version 5 Alpha AXP architecture specification (May 1992).

6.3.3.2.4 Illegal Operand Trap

An Illegal Operand trap occurs when an attempt is made to execute PALcode with
operand values that are illegal or reserved for future use by Digital.

Illegal operands include:

• An invalid combination of bits in the PS restored by the CALL_PAL REI
instruction.

• An unaligned operand passed to PALcode.

6.3.3.2.5 Generate Software Trap

A Generate Software trap is an exception that occurs when a CALL_PAL GENTRAP
instruction is executed (see Section 2.1.7). The intended use is for low-level compiler
generated code that detects conditions such as divide-by-zero, range errors, subscript
bounds, and negative string lengths.

6.3.3.2.6 Change Mode to Kernel Trap

A Change Mode to Kernel trap is an exception that occurs when a CALL_PAL CHMK
instruction is executed (see Section 2.1.4). Change Mode to Kernel traps are initiated
in kernel mode and push the exception frame on the kernel stack.

6.3.3.2.7 Change Mode to Executive Trap

A Change Mode to Executive trap is an exception that occurs when a CALL_PAL
CHME instruction is executed (see Section 2.1.3). Change Mode to Executive traps
are initiated in the more privileged of the current mode and Executive mode, and
push the exception frame on the target stack.

6-18 OpenVMS AXP Software (II-A)

6.3.3.2.8 Change Mode to Supervisor Trap

A Change Mode to Supervisor trap is an exception that occurs when a CALL_PAL
CHMS instruction is executed (see Section 2.1.5). Change Mode to Supervisor traps
are initiated in the more privileged of the current mode and supervisor mode, and
push the exception frame on the target stack.

6.3.3.2.9 Change Mode to User Trap

A Change Mode to User trap is an exception that occurs when a CALL_PAL CHMU
instruction is executed (see Section 2.1.6). Change Mode to User traps are initiated
in the more privileged of the current mode and user mode, and push the exception
frame on the target stack.

6.4 Interrupts

The processor arbitrates interrupt requests according to priority. When the priority
of an interrupt request is higher than the current processor IPL, the processor will
raise the IPL and service the interrupt request. The interrupt service routine is
entered at the IPL of the interrupting source, in kernel mode, and on the kernel
stack. Interrupt requests can come from I/O devices, memory controllers, other
processors, or the processor itself.

The priority level of one processor does not affect the priority level of other
processors. Thus, in a multiprocessor system, interrupt levels alone cannot be used
to synchronize access to shared resources.

Synchronization with other processors in a multiprocessor system involves a
combination of raising the IPL and executing an interlocking instruction sequence.
Raising the IPL prevents the synchronization sequence itself from being interrupted
on a single processor while the interlock sequence guarantees mutual exclusion
with other processors. Alternately, one processor can issue explicit interprocessor
interrupts (and wait for acknowledgment) to put other processors in a known
software state, thus achieving mutual exclusion.

In some implementations, several instructions may be in various stages of execution
simultaneously. Before the processor can service an interrupt request, all active
instructions must be allowed to complete without exception. Thus, when an
exception occurs in a currently active instruction, the exception is initiated and
the exception stack frame built immediately before the interrupt is initiated and its
stack frame built.

The following events will cause an interrupt:

• Software interrupts - IPL 1 to 15

• Asynchronous System Traps - IPL 2

• Passive Release interrupts - IPL 20 to 23

• I/O Device interrupts - IPL 20 to 23

• Interval Clock interrupt - IPL 22

OpenVMS AXP Exceptions, Interrupts, and Machine Checks (II-A) 6-19

•

• Interprocessor interrupt - IPL 22

• Performance Monitor interrupt - IPL 29

• Powerfail interrupt - IPL 30

Interrupts are initiated in kernel mode and push the interrupt stack frame of eight
quadwords onto the kernel stack. The PC saved in the interrupt stack frame is
the virtual address of the first instruction not executed after the interrupt condition
was recognized. A CALL_PAL REI instruction to the saved PCIPS will continue
execution at the point of interrupt.

Each interrupt source has a separate vector location (offset) within the System
Control Block (SCB). (See Section 6.6.) With the exception of I/O device interrupts,
each of the above events has a unique fixed vector. I/O device interrupts occupy a
range of vectors that can be both statically and dynamically assigned. Upon entry to
the interrupt service routine, R2 contains the SCB vector quadword and R3 contains
the SCB parameter quadword. For Corrected Error interrupts, R4 optionally locates
additional information (see Section 6.5.2).

In order to reduce interrupt overhead, no memory mapping information is changed
when an interrupt occurs. Therefore, the instructions, data, and the contents of the
interrupt vector for the interrupt service routine must be present in every process
at the same virtual address.

Interrupt service routines should follow the discipline of not lowering IPL below
their initial level. Lowering IPL in this way could result in an interrupt at an
intermediate level, which would cause the stack nesting to be incorrect.

Kernel mode software may need to raise and lower IPL during certain instruction
sequences that must synchronize with possible interrupt conditions (such as
powerfail). This can be accomplished by specifying the desired IPL and executing
a CALL_PAL MTPR_IPL instruction or by executing a CALL_PAL REI instruction
that restores a PS that contains the desired IPL (see Section 2.6.5).

6.4.1 Software Interrupts - IPLs 1 to 15
6.4.1.1 Software Interrupt Summary Register

The architecture provides fifteen priority interrupt levels for use by software (level
o is also available for use by software but interrupts can never occur at this level).
The Software Interrupt Summary Register (SISR) stores a mask of pending software
interrupts. Bit positions in this mask that contain a 1 correspond to the levels on
which software interrupts are pending.

When the processor IPL drops below that of the highest requested software interrupt,
a software interrupt is initiated and the corresponding bit in the SISR is cleared.

The SISR is a read-only internal processor register that may be read by kernel mode
software by executing a CALL_PAL MFPR_SISR instruction (see Section 5.3).

6-20 OpenVMS AXP Software (II-A)

6.4.1.2 Software Interrupt Request Register

The Software Interrupt Request Register (SIRR) is a write-only internal processor
register used for making software interrupt requests.

Kernel mode software may request a software interrupt at a particular level by
executing a CALL_PAL MTPR_SIRR instruction (see Section 5.3).

If the requested interrupt level is greater than the current IPL, the interrupt will
occur before the execution of the next instruction. If, however, the requested level is
equal to or less than the current processor IPL, the interrupt request will be recorded
in the Software Interrupt Summary Register (SISR) and deferred until the processor
IPL drops to the appropriate level.

Note that no indication is given if there is already a request at the specified level.
Therefore, the respective interrupt service routine must not assume that there is a
one-to-one correspondence between interrupts requested and interrupts generated.
A valid protocol for generating this correspondence is:

1. The requester places information in a control block and then inserts the control
block in a queue associated with the respective software interrupt level.

2. The requester uses CALL_PAL MTPR_SIRR to request an interrupt at the
appropriate level.

3. When enabling conditions arise, processor HW clears the appropriate SISR bit
as part of initiating the software interrupt.

4. The interrupt service routine attempts to remove a control block from the request
queue. If there are no control blocks in the queue, the interrupt is dismissed with
a CALL_PAL REI instruction.

5. If a valid control block is removed from the queue, the requested service is
performed and step 3 is repeated.

6.4.2 Asynchronous System Trap -IPL 2

Asynchronous System Traps (ASTs) are a means of notifying a process of events that
are not synchronized with its execution, but that must be dealt with in the context
of the process. An AST is initiated in kernel mode at IPL 2 when the current mode
is less privileged than or equal to a mode for which an AST is pending and not
disabled, with PS<IPL> less than 2 (see Sections 6.7.6 and 4.3).

There are four separate per-mode SCB vectors, one for each of kernel, executive,
supervisor, and user modes.

On encountering an AST, the interrupt stack frame is pushed on the kernel stack;
the value of the PC saved in this stack frame is the address of the next instruction
to have been executed if the interrupt had not occurred. The SCB vector quadword
is saved in R2 and the SCB parameter quadword in R3.

OpenVMS AXP Exceptions, Interrupts, and Machine Checks (II-A) 6-21

•

6.4.3 Passive Release Interrupts - IPLs 20 to 23

Passive releases occur when the source ofan interrupt granted by a processor cannot
be determined. This can happen when the requesting 110 device determines that it
no longer requires an interrupt after requesting one, or when a previously requested
interrupt has already been serviced by another processor in some multiprocessor
configurations. The interrupt handler for passive releases executes at the priority
level of the interrupt request.

6.4.4 1/0 Device Interrupts - IPLs 20 to 23

The architecture provides four priority levels for use by 110 devices. 110 device
interrupts are requested when the device encounters a completion, attention, or
error condition and the respective interrupt is enabled. See Console Interface (III),
Chapter 2 for more information.

6.4.5 Interval Clock Interrupt - IPL 22

The interval clock requests an interrupt periodically.

At least 1000 interval clock interrupts occur per second. An entry in the HWRPB
contains the number of interval clock interrupts per second that occur in an actual
Alpha AXP implementation, scaled up by 4096, and rounded to a 64-bit integer. (See
Console Interface (III), Chapter 2.)

The accuracy of the interval clock must be at least 50 parts per million (ppm).

Hardware/Software Note:

For example, an interval of 819.2 usec derived from a 10 MHz Ethernet clock
and a 13-bit counter is acceptable.

To guarantee software progress, the interval clock interrupt should be no more
frequent than the time it takes to do 500 main memory accesses. Over the life
of the architecture, this interval may well decrease much more slowly than CPU
cycle time decreases.

Other constraints may apply to secure kernel systems.

6.4.5.1 Interprocessor Interrupt - IPL 22

Interprocessor interrupts are provided to enable operating system software running
on one processor to interrupt activity on another processor and cause operating
system-dependent actions to be performed.

6.4.5.1.1 Interprocessor Interrupt Request Register

The Interprocessor Interrupt Request Register (IPIR) is a write-only internal
processor register used for making a request to interrupt a specific processor.

Kernel mode software may request to interrupt a particular processor by executing
a CALL_PAL MTPR_IPIR instruction (see Section 5.3.)

6-22 OpenVMS AXP Software (II-A)

If the specified processor is the same as the current processor and the current IPL is
less than 22, then the interrupt may be delayed and not initiated before the execution
of the next instruction.

Note that, as with software interrupts, no indication is given as to whether there
is already an interprocessor interrupt pending when one is requested. Therefore,
the interprocessor interrupt service routine must not assume there is a one-to-one
correspondence between interrupts requested and interrupts generated. A valid
protocol similar to the one for software interrupts for generating this correspondence
is:

1. The requester places information in a control block and then inserts the control
block in a queue associated with the target processor.

2. The requester uses CALL_PAL MTPR_IPIR to request an interprocessor
interrupt on the target processor.

3. The interprocessor interrupt service routine on the target processor attempts to
remove a control block from its request queue. If there are no control blocks
remaining, the interrupt is dismissed with a CALL_PAL REI instruction.

4. If a valid control block is removed from the queue, the specified action is
performed and step 3 is repeated.

6.4.6 Performance Monitor Interrupts - IPL 29

These interrupts provide some of the support for processor or system performance
measurements. The implementation is processor or system specific.

6.4.7 Powerfaillnterrupt - IPL 30

If the system power supply backup option permits powerfail recovery, a powerfail
interrupt is generated to each processor when power is about to fail. See Console
Interface (III), Chapter 3 for a description of powerfail recovery requirements, and •
for a description of the interactions between system software and the console during
system restarts.

In systems in which the backup option maintains only the contents of memory and
keeps system time with the BB_WATCH, the power supply requests a powerfail
interrupt to permit volatile system state to be saved. Prior to dispatching to the
powerfail interrupt service routine, PALcode is responsible for saving all system
state that is not visible to system software. Such state includes, but is not limited
to, processor internal registers and PALcode temporary variables.

PALcode is also responsible for saving the contents of any write-back caches
or buffers, including the powerfail interrupt stack frame. System software is
responsible for saving all other system state. Such state includes, but is not limited
to, processor registers and write-back cache contents. State can be saved by forcing
all written data to a backed-up part of the memory subsystem; software may use
the CALL_PAL CFLUSH instruction.

The powerfail interrupt will not be initiated until the processor IPL drops below
30. Thus, critical code sequences can block the power-down sequence by raising the

OpenVMS AXP Exceptions, Interrupts, and Machine Checks (II-A) 6-23

IPL to 31. Software, however, must take extra care not to lock out the power-down
sequence for an extended period of time.

Explicit state is not provided by the architecture for software to directly determine
whether there were outstanding interrupts when powerfail occurred. It is the
responsibility of software to leave sufficient information in memory so that it may
determine the proper action on power-up.

6.5 Machine Checks

A machine check, or mcheck, indicates that a hardware error condition was detected
and mayor may not be successfully corrected by hardware or PALcode. Such
error conditions can occur either synchronously or asynchronously with respect to
instruction execution. There are four types:

1. System Machine Check (IPL 31)

These machine checks are generated by error conditions that are detected
asynchronously to processor execution but are not successfully corrected by
hardware or PALcode. Examples of system machine check conditions include
protocol errors on the processor-memory-interconnect (PMI) and unrecoverable
memory errors.

System machine checks are always maskable and deferred until processor IPL
drops below IPL 31.

2. Processor Machine Check (IPL 31)

These machine checks indicate that a processor internal error was detected
and not successfully corrected by hardware or PALcode. Examples of processor
machine check conditions include processor internal cache errors, translation
buffer parity errors, or read access to a nonexistent local 110 space location
(NXM).

Processor machine checks may be nonmaskable or maskable. If nonmaskable,
they are initiated immediately, even if the processor IPL is 31. Ifmaskable, they
are deferred until processor IPL drops below IPL 31.

3. System Correctable Machine Check (IPL 20)

These machine checks are generated by error conditions that are detected
asynchronously to processor execution and are successfully corrected by
hardware or PALcode. Examples of system correctable machine check conditions
include single bit errors within the memory subsystem.

System correctable machine checks are always maskable and deferred until
processor IPL drops below IPL 20.

4. Processor Correctable Machine Check (IPL 31)

These machine checks indicate that a processor internal error was detected
and successfully corrected by hardware or PALcode. Examples of processor
correctable machine check conditions include corrected processor internal cache
errors and corrected translation buffer tab errors.

6-24 OpenVMS AXP Software (II-A)

Processor correctable machine checks may be nonmaskable or maskable. If
nonmaskable, they are initiated immediately, even if the processor IPL is 31.
If maskable, they are deferred until processor IPL drops below IPL 31.

Machine checks are initiated in kernel mode, on the kernel stack, and cannot be
disabled.

Correctable machine checks permit the pattern and frequency of certain errors to be
captured. The delivery of these machine checks to system software can be disabled
by setting IPR MCES<4:3>, as described in Section 5.3.9. Note that setting IPR
MCES<4:3> does not disable the generation of the machine check or the correction
ofthe error, but rather suppresses the reporting ofthat correction to system software.

The PC in the machine check stack frame is that of the next instruction that would
have issued if the machine check condition had not occurred. This is not necessarily
the address of the instruction immediately following the one encountering the error,
and intervening instructions may have changed operands or other state used by the
instruction encountering the error condition. A CALL_PAL REI instruction to this
PC will simply continue execution from the point at which the machine check was
taken.

Note:

On machine checks, a meaningful PC is delivered on a best-effort basis.
The machine state, processor registers, memory, and 110 devices may be
indeterminate.

Machine checks may be deliberately generated by software, such as by probing
nonexistent memory during memory sizing or searching for local 110 devices. In
such a case, the DRAINA PALcode instruction can be called to force any outstanding
machine checks to be taken before continuing.

6.5.1 Software Response •
The reaction of system software to machine checks is specific to the characteristics
of the processor, platform, and system software. System software must determine if
operation should be discontinued on an implementation-specific basis.

To assist system software, PALcode provides a retry flag in the machine check logout
frame (see Figure 6-6). If set, the state of the processor and platform hardware has
not been compromised; system software operation should be able to continue.

If the retry flag is clear, the state of the processor is either unknown or is known to
have been updated during partial execution of one or more instructions. System
software operation can continue only after system software determines that the
hardware state change permits and/or takes corrective action.

PALcode should take appropriate implementation-specific actions prior to setting
the retry flag. PALcode should also attempt to ensure that each encountered error
condition generates only one machine check.

OpenVMS AXP Exceptions, Interrupts, and Machine Checks (II-A) 6-25

Implementation Note:

An important example of using the retry flag is read NXM.

Also, a read NXM should not generate both a Processor Machine Check and a
System Machine Check.

PALcode sets an internal Machine-Check-In-Progress flag in the Machine Check
Error Summary (MCES) register prior to initiating a system or processor machine
check. System software must clear that flag to dismiss the machine check. If
a second uncorrectable machine check hardware error condition is detected while
the flag is set, or if PALcode cannot deliver the machine check, PALcode forces
the processor to enter console 110 mode, and subsequent actions, such as processor
restart, are taken by the console. The REASON FOR HALT code is "double error
abort encountered." See Console Interface (III), Chapter 3.

Similiarly, PALcode sets an internal correctable Machine-Check-In-Progress flag in
the Machine Check Error Summary (MCES) register prior to initiating a system
correctable error interrupt or processor-correctable machine check. System software
must clear that flag to dismiss the condition and permit the reuse of the logout area.
If a second correctable hardware error condition is detected while the flag is set, the
error is corrected, but not reported. PALcode does not overwrite the logout area and
the processor remains in program 110 mode.

6.5.2 Logout Areas
When a hardware error condition is encountered, PALcode optionally builds a logout
frame prior to passing control to the machine check service routine. The logout
frame is shown in Figure 6-6 and described in Table 6-4. The logout frame is built
in the logout area located by the processor's per-CPU slot in the HWRPB (see Console
Interface (III), Chapter 2).

Figure 6-6: Corrected Error and Machine Check Logout Frame

636261 3231

RISI SBZ
I Frame Size

System Offset I CPU Offset

PALcode-Specific Information

CPU-Specific Information

System-Specific Information

6-26 OpenVMS AXP Software (II-A)

:FRAME

:+8

:+16

:+CPU Offset

:+SYS Offset

Table 6-4: Corrected Error and Machine Check Logout Frame Fields

Offset Description

FRAME

+04

FRAME SIZE - Size in bytes of the logout frame, including the FRAME
SIZE longword.

FRAME FLAGS - Informational flags.

Bit Description

31 RETRY FLAG - Indicates whether execution can be
resumed after dismissing this machine check. Set on
Corrected Error interrupts; may be set on machine checks.

30 SECOND ERROR FLAG - Indicates that a second correctable
error was encountered. Set on Corrected Error interrupts
when a correctable error was encountered while the relevant
correctable error bit (PCE or SCE) is set in the MCES register.
Clear on machine checks.

29-0 SBZ.

+12

+08 CPU OFFSET - Offset in bytes from the base of the logout frame to the
CPU-specific information. If CPU OFFSET is equal to 16, the frame contains
no PALcode-specific information. If CPU OFFSET is equal to SYS OFFSET,
the frame contains no CPU-specific information.

SYS OFFSET - Offset in bytes from the base of the logout frame to the
system-specific information. If SYS OFFSET is equal to FRAME SIZE, the
frame contains no system-specific information.

+16 PALCODE INFORMATION - PALcode-specific logout information.

+CPU OFFSET CPU INFORMATION - CPU-specific logout information.

+SYS OFFSET SYS INFORMATION - System platform-specific logout information.

The logout frame is optional; the service routine uses R4 to locate the frame, if
any. Upon entry to the service routine, R4 contains the byte offset of the logout
frame from the base of the logout area. If no frame was built, R4 contains -1
(FFFF FFFF FFFF FFFF16).

6.6 System Control Block

The System Control Block (SCB) specifies the entry points for exception, interrupt,
and machine check service routines. The block is from 8K to 32K bytes long, must
be page aligned, and must be physically contiguous. The PFN is specified by the
value of the System Control Block Base (SCBB) internal register.

The SCB, shown in Figure 6-7, consists of from 512 to 2048 entries, each 16 bytes
long. The first eight bytes of an entry, the vector, specify the virtual address of the

OpenVMS AXP Exceptions, Interrupts, and Machine Checks (II-A) 6-27

•

service routine associated with that entry. The second eight bytes, the parameter,
are an arbitrary quadword value to be passed to the service routine.

Figure 6-7: System Control Block Summary

Faults

Arithmetic Traps

Asynchronous System Traps

Data Alignment Traps

Other Synchronous Traps

Software Interrupts

Processor Hardware Interrupts and Machine Checks

Unused

I/O Hardware Interrupts

OOO-OFO

200-230

240-270

280-3FO

400-4FO

500-5FO

600-6FO

700-7FO

800-7FFO

The 8CB entries are grouped as follows:

1. Faults

2. Arithmetic traps

3. Asynchronous system traps

4. Data alignment trap

5. Other synchronous traps

6. Processor software interrupts

7. Processor hardware interrupts and machine checks

8. 110 device interrupts

The first 512 entries (offsets 0000 through 80016) contain all architecturally defined
and any statically allocated entries. All remaining 8CB entries, if any, are used
only for those 110 device interrupt vectors that are assigned dynamically by system
software. It is the responsibility of that software to ensure the consistency of the
assigned vector and the 8CB entry.

6.6.1 see Entries for Faults

The exception handler for a fault executes with the IPL unchanged, in kernel mode,
on the kernel stack. Table 6-5 lists the 8CB entries for faults.

6-28 OpenVMS AXP Software (II-A)

Table 6-5: SCB Entries for Faults

Byte
offset16 Entry name

000

010

020-070

080

090

OAO

OBO

OCO

OAO-OFO

Unused

Floating Disabled fault

Unused

Access Control Violation fault

Translation Not Valid fault

Fault on Read fault

Fault on Write fault

Fault on Execute fault

Unused

6.6.2 SCB Entries for Arithmetic Traps
The exception handler for an arithmetic trap executes with the IPL unchanged, in
kernel mode, on the kernel stack. Table 6-6 lists the SCB entries for arithmetic
traps.

Table 6-6: SCB Entries for Arithmetic Traps

Byte
offset16 Entry name

200

210-230

Arithmetic Trap

Unused

6.6.3 SCB Entries for Asynchronous System Traps (ASTs) •
The interrupt handler for an asynchronous system trap executes at IPL 2, in kernel
mode, on the kernel stack. Table 6-7 lists the SCB entries for asynchronous system
traps.

Table 6-7: SCB Entries for Asynchronous System Traps

Byte
offset16 Entry name

240 Kernel Mode AST

250 Executive Mode AST

260 Supervisor Mode AST

270 User Mode AST

OpenVMS AXP Exceptions, Interrupts, and Machine Checks (II-A) 6-29

6.6.4 SCB Entries for Data Alignment Traps

The exception handler for a data alignment trap executes with the IPL unchanged in
kernel mode, on the kernel stack. Table 6-8 lists the SCB entries for data alignment
traps.

Table 6-8: SeB Entries for Data Alignment Trap
Byte
offset16 Entry name

280

290-3FO

Unaligned_Access

Unused

6.6.5 SCB Entries for Other Synchronous Traps

The exception handler for a synchronous trap, other than those described above,
executes with the IPL unchanged, in the mode and on the stack indicated below.
"MostPriv" indicates that the handler executes in either the original mode or the
new mode, whichever is the most privileged. Table 6-9 lists the SCB entries for
other synchronous traps.

Table 6-9: SeB Entries for Other Synchronous Traps
Byte
Offset16 Entry Name Mode

400 Breakpoint Trap Kernel

410 Bugcheck Trap Kernel

420 Illegal Instruction Trap Kernel

430 Illegal Operand Trap Kernel

440 Generate Software Trap Kernel

450 Unused

460 Unused

470 Unused

480 Change Mode to Kernel Kernel

490 Change Mode to Executive MostPriv

4AO Change Mode to Supervisor MostPriv

4BO Change Mode to User Current

4CO-4FO Reserved for Digital

6-30 OpenVMS AXP Software (II-A)

6.6.6 SCB Entries for Processor Software Interrupts
The exception handler for a processor software interrupt executes at the target IPL,
in kernel mode, on the kernel stack. Table 6-10 lists the SCB entries for processor
software interrupts.

Table 6-10: SeB Entries for Processor Software Interrupts

Byte
Offset16 Entry Name Target IPL10

500 Unused

510 Software interrupt level 1 1

520 Software interrupt level 2 2

530 Software interrupt level 3 3

540 Software interrupt level 4 4

550 Software interrupt level 5 5

560 Software interrupt level 6 6

570 Software interrupt level 7 7

580 Software interrupt level 8 8

590 Software interrupt level 9 9

5AO Software interrupt level 10 10

5BO Software interrupt level 11 11

5CO Software interrupt level 12 12

5DO Software interrupt level 13 13

5EO Software interrupt level 14 14

5FO Software interrupt level 15 15

6.6.7 SCB Entries for Processor Hardware Interrupts and Machine Checks

The interrupt handler for a processor hardware interrupt executes at the target IPL,
in kernel mode, on the kernel stack.

The handler for machine checks executes in kernel mode, on the kernel stack. The
handler for system-correctable machine checks executes at IPL 20; the handler for
all other machine checks executes at IPL 31. Table 6-11 lists the SCB entries for
processor hardware interrupts and machine checks.

Table 6-11: SCB Entries for Processor Hardware Interrupts and Machine Checks
Byte
Offset16 Entry name Target IPL10

•

600 Interval clock interrupt 22

OpenVMS AXP Exceptions, Interrupts, and Machine Checks (II-A) 6-31

Table 6-11 (Cant.): SCB Entries for Processor Hardware Interrupts and Machine
Checks

Byte
Offset16 Entry name Target IPL10

610 Interprocessorinterrupt 22

620 System correctable machine check 20

630 Processor correctable machine check 31

640 Powerfail interrupt 30

650 Performance monitor 29

660 System machine check 31

670 Processor machine check 31

6S0-6EO Reserved - processor specific

6FO Passive release 20-23

Processor-specific SCB entries include those used by console devices (if any) or other
peripherals dedicated to system support functions.

6.6.8 SeB Entries for I/O Device Interrupts
The interrupt handler for an I/O device interrupt executes at the target IPL, in
kernel mode, on the kernel stack. SCB entries for offsets of 80016 through 7FF016
are reserved for I/O device interrupts.

6-32 OpenVMS AXP Software (II-A)

6.7 PALcode Support

6.7.1 Stack Writeability

In response to various exceptions, interrupts, and machine checks, PALcode pushes
information on the kernel stack. PALcode may write this information without
first probing to ensure that all such writes to the kernel stack will succeed. If a
memory management exception occurs while pushing information, PALcode forces
the processor to enter console I/O mode, and subsequent actions, such as processor
restart, are taken by the console. The REASON FOR HALT code is "processor halted
due to kernel-stack-not-valid." See Console Interface (III), Chapter 3.

6.7.2 Stack Residency

The user, supervisor, and executive stacks for the current process do not need to be
resident. Software running in kernel mode can bring in or allocate stack pages as
TNV faults occur. However, since this activity is taking place in kernel mode, the
kernel stack must be fully resident.

When the faults TNV, ACV, FOR, and FOW occur on kernel mode references to the
kernel stack, they are considered serious system failures from which recovery is not
possible. Ifany ofthose faults occur, PALcode forces the processor to enter console I/O
mode, and subsequent actions, such as processor restart, are taken by the console.
The REASON FOR HALT code is "processor halted due to kernel-stack-not-valid."
See Console Interface (III), Chapter 3.

6.7.3 Stack Alignment
Stacks may have arbitrary byte alignment, but performance may suffer if at least
octaword alignment is not maintained by software.

PALcode creates stack frames in response to exceptions and interrupts. Before doing
so, the target stack is aligned to a 64-byte boundary by setting the six low bits of the •
target SP to 0000002 • The previous value of these bits is stored in the SP_ALIGN
field of the saved PS in memory, for use by a CALL_PAL REI instruction.

Software-constructed stack frames must be 64-byte aligned and have SP_ALIGN
properly set; otherwise, a CALL_PAL REI instruction will take an illegal operand
trap.

6.7.4 Initiate Exception or Interrupt or Machine Check

Exceptions, interrupts, and machine checks are initiated by PALcode with interrupts
disabled. When an exception, interrupt, or machine check, is initiated, the associated
SCB vector is read to determine the address of the service routine. PALcode then
attempts to push the PC, PS, and R2..R7 onto the target stack. When an interrupt
(software or hardware but not AST) is initiated, PS<IP> is set to 1 to indicate an
interrupt is in progress. Additional parameters may be passed in R4 and R5 on
exceptions and machine checks.

During the attempt to push this information, the exceptions (faults) TNV, ACV, and
FOW can occur:

OpenVMS AXP Exceptions, Interrupts, and Machine Checks (II-A) 6-33

• If any of those faults occur when the target stack is user, supervisor, or executive,
then the fault is taken on the kernel stack.

• If any of those faults occur when the target stack is the kernel stack, PALcode
forces the processor to enter console I/O mode, and subsequent actions, such
as processor restart, are taken by the console. The REASON FOR HALT code
is "processor halted due to kernel-stack-not-valid." See Console Interface (III),
Chapter 3.

6.7.5 Initiate Exception or Interrupt or Machine Check Model
check_for_exception_or_interrupt_or_mcheck:

IF NOT {ready_to_initiate_exception OR
ready_to_initiate_interrupt OR
ready_to_initiate_mcheck} THEN

BEGIN
{fetch next instruction}
{decode and execute instruction}

END
ELSE

BEGIN
{wait for instructions in progress to complete}

! clear interrupt pending
tmp ~ 0
IF {exception pending} THEN

BEGIN
{back up implementation specific state if necessary,
this includes the PC if synchronous trap pending}
new_ipl ~ PS<IPL>
new_mode ~ Kernel

END

ELSE IF {unmaskable mcheck pending} THEN
BEGIN

{back up implementation specific state if necessary}
{attempt correction if appropriate}
IF {uncorrectable AND MCES<O> = 1} THEN

{enter console}
ELSE IF {uncorrectable} THEN

new_mode ~ Kernel
new_ipl ~ 31

! set mcheck error flag
MCES<O> ~ 1

ELSE IF {reporting enabled} THEN
new_mode +- Kernel
new_ipl +- 31
MCES<2> +- 1

END
END

ELSE IF {data alignment trap} THEN
new_mode +- Kernel

6-34 OpenVMS AXP Software (II-A)

ELSE IF {synchronous trap} THEN
CASE {opcode} OF

{back up implementation specific state if necessary}
CHME: new_mode ~ min(PS<CM>,Executive)
CHMS: new_mode ~ min(PS<CM>,Supervisor)
CHMU: new_mode ~ min(PS<CM>,User)
otherwise: new_mode +- Kernel

ENDCASE

ELSE IF {maskable uncorrectable mcheck pending and IPL < 31} THEN
BEGIN

{back up implementation specific state if necessary}
IF {MCES<O> = 1} THEN

{enter console}
ELSE

new_mode +- Kernel
new_ipl +- 31
MCES<O> +- 1 ! set mcheck error flag

END
END

ELSE IF {interrupt pending} THEN
new_ipl +- {interrupt source IPL}
tmp +- 1 ! set interrupt pending
new_mode ~ Kernel

ELSE IF {maskable correctable mcheck pending AND
reporting enabled} THEN

new_ipl +- 20
MCES<l> +- 1
new_mode +- Kernel

END

IPR_SP[PS<CM>] +- SP
new_sp ~ IPR_SP [new_mode]

save_align +

new_sp<5: 0> ~

PUSH(PS OR LEFT_SHIFT(save_align,56), old-pc, new_mode)
PUSH(R7, R6, new_mode)
PUSH(R5, R4, new_mode)
PUSH(R3, R2, new_mode)

PS<SW> ~ 0
PS<CM> ~ new_mode
PS<IP> +- tmp
PS<IPL> +- new_ipl
SP +- new_sp

IF {memory management fault} THEN
R4 +- VA
R5 ~ MMF

END

IF {data alignment trap} THEN
R4 ~ VA
R5 ~ {O if read/load 1 if write/store }

END

OpenVMS AXP Exceptions, Interrupts, and Machine Checks (II-A) 6-35

I

IF {mcheck or correctable error interrupt} THEN
IF {logout frame built}

R4 +- logout_area_offset
ELSE

R4 +- -1
END

END

IF {arithmetic Trap} THEN
R4 +- register write mask
RS +- exception summary

END

IF {software interrupt} THEN
SISR +- SISR AND NOT{ 2**{ PRIORITY_ENCODE (SISR) } }

END

vector +- {exception or interrupt or mcheck SCB offset}

END

R2 +

R3 +

PC +-

(SCBB + vector)
(SCBB + vector + 8)
R2

GOTO check_for_exception_or_interrupt_or_mcheck

PROCEDURE PUSH(first, last, mode}
BEGIN

IF ACCESS(new_sp - 16, mode} THEN
BEGIN

(new_sp - 8) +- first
(new_sp - 16) +- last
new_sp +- new_sp - 16
RETURN

END
ELSE

{initiate ACV, TNV, or FOW fault, or
Kernel Stack Not Valid restart sequence}

END
END

6.7.6 PALcode Interrupt Arbitration

The following sections describe the logic for the interrupt conditions produced by the
specified operation.

6.7.6.1 Writing the AST Summary Register

Writing the ASTSR internal processor register (Section 5.3) requests an AST for any
of the four processor modes. This may request an AST on a formerly inactive level
and thus cause an AST interrupt.

The logic required to check for this condition is:

ASTSR<3:0> +- {ASTSR<3:0> AND R16<3:0>} OR R16<7:4>
IF ASTEN<O> AND ASTSR<O> AND {PS<IPL> LT 2} THEN

{initiate AST interrupt at IPL 2}

6-36 OpenVMS AXP Software (II-A)

6.7.6.2 Writing the AST Enable Register

Writing the ASTEN internal processor register (Section 5.3) enables ASTs for any of
the four processor modes. This may enable an AST on a formerly inactive level and
thus cause an AST interrupt.

The logic required to check for this condition is:

ASTEN<3:0> +- {ASTEN<3:0> AND R16<3:0>} OR R16<7:4>
IF ASTEN<O> AND ASTSR<O> AND {PS<IPL> LT 2} THEN

{initiate AST interrupt at IPL 2}

6.7.6.3 Writing the IPL Register

Writing the IPL internal processor register (Section 5.3) changes the current IPL.
This may enable an AST or software interrupt on a formerly inactive level and thus
cause an AST or software interrupt.

The logic required to check for this condition is:

PS<IPL> +- R16<4:0>

! check for software interrupt at level 2 .. 15

IF {RIGHT_SHIFT({SISR AND FFFC16 }, PS<IPL> + 1) NE O} THEN
{initiate software interrupt at IPL of high bit set in SISR}

! check for AST

IF ASTEN<O> AND ASTSR<O> AND {PS<IPL> LT 2} THEN
{initiate AST interrupt at IPL 2}

! check for software interrupt at level 1

IF SISR<l> AND {PS<IPL> EQ O} THEN
{initiate software interrupt at IPL 1}

6.7.6.4 Writing the Software Interrupt Request Register

Writing the SIRR internal processor register (Section 5.3) requests a software •
interrupt at one of the fifteen software interrupt levels. This may cause a formerly
inactive level to cause a software interrupt.

The logic required to check for this condition is:

SISR<level> +- 1
IF level GT PS<IPL> THEN

{initiate software interrupt at IPL level}

6.7.6.5 Return from Exception or Interrupt

The CALL_PAL REI instruction (Section 2.1.10) writes both the Current Mode and
IPL fields of the PS (see Section 6.2). This may enable a formerly disabled AST or
software interrupt to occur.

The logic required to check for this condition is:

PS +- New PS

! check for software interrupt at level 2 .. 15

OpenVMS AXP Exceptions, Interrupts, and Machine Checks (II-A) 6-37

IF {RIGHT_SHIFT({SISR AND FFFC16 }, PS<IPL> + 1) NE O} THEN
{initiate software interrupt at IPL of high bit set in SISR}

! check for AST

tmp +- NOT LEFT_SHIFT (1110 (bin) , PS<CM»
IF {{tmp AND ASTEN AND ASTSR}<3:0> NE O} AND {PS<IPL> LT 2} THEN

{initiate AST interrupt at IPL 2}

! check for software interrupt at level 1

IF SISR<l> AND {PS<IPL> EQ O} THEN
{initiate software interrupt at IPL 1}

6.7.6.6 Swap AST Enable

Swapping the AST enable state for the Current Mode results in writing the ASTEN
internal processor register (see Section 5.3). This may enable a formerly disabled
AST to cause an AST interrupt.

The logic required to check for this condition is:

RO +- ZEXT(ASTEN<PS<CM»)
ASTEN<PS<CM» +- R16<0>

IF ASTEN<PS<CM» AND ASTSR<PS<CM» AND {PS<IPL> LT 2} THEN
{initiate AST interrupt at IPL 2}

6.7.7 Processor State Transition Table

Table 6-12 shows the operations that can produce a state transition and the specific
transition produced. For example, if a processor's initial state is supervisor mode, it
is not possible for the processor to transition to a program halt condition. A processor
can only transition to program halt from kernel mode.

In Table 6-12:

• "REI" increases mode or lowers IPL.

• "MTPR" changes IPL, or is a CALL_PAL MTPR_ASTSR
or CALL_PAL MTPR_ASTEN instruction that causes an interrupt request.

• "Exc" is a state change caused by an exception.

• "Int" is a state change caused by an interrupt.

• "Mcheck" is a state change caused by a machine check.

6-38 OpenVMS AXP Software (II-A)

Table 6-12: Processor State Transitions

Initial State: Final State:

Program
User Super. Exec. Kernel Halt

User CHMU CHMS CHME CHMK Not
REI Exc Possible

Int
Mcheck
SWASTEN

Supervisor REI CHMS CHME CHMK Not
REI Exc Possible

Int
Mcheck
SWASTEN

Executive REI REI CHME CHMK Not Possible
REI Exc

Int
Mcheck
SWASTEN

Kernel REI REI REI CHMK HALT
REI
Int
Exc
Mcheck
MTPR
SWASTEN

OpenVMS AXP Exceptions, Interrupts, and Machine Checks (II-A) 6-39

I

DEC OSF/1 Software (II-B)

This section describes how the DEC OSF/1 operating system relates to the Alpha AXP
architecture, and includes the following chapters:

• Chapter 1, Introduction to DEC OSF/1 (II-B)

• Chapter 2, DEC OSF/1 PALcode Instruction Descriptions (II-B)

• Chapter 3, DEC OSF/1 Memory Management (II-B)

• Chapter 4, DEC OSF/1 Process Structure (II-B)

• Chapter 5, DEC OSF/1 Exceptions and Interrupts (II-B)

Contents

Chapter 1 Introduction to DEC OSF/1 (II-B)

1.1 Programming Model. 1-2
1.1.1 Code Flow Constants . 1-2
1.1.2 Machine State Terms. 1-2
1.1.3 Code Flow Terms . 1-5

Chapter 2 DEC OSF/1 PALcode Instruction Descriptions (II-B)

2.1 Unprivileged PALcode Instructions .
2.1.1 Breakpoint ~ap .
2.1.2 Bugcheck ~ap .
2.1.3 System Call .
2.1.4 Generate ~ap .
2.1.5 Read Unique Value .
2.1.6 Write Unique Value .
2.2 Privileged DEC OSF/1 PALcode Instructions .
2.2.1 Cache Flush .
2.2.2 Console Service .
2.2.3 Read Machine Check Error Summary .
2.2.4 Read Processor Status .
2.2.5 Read User Stack Pointer .
2.2.6 Read System Value .
2.2.7 Return from System Call .
2.2.8 Return from ~ap, Fault or Interrupt .
2.2.9 Swap Process Context .
2.2.10 Swap IPL .
2.2.11 Swap PALcode Image .
2.2.12 TB Invalidate .
2.2.13 Who Am I .
2.2.14 Write System Entry Address .
2.2.15 Write Floating-Point Enable .
2.2.16 Write Interprocessor Interrupt request .
2.2.17 Write Kernel Global Pointer .
2.2.18 Write Machine Check Error Summary .
2.2.19 Performance Monitoring Function .
2.2.20 Write User Stack Pointer .
2.2.21 Write System Value .
2.2.22 Write Virtual Page Table Pointer .

2-1
2-2
2-3
2-4
2-5
2-6
2-7
2-8
2-9

2-10
2-11
2-12
2-13
2-14
2-15
2-16
2-17
2-19
2-20
2-22
2-23
2-24
2-26
2-27
2-28
2-29
2-30
2-31
2-32
2-33

iii

•

Chapter 3 DEC OSF/1 Memory Management (II-B)

3.1 Virtual Address Spaces 3-1
3.1.1 Segment SegO and Seg1 Virtual Address Format. 3-1
3.1.2 Kseg Virtual Address Format. 3-2
3.2 Physical Address Space . 3-3
3.3 Memory Management Control . 3-3
3.4 Page Table Entries. 3-3
3.4.1 Changes to Page Table Entries 3-5
3.5 Memory Protection. 3-6
3.5.1 Processor Access Modes. 3-6
3.5.2 Protection Code . 3-6
3.5.3 Access-Violation Faults 3-7
3.6 Address Translation for SegO and Seg1 . 3-7
3.6.1 Physical Access for SegO and Seg1 PTEs . 3-7
3.6.2 Virtual Access for SegO or Seg1 PTEs 3-8
3.7 Translation Buffer. 3-8
3.8 Address Space Numbers. 3-9
3.9 Memory-Management Faults .. 3-10

Chapter 4 DEC OSF/1 Process Structure (II-B)

4.1 Process Definition 4-1
4.2 Process Control Block (PCB) 4-1

Chapter 5 DEC OSF/1 Exceptions and Interrupts (II-B)

5.1 Introduction. 5-1
5.1.1 Exceptions. 5-1
5.1.2 Interrupts. 5-2
5.2 Processor Status. 5-2
5.3 Stack Frames. 5-3
5.4 System Entry Addresses 5-4
5.4.1 System Entry Arithmetic Trap (entArith) 5-4
5.4.1.1 Exception Summary Register. 5-4
5.4.1.2 Exception Register Write Mask. 5-6
5.4.2 System Entry Instruction Fault (entIF) . 5-6
5.4.3 System Entry Hardware Interrupts (entInt) 5-7
5.4.4 System Entry MM Fault (entMM) . 5-8
5.4.5 System Entry Call System (entSys) . 5-9
5.4.6 System Entry Unaligned Access (entUna) . 5-9
5.5 PALcode Support . 5-9
5.5.1 Stack Writeability and Alignment . 5-9

iv

Figures

3-1 Virtual Address Format 000 0 •• 0 0 0 000 0 0 000 • 0 0 0 0 0 0 • 00 0 0 000 0 0 0 0 • 000 0 0 0 0 0 0 0 0 3-2
3-2 Kseg Virtual Address Format 0 0 0 0 0 0 0 0 0 0 •• 0 0 0 0 0 •••• 0 0 •• 0 0 0 0 0 0 0 • 0 0 • 0 0 • 0 0 0 0 • 3-3
3-3 Page Table Entry (PTE) 0 • 0 0 0 • 0 0 • 0 0 • 0 0 •• 0 0 0 0 0 3-3
4-1 Process Control Block (PCB) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 • 0 0 0 0 0 • 0 0 •• 0 •• 0 0 0 0 0 0 4-2
5-1 Stack Frame Layout 0 0 0 0 • 0 0 0 0 0 • 0 0 0 ••• 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 • 0 0 0 • 0 0 • 0 0 0 • 5-3
5-2 Exception Summary Register 0 • 0 0 0 • 0 0 0 0 0 0 0 • 0 ••• 0 0 0 0 0 0 • 0 0 0 0 0 0 • 0 0 0 0 0 0 0 • 0 0 0 0 5-4
5-3 Machine Check Error Status (MCES) Register 00.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 • 0 0 • 0 0 • 5-7

Tables

1-1 DEC OSF/l Register Usage . 0 0 0 0 0 • 0 0 0 • 0 0 0 0 0 • 0 0 0 0 0 • 0 0 0 0 0 0 0 0 • 0 • 0 0 0 0 0 0 • 0 0 0 0 1-1
1-2 Code Flow Constants ... 0 • 0 0 •• 0 0 0 0 0 0 0 0 0 0 • 0 0 0 • 0 0 • 0 0 0 0 0 ••• 0 • 0 0 0 0 0 0 •• 0 0 •• 0 1-2
1-3 Machine State Terms. 0 0 0 • 0 0 0 •• 0 •• 0 • 0 0 0 0 0 •• 0 0 0 0 0 • 0 • 0 • 0 0 0 0 •••• 0 0 0 0 0 0 0 • 0 0 1-2
1-4 Code Flow Terms. 0 0 0 0 0 0 0 0 0 0 • 0 •• 0 0 0 0 000 0 0 0 0 •• 0 • 0 • 0 0 •• 0 • 0 • 0 0 • 0 0 0 0 0 0 0 0 0 • 1-5
2-1 Unprivileged DEC OSF/l PALcode Instructions 0 • 0 0 •• 0 0 0 • 0 •• 0 0 •• 0 0 0 0 00 0 0 •• 0 0 0 2-1
2-2 Privileged DEC OSF/I PALcode Instructions 0 •• 0 0 •• 0 0 • 0 • 0 0 0 0 0 0 0 • 0 • 0 0 0 ••• 0 0 • 0 2-8
3-1 Virtual Address Space Segments .. 0 •••• 0 • 0 0 0 0 • 0 • 0 0 ••• 00 0 0 0 0 • 0 • 000 0 0 0 • 0 0 • 0 3-1
3-2 Virtual Address Options. 0 •• 0 0 0 •••••• 0 0 0 0 0 0 • 0 0 0 • 0 0 0 0 • 0 •• 0 • 0 0 0 0 0 •• 0 0 0 0 • 0 0 3-2
3-3 Page Table Entry (PTE) Bit Summary. 0 •• 0 0 •• 0 0 0 • 0 0 0 0 • 0 0 • 0 0 0 0 • 0 0 0 0 0 0 • 0 0 0 • 0 3-4
3-4 Memory-Management Fault Type Codes 0 •• 0 0 • 0 • 0 0 •• 0 0 0 ••• 0 • 0 •• 0 • 0 0 • o. 3-10
5-1 Processor Status Summary 0 0 0 ••••• 0 00 •• 0 • 0 0 • 0 0 0 • 0 0 0 • 0 • o. 0 0 0 • 0 0 0 0 0 0 • 0 •• 0 5-2
5-2 Entry Point Address Registers 0 •• 0 0 ••••• 0 0 • 0 0 0 0 0 •••• 0 0 0 0 0 0 0 0 0 ••• 0 • 0 0 ••• 0 • 5-4
5-3 Exception Summary Register Bit Definitions .. 0 ••••••• 0 0 0 ••• 0 •• 0 • 0 •• 0 • 0 0 • 0 0 0 5-5
5-4 System Entry Hardware Interrupts 0 0 0 0 • 0 • 0 ••••• 0 ••• 0 0 0 0 • 0 0 0 0 0 0 0 • 0 • 5-7
5-5 Machine Check Error Status (MCES) Register Bit Definitions 0 0 0 0 • 0 0 0 0 0 0 0 •• 0 0 0 0 5-8

v

I

Chapter 1

Introduction to DEC OSF/1 (II-B)

The goals of this design are to provide a hardware interface between the hardware
and DEC OSF/l that is implementation independent. The interface needs to
provide the required abstractions to minimize the impact of different hardware
implementations on the operating system. The interface also needs to be low in
overhead to support high-performance systems. Finally, the interface needs to only
support the features used by DEC OSF/l.

The register usage in this interface is based on the current calling standard used
by DEC OSF/l. If the calling standard changes, this interface will be changed
accordingly. The current calling standard register usage is shown in Table 1-1.

Table 1-1: DEC OSF/1 Register Usage

Register Software Use and
Name Name Linkage

rO vO

r1..r8 tOut7

r9..r14 sO..s5

r15 FP or s6

r16ur21 aOua5

r22..r25 t8..t11

r26 ra

r27 pv or t12

r28 at

r29 GP

r30 SP

r31 zero

Used for expression evaluations and to hold integer function
results.

Temporary registers; not preserved across procedure calls.

Saved registers; their values must be preserved across
procedure calls.

Frame pointer or a saved register.

Argument registers; used to pass the first six integer type
arguments; their values are not preserved across procedure
calls.

Temporary registers; not preserved across procedure calls.

Contains the return address; used for expression evaluation.

Procedure value or a temporary register.

Assembler temporary register; not preserved across procedure
calls.

Global pointer.

Stack pointer.

Always has the value O.

I

Introduction to DEC OSF/1 (II-B) 1-1

1.1 Programming Model

The programming model of the machine is the combination of the state visible either
directly via instructions, or indirectly via actions of the machine. Tables 1-2, 1-3,
and 1-4 define code flow constants, state variables, terms, subroutines, and code
flow terms that are used in the rest of the document.

1.1.1 Code Flow Constants

Table 1-2: Code Flow Constants
Term

IPL = 2:0

maxCPU

mode =3

pageSize

vaSize

Meaning and value

The range 2:0 used in the PS to access the IPL field of the PS
(PS<IPL».

The maximum number of processors in a given system.

Used as a subscript in PS to select current mode (PS<mode».

Size of a page in an implementation in bytes.

Size of virtual address in bits in a given implementation.

1.1.2 Machine State Terms

Table 1-3: Machine State Terms

Term

ASN

entArith<63:0>

entIF<63:0>

entInt<63:0>

entMM<63:0>

Meaning

An implementation-dependent size register to hold the current
address space number (ASN). The size and existence of ASN is an
implementation choice.

The arithmetic trap entry address register. The entArith is an
internal processor register that holds the dispatch address on an
arithmetic trap. There can be a hardware register for the entArith
or the PALcode can use private scratch memory.

The instruction fault or synchronous trap entry address register. The
entIF is an internal processor register that holds the dispatch address
on an instruction fault or synchronous trap. There can be a hardware
register for the entIF or the PALcode can use private scratch memory.

The interrupt entry address register. The entInt is an internal
processor register that holds the dispatch address on an interrupt.
There can be a hardware register for the entInt or the PALcode can
use private scratch memory.

The memory-management fault entry address register. The entMM
is an internal processor register that holds the dispatch address on
a memory-management fault. There can be a hardware register for
the entMM or the PALcode can use private scratch memory.

1-2 DEC OSF/1 Software (II-B)

Table 1-3 (Cont.): Machine State Terms

Term Meaning

entSys<63:0>

entUna<63:0>

FEN<O>

instruction<31:0>

KGP<63:0>

KSP<63:0>

MCES<2:0>

PC<63:0>

PCB

PCBB<63:0>

PCC

The system call entry address register. The entSys is an internal
processor register that holds the dispatch address on an callsys
instruction. There can be a hardware register for the entSys or the
PALcode can use private scratch memory.

The unaligned fault entry address register. The entUna is an internal
processor register that holds the dispatch address on an unaligned
fault. There can be a hardware register for the entUna or the PALcode
can use private scratch memory.

The floating-point enable register. The FEN is a one-bit register,
located at bit 0 of PCB[40] , that is used to enable or disable floating
point instructions. If a floating-point instruction is executed with
FEN equal to zero, a FEN fault is initiated.

The current instruction being executed. This is a fake register used
in the flows to CASE on different instructions.

A per-processor state bit. The intr_flag bit is cleared if that processor
executes an rti or retsys instruction.

The kernel global pointer. The KGP is an internal processor register
that holds the kernel global pointer that is loaded into R15, the GP,
when an exception is initiated. There can be a hardware register for
the KGP or the PALcode can use private scratch memory.

The kernel stack pointer. The KSP is an internal processor register
that holds the kernel stack pointer while in user mode. There can be
a hardware register for the KSP or the storage space in the PCB can
be used.

A one-bit register that is used by the load locked and store conditional
instructions.

The machine check error summary register. The MCES is a 3
bit register that contains controls for machine check and system
correctable error handling.

The program counter. The PC is a pointer to the next instruction in
the flows. The low-order two bits of the PC always read as zero and
writes to them are ignored.

The process control block. The PCB holds the state of the process. I
The process control block base address register. The PCBB holds the
address of the PCB for the current process.

The PCC register consists of two 32-bit fields. The low-order 32
bits (PCC<31:0» are an unsigned, wrapping counter, PCC_CNT. The
high-order 32 bits (PCC<63:32» are an offset, PCC_OFF. PCC_OFF
is a value that, when added to PCC_CNT, gives the total PCC register
count for this process, modulo 2**32.

Introduction to DEC OSF/1 (II-B) 1-3

Table 1-3 (Cont.): Machine State Terms

Term Meaning

PME<62>

PS<3:0>

PTBR<63:0>

SP<63:0>

sysvalue<63:0>

unique<63:0>

USP<63:0>

VPTPTR<63:0>

whami<63:0>

The performance monitoring enable bit. The PME is a one-bit
register, located at bit 62 of PCB[40], that alerts any performance
monitoring software/hardware in the system that this process is to
have its performance monitored. The implementation mechanism for
this bit is not specified; it is implementation dependent (IMP).

The processor status. The PS is a four-bit register that stores the
current mode in bit <3> and stores the three-bit IPL in bits <2:0>.
The mode is 0 for kernel and 1 for user.

The page table base register. The PTBR contains the physical page
frame number (PFN) of the highest level (level 1) page table.

Another name for R30. The SP points to the top of the current stack.

PALcode only accesses the kernel stack. The kernel stack must
be quadword aligned whenever PALcode reads or writes it. If the
PALcode accesses the kernel stack and the stack is not aligned, a
kernel-stack-not-valid halt is initiated. Although PALcode does not
access the user stack, that stack should also be at least quadword
aligned for best performance.

The system value register. The sysvalue holds the per-processor
unique value. There can be a hardware register for the sysvalue
register or the storage space in the PALcode scratch memory can be
used.

The sysvalue register can only be accessed by kernel mode code and
there is one sysvalue register per CPU.

The process unique value register. The unique register holds the
per-process unique value. There can be a hardware register for the
unique register or the storage space in the PCB can be used.

The unique register can be accessed by both user and kernel code and
there is one unique register per process.

The user stack pointer. The USP is an internal processor register
that holds the user stack pointer while in kernel mode. There can be
a hardware register for the USP or the storage space in the PCB can
be used.

The virtual page table pointer. The VPTPTR holds the virtual address
of the first level page table.

The processor number of the current processor. This number is in the
range 0..maxCPU-1.

1-4 DEC OSF/1 Software (II-B)

1.1.3 Code Flow Terms

Table 1-4: Code Flow Terms

Term

opDec

Meaning

An attempt was made to execute a reserved instruction or execute a
privileged instruction in user mode.

Introduction to DEC OSF/1 (II-B) 1-5

I

Chapter 2

DEC OSF/1 PALcode Instruction Descriptions (II-B)

2.1 Unprivileged PALcode Instructions

Table 2-1 lists the DEC OSF/l PALcode unprivileged instruction mnemonics, names,
and the environment from which they can be called.

Table 2-1: Unprivileged DEC OSF/1 PALcode Instructions

Mnemonic Name Calling environment

bpt Breakpoint trap Kernel and user modes

bugchk Bugcheck trap Kernel and user modes

callsys System call User mode

gentrap Generate trap Kernel and user modes

imb I-stream memory barrier Kernel and user modes
Described in Common Architecture, Chap-
ter 6

rdunique Read unique Kernel and user modes

wrunique Write unique Kernel and user modes

DEC OSF/1 PALcode Instruction Descriptions (II-B) 2-1

I

2.1.1 Breakpoint Trap

Format:

bpt

Operation:

temp +- PS
if (ps<mode> NE 0) then

USP +- SP
SP +- KSP
PS +- 0

endif
SP +- SP - {6 * 8}
(SP+OO) +- temp
(SP+08) +- PC
(SP+16) +- GP
(SP+24) +- aO
(SP+32) +- al
(SP+40) +- a2
aO +- 0
GP +- KGP
PC +- entIF

Exceptions:

Kernel stack not valid

Instruction mnemonics:

! PALcode format

Mode is user so switch to kernel

bpt Breakpoint trap

Description:

The breakpoint trap (bpt) instruction switches mode to kernel, builds a stackframe
on the kernel stack, loads the GP with the KGP, loads a value of 0 into aO, and
dispatches to the breakpoint code pointed to by the entIF register. The registers
al..a2 are UNPREDICTABLE on entry to the trap handler. The saved PC at (SP+08)
is the address of the instruction following the trap instruction that caused the trap.

Notes:

• The opcode and function code for the bpt instruction are the same in the
OpenVMS AXP and the DEC OSF/l PALcode.

2-2 DEC OSF/1 Software (II-B)

2.1.2 Bugcheck Trap

Format:

bugchk ! PALcode format

Operation:

temp +- PS
if (PS<mode> NE 0) then

USP +- SP
SP +- KSP
PS +- 0

Mode is user so switch to kernel

{6 * 8}
temp
PC
GP
aO
al
a2

endif
SP +- SP
(SP+OO) +

(SP+08) +

(SP+16) +

(SP+24) +

(SP+32) +

(SP+40) +-

aO +- 1
GP +- KGP
PC +- entIF

Exceptions:

Kernel stack not valid

Instruction mnemonics:

bugchk Bugcheck trap

Description:

The bugcheck trap (bugchk) instruction switches mode to kernel, builds a stackframe
on the kernel stack, loads the GP with the KGP, loads a value of 1 into aO, and
dispatches to the breakpoint code pointed to by the entIF register. The registers
al..a2 are UNPREDICTABLE on entry to the trap handler. The saved PC at (SP+08)
is the address of the instruction following the trap instruction that caused the trap. I
Notes:

• The opcode and function code for the bugchk instruction are the same in the
OpenVMS AXP and the DEC OSF/l PALcode.

DEC OSF/1 PALcode Instruction Descriptions (II-B) 2-3

2.1.3 System Call

Format:

callsys

Operation:

if (PS<mode> EQ 0) then
machineCheck

! PALcode format

endif
USP <f- SP
SP <f- KSP
PS <f- 0 Mode=kernel
SP <f- SP - {6*8}
(SP+OO) <f- 8 PS of mode=user, IPL=O
(SP+08) <f- PC
(SP+08) <f- GP

GP <f- KGP
PC <f- entSys

Exceptions:

Machine check-invalid kernel mode callsys

Kernel stack not valid

Instruction mnemonics:

callsys System call

Description:

The system call (callsys) instruction is supported only from user mode. (Issuing a
callsys from kernel mode causes a machine check exception.)

The callsys instruction switches mode to kernel and builds a callsys stack frame.
The GP is loaded with the KGP. The exception then dispatches to the system call
code pointed to by the entsys register. On entry to the callsys code, the scratch
registers to and t8..t!! are UNPREDICTABLE.

2-4 DEC OSF/1 Software (II-B)

2.1.4 Generate Trap

Format:

gentrap

Operation:

temp ~ PS
if (PS<mode> NE 0) then

USP +- SP
SP +- KSP
PS +- 0

endif
SP +- SP - {6 * 8}
(SP+OO) +- temp
(SP+08) +- PC
(SP+16) +- GP
(SP+24) +- aO
(SP+32) +- al
(SP+40) +- a2
aO +- 2
GP +- KGP
PC +- entIF

Exceptions:

Kernel stack not valid

Instruction mnemonics:

! PALcode format

Mode is user so switch to kernel

gentrap Generate trap

Description:

The generate trap (gentrap) instruction switches mode to kernel, builds a stackframe
on the kernel stack, loads the GP with the KGP, loads a value of 2 into aO, and
dispatches to the breakpoint code pointed to by the entIF register. The registers
al..a2 are UNPREDICTABLE on entry to the trap handler. The saved PC at (SP+08)
is the address of the instruction following the trap instruction that caused the trap.

Notes:

• The opcode and function code for the gentrap instruction are the same in the
OpenVMS AXP and the DEC OSF/l PALcode.

DEC OSF/1 PALcode Instruction Descriptions (II-B) 2-5

I

2.1.5 Read Unique Value

Format:

rdunique

Operation:

vO <f- unique

Exceptions:

None

Instruction mnemonics:

! PALcode format

rdunique

Description:

Read unique value

The read unique value (rdunique) instruction returns the process unique value in
vO. The write unique value (wrunique) instruction, described in Section 2.1.6, sets
the process unique value register.

Notes:

• The opcode and function code for the rdunique instruction are the same in the
OpenVMS AXP and the DEC OSF/1 PALcode.

2-6 DEC OSF/1 Software (II-B)

2.1.6 Write Unique Value

Format:

wrunique

Operation:

unique ~ aD

Exceptions:

None

Instruction mnemonics:

! PALcode format

wrunique

Description:

Write unique value

The write unique value (wrunique) instruction sets the process unique register to
the value passed in aO. The read unique value (rdunique) instruction, described in
Section 2.1.5, returns the process unique value.

Notes:

• The opcode and function code for the wrunique instruction are the same in the
OpenVMS AXP and the DEC OSF/l PALcode.

DEC OSF/1 PALcode Instruction Descriptions (II-B) 2-7

•

2.2 Privileged DEC OSF/1 PALcode Instructions

The Privileged DEC OSF/l PALcode instructions (Table 2-2) provide an abstracted
interface to control the privileged state of the machine.

Table 2-2: Privileged DEC OSF/1 PALcode Instructions

Mnemonic Name

cflush

cserve

draina

halt

rdmces

rdps

rdusp

rdval

retsys

rti

swpctx

swppal

swpipl

tbi

whami

wrent

wrfen

wripir

wrkgp

wrmces

wrperfmon

wrusp

wrval

wrvptptr

Cache flush

Console service

Drain aborts
Described in Common Architecture, Chapter 6

Halt the processor
Described in Common Architecture, Chapter 6

Read machine check error summary register

Read processor status

Read user stack pointer

Read system value

Return from system call

Return from trap, fault, or interrupt

Swap process context

Swap PALcode image

Swap IPL

TB (translation buffer) invalidate

Who am I

Write system entry address

Write floating-point enable

Write interprocessor interrupt request

Write kernal global pointer

Write machine check error summary register

Performance monitoring function

Write user stack pointer

Write system value

Write virtual page table pointer

2-8 DEC OSF/1 Software (11-8)

2.2.1 Cache Flush

Format:

cflush

Operation:

!PALcode format

! aD contains the page frame number (PFN)
of the page to be flushed

IF PS<mode> EQ 1 THEN
{Initiate opDec fault}

{Flush page out of cache(s)}

Exceptions:

Opcode reserved to Digital

Instruction mnemonics:

cflush Cache flush

Description:

The cflush instruction may be used to flush an entire physical page specified by the
PFN in aO from any data caches associated with the current processor. All processors
must implement this instruction.

On processors that implement a backup power option that maintains only the
contents of memory if a powerfail occurs, this instruction is used by the powerfail
interrupt handler to force data written by the handler to the battery backed-up
main memory. After a cflush, the first subsequent load (on the same processor) to
an arbitrary address in the target page is either fetched from physical memory or
from the data cache of another processor.

In some multiprocessor systems, cflush is not sufficient to ensure that the data are
actually written to memory and not exchanged between processor caches. Additional
platform-specific cooperation between the powerfail interrupt handlers executing on
each processor may be required.

On systems that implement other backup power options (including none), cflush may
return without affecting the data cache contents.

To order cflush properly with respect to preceding writes, an MB instruction is needed
before the cflush; to order cflush properly with respect to subsequent reads, an MB
instruction is needed after the cflush.

DEC OSF/1 PALcode Instruction Descriptions (II-B) 2-9

•

2.2.2 Console Service

Format:

cserve

Operation:

!PALcode format

! implementation specific

if PS<mode> EQ 1 then
{initiate opDec fault}

else
{implementation-dependent action}

Exceptions:

Opcode reserved to Digital

Instruction Mnemonics:

cserve

Description:

Console service

This instruction is specific to each PALcode and console implementation and is not
intended for operating system use.

2-10 DEC OSF/1 Software (II-B)

2.2.3 Read Machine Check Error Summary

Format:

rdmces

Operation:

! PALcode format

if (PS<mode> EQ 1) then
{Initiate opDec fault}

endif
vO +- MCES

Exceptions:

Opcode reserved to Digital

Instruction mnemonics:

rdmces

Description:

Read machine check error summary

The read machine check error summary (rdmces) instruction returns the MCES
(machine check error summary) register in vO. On return from the rdmces
instruction, registers to and t8..t11 are UNPREDICTABLE.

DEC OSF/1 PALcode Instruction Descriptions (11-8) 2-11

•

2.2.4 Read Processor Status

Format:

rdps

Operation:

! PALcode format

if (PS<mode> EQ 1) then
{Initiate opDec fault}

endif
vO +- PS

Exceptions:

Opcode reserved to Digital

Instruction mnemonics:

rdps Read processor status

Description:

The read processor status (rdps) instruction returns the PS in vO. On return from
the rdps instruction, registers to and t8..tll are UNPREDICTABLE.

2-12 DEC OSF/1 Software (II-B)

2.2.5 Read User Stack Pointer

Format:

rdusp

Operation:

! PALcode format

if (PS<mode> EQ 1) then
{Initiate opDec fault}

endif
vO +- USP

Exceptions:

Opcode reserved to Digital

Instruction mnemonics:

rdusp

Description:

Read user stack pointer

The read user stack pointer (rdusp) instruction returns the user stack pointer
in vO. The user stack pointer is written by the wrusp instruction, described in
Section 2.2.20. On return from the rdusp instruction, registers to and t8..tll are
UNPREDICTABLE.

DEC OSF/1 PALcode Instruction Descriptions (II-B) 2-13

•

2.2.6 Read System Value

Format:

rdval

Operation:

!PALcode format

if (PS<mode> EQ 1) then
{Initiate opDec fault}

endif
vO +- sysvalue

Exceptions:

Opcode reserved to Digital

Instruction mnemonics:

rdval Read system value

Description:

The read system value (rdval) instruction returns the sysvalue in vO, allowing access
to a 64-bit per-processor value for use by the operating system. On return from the
rdval instruction, registers to and t8..t11 are UNPREDICTABLE.

2-14 DEC OSF/1 Software (II-B)

2.2.7 Return from System Call

Format:

retsys

Operation:

! PALcode format

if {PS<mode> EQ 1} then
{Initiate opDec fault}

endif
tmp +- (SP+08)
GP +- (SP+16)
KSP +- SP + {6*8}
SP +- USP
intr_flag = 0
lock_flag = 0
PS +- 8
PC +- tmp

Exceptions:

Opcode reserved to Digital

Kernel stack not valid (halt)

Instruction mnemonics:

! Clear the interrupt flag
! Clear the load lock flag
! Mode=user

retsys Return from system call

Description:

The return from system call (retsys) instruction pops the return address and the user
mode global pointer from the kernel stack. It then saves the kernel stack pointer,
sets the mode to user, sets the IPL to zero, and enters the user mode code at the
address popped off the stack. On return from the retsys instruction, registers to and
t8..tll are UNPREDICTABLE.

DEC OSF/1 PALcode Instruction Descriptions (II-B) 2-15

•

2.2.8 Return from Trap, Fault or Interrupt

Format:

rti

Operation:

! PALcode format

if (PS<mode> EQ 1) then
{Initiate opDec fault}

endif
tempps ~ (SP+O)
temppc of- (SP+8)
GP ~ (SP+16)
aO ~ (SP+24)
al ~ (SP+32)
a2 ~ (SP+40)
SP of- SP + {6 * 8}
if tempps<3> EQ 1} then

KSP ~ SP New mode is user
SP of- USP
tempps of- 8

endif
intr_flag = 0
lock_flag = 0
PS ~ tempps<3:0>
PC ~ temppc

Exceptions:

Opcode reserved to Digital

Kernel stack not valid (halt)

Instruction mnemonics:

Clear the interrupt flag
Clear the load lock flag
Set new PS

rti

Description:

Return from trap, fault, or interrupt

The return from fault, trap, or interrupt (rti) instruction pops registers (aQua3, and
GP), the PC, and the PS, from the kernel stack. If the new mode is user, the kernel
stack is saved and the user stack is restored.

2-16 DEC OSF/1 Software (II-B)

2.2.9 Swap Process Context

Format:

swpctx

Operation:

if (PS<mode> EQ 1)
{Initiate opDec fault}

PALcode format

Save current state

Return old PCBB
Switch PCBB
Restore new state

endif
(PCBB) +- SP
(PCBB+8) +- USP
tmp +- PCC
tmpl +- tmp<31:0> + tmp<63:32>
(PCBB+24)<31:0> +- tmp1<31:0>

vO +- PCBB
PCBB +- aO
SP +- (PCBB)
USP +- (PCBB+8)
oldPTBR +- PTBR
PTBR +- (PCBB+ 16)
tmpl +- (PCBB+24)
PCC<63:32> +- {tmpl - tmp}<31:0>
FEN +- (PCBB+40)
if {process unique register implemented} then

(vO+32) +- unique
unique +- (PCBB+32)

endif
if {ASN implemented}

ASN +- tmp1<63:32>
else

if (oldPTBR NE PTBR)
{Invalidate all TB entries with ASM=O}

endif
endif

Exceptions:

Opcode reserved to Digital

Instruction mnemonics: •swpctx Swap process context

DEC OSF/1 PALcode Instruction Descriptions (II-B) 2-17

Description:

The swap process context (swpctx) instruction saves the current process data in the
current PCB. Then swpctx switches to the PCB passed in aO and loads the new
process context. The old PCBB is returned in vO.

The process context and the PCB are described in Chapter 4.

On return from the swpctx instruction, registers to, t8..tll, and aO are
UNPREDICTABLE.

2-18 DEC OSF/1 Software (II-B)

2.2.10 Swap IPL

Format:

swpipl

Operation:

! PALcode format

if (PS<mode> EQ 1) then
{Initiate opDec fault}

endif
vO +- PS<IPL>
PS<IPL> +- aO<2:0>

Exceptions:

Opcode reserved to Digital

Instruction mnemonics:

swpipl Swap IPL

Description:

The swap IPL (swpipl) instruction returns the current value of the PS<IPL> bits in
vO and sets the IPL to the value passed in aO. On return from the spwipl instruction,
registers to, t8..tll, and aO are UNPREDICTABLE.

DEC OSF/1 PALcode Instruction Descriptions (II-B) 2-19

•

2.2.11 Swap PALcode Image

Format:

swppal

Operation:

!PALcode format

aO contains the new PALcode identifier
a1:a5 contain implementation-specific entry parameters
vO receives the following status:

o success (PALcode was switched)
1 unknown PALcode variant
2 known PALcode variant, but PALcode not loaded

if (PS<mode> EQ 1) then
(Initiate opDec fault)

else
if {aO < 256} then

begin
if {aO invalid} then

vO ~ 1
{return}

else if {PALcode not loaded} then
vO ~ 2
{return}

else
tmp1 ~ {PALcode base}

end
else

tmp1 = aO
{flush instruction cache}
{invalidate all translation buffers}
{perform additional PALcode variant-specific initialization}
{transfer control to PALcode entry at physical address = tmp1}

Exceptions:

Opcode reserved to Digital

Instruction mnemonics:

swppal Swap PALcode image

Description:

The swap Palcode image (swppal) instruction causes the current (active) PALcode
to be replaced by the specified new PALcode image. The swppal instruction is

2-20 DEC OSF/1 Software (II-B)

intended for use by operating systems only during bootstraps and by consoles during
transitions to console I/O mode.

The PALcode descriptor contained in aO is interpreted as either a PALcode variant
or the base physical address of the new PALcode image. If a variant, the PALcode
image must have been loaded previously. No PALcode loading occurs as a result of
this instruction.

After successful PALcode switching, the register contents are determined by the
parameters passed in al..a5 or are UNPREDICTABLE. A common parameter is
the address of a new PCB. In this case, the stack pointer register and PTBR are
determined by the contents of that PCB; the contents of other registers such as
aO..a5 may be UNPREDICTABLE.

See Part III, Console Interface, for information on using this instruction.

DEC OSF/1 PALcode Instruction Descriptions (II-B) 2-21

•

2.2.12 TB Invalidate

Format:

tbi

Operation:

! PALcode format

if (PS<mode> EQ l) then
{Initiate opDec fault}

endif
case aD begin

1: ! tbisi
{Invalidate ITB entry for va=al}
break;

2: tbisd
{Invalidate DTB entry for va=al}
break;

3: tbis
{Invalidate both ITB and DTB entry for va=al}
break;

-1: tbiap
{Invalidate all TB entries with ASM=D}
break;

-2: tbia
{Flush all TBs}
break;

otherwise:
break;

endcase

Exceptions:

Opcode reserved to Digital

Instruction mnemonics:

tbi

Description:

TB (translation buffer) invalidate

The TB invalidate (tbi) instruction removes specified entries from the I and D
translation buffers (TBs) when the mapping changes. The tbi instruction removes
specific entry types based on a CASE selection of the value passed in register
aO. On return from the tbi instruction, registers to, t8..tll, aO, and al are
UNPREDICTABLE.

2-22 DEC OSF/1 Software (II-B)

2.2.13 Who Am I

Format:

whami

Operation:

! PALcode format

if (PS<rnode> EQ 1) then
{Initiate opDec fault}

endif
vO +- wharni

Exceptions:

Opcode reserved to Digital

Instruction mnemonics:

whami

Description:

Who am I

The who am I (whami) instruction returns the processor number for the current
processor in yO. The processor number is in the range 0 to the number of processors
minus one (0..maxCPU-1) that can be configured in the system. On return from the
whami instruction, registers to and t8..t11 are UNPREDICTABLE.

DEC OSF/1 PALcode Instruction Descriptions (II-B) 2-23

•

2.2.14 Write System Entry Address

Format:

wrent

Operation:

! PALcode format

if (PS<mode> EQ 1) then
{Initiate opDec fault}

endif
case a1 begin

0: ! Write the EntInt:
entInt i- aO
break;

1: Write the EntArith:
entAri th ~ aO
break;

2: Write the EntMM:
entMM i- aO
break;

3: Write the EntIF:
entIF ~ aO
break;

4: Write the EntUna:
entUna i- aD
break;

5: Write the EntSys:
entSys ~ aO
break;

otherwise:
break;

endcase;

Exceptions:

Opcode reserved to Digital

Instruction mnemonics:

wrent

Description:

Write system entry address

The write system entry address (wrent) instruction determines the specific system
entry point based on a CASE selection of the value passed in register al. The wrent
instruction then sets the virtual address of the specified system entry point to the
value passed in aO.

2-24 DEC OSF/1 Software (II-B)

For best performance, all the addresses should be kseg addresses. (See Chapter 3
for a definition of kseg addresses.)

On return from the wrent instruction, registers to, t8..tll, aO, and al are
UNPREDICTABLE.

DEC OSF/1 PALcode Instruction Descriptions (II-B) 2-25

•

2.2.15 Write Floating-Point Enable

Format:

wrfen

Operation:

! PALcode format

if (PS<mode> EQ 1) then
{Initiate opDec fault}

endif
FEN +- aO<O>
(PCBB+40)<O> +- aO AND 1

Exceptions:

Opcode reserved to Digital

Instruction mnemonics:

wrfen

Description:

Write floating-point enable

The write floating-point enable (wrfen) instruction writes bit zero of the value passed
in aO to the floating-point enable register. The wrfen instruction also writes the value
for FEN to the PCB at offset (PCBB+40)<O>. On return from the wrfen instruction,
registers to, t8..t!!, and aO are UNPREDICTABLE.

2-26 DEC OSF/1 Software (II-B)

2a2.16 Write Interprocessor Interrupt request

Format:

wripir

Operation:

! PALcode format

if (PS<mode> EQ 1) then
{Initiate opDec fault}

endif
IPIR +- aO

Exceptions:

Opcode reserved to Digital

Instruction mnemonics:

wripir

Description:

Write interprocessor interrupt request

The write interprocessor interrupt request (wripir) instruction generates an
interprocessor interrupt on the processor number passed in register aO. The
interrupt request is recorded on the target processor and is initiated when the proper
enabling conditions are present. On return from wripir, registers to, t8..t11, and aO
are UNPREDICTABLE.

Programming Note:

The interrupt need not be initiated before the next instruction is executed on the
requesting processor, even if the requesting processor is also the target processor
for the request.

DEC OSF/1 PALcode Instruction Descriptions (II-B) 2-27

•

2.2.17 Write Kernel Global Pointer

Format:

wrkgp

Operation:

! PALcode format

if (PS<mode> EQ 1) then
{Initiate opDec fault}

endif
KGP +- aD

Exceptions:

Opcode reserved to Digital

Instruction mnemonics:

wrkgp Write kernal global pointer

Description:

The write kernel global pointer (wrkgp) instruction writes the value passed in aO to
the kernel global pointer (KGP) internal register. The KGP is used to load the GP
on exceptions. On return from the wrkgp instruction, registers to, t8..tll, and aO
are UNPREDICTABLE.

2-28 DEC OSF/1 Software (II-B)

2.2.18 Write Machine Check Error Summary

Format:

wrmces

Operation:

! PALcode format

if (PS<mode> EQ 1) then
{Initiate opDec fault}

endif
if (aO<O> EQ 1) then MCES<O> +- 0
if (aO<O> EQ 1) then MCES<O> +- 0
if (aO<O> EQ 1) then MCES<O> +- 0
MCES<3> +- aO<3>
MCES<4> +- aO<4>

Exceptions:

Opcode reserved to Digital

Instruction mnemonics:

wrmces

Description:

Write machine check error summary

The write machine check error summary (wrmces) instruction clears the machine
check in progress bit and clears the processor- or system-correctable error in progress
bit in the MCES register. The instruction also sets or clears the processor- or system
correctable error reporting enabled bit in the MCES register. On return from the
wrmces instruction, registers to, t8..tll are UNPREDICTABLE.

DEC OSF/1 PALcode Instruction Descriptions (II-B) 2-29

•

2.2.19 Performance Monitoring Function

Format:

wrperfmon

Operation:

! PALcode format

if (PS<mode> EQ 1) then
{Initiate opDec fault}

aO contains implementation specific input values
a1 contains implementation specific output values
vO may return implementation specific values
Operations and actions taken are implementatin specific

Exceptions:

Opcode reserved to Digital

Instruction mnemonics:

wrperfmon Performance monitoring

Description:

The performance monitoring instruction (wrperfmon) alerts any performance
monitoring softwarelhardware in the system to monitor the performance of this
process. The wrperfmon function arguments and actions are platform and chip
dependent, and when defined for an implementation, are described in Appendix D.

Registers aO and al contain implementation-specific input values. Implementation
specific values may be returned in register vO. On return from the wrperfmon
instruction, registers aO, aI, to, and t8..tll are UNPREDICTABLE.

2-30 DEC OSF/1 Software (II-B)

2.2.20 Write User Stack Pointer

Format:

wrusp

Operation:

! PALcode format

if (PS<mode> EQ 1) then
{Initiate opDec fault}

endif
USP ~ aD

Exceptions:

Opcode reserved to Digital

Instruction mnemonics:

wrusp

Description:

Write user stack pointer

The write user stack pointer (wrusp) instruction writes the value passed in aO to the
user stack pointer. On return from the wrusp instruction, registers to, t8..tll, and
aO are UNPREDICTABLE.

DEC OSF/1 PALcode Instruction Descriptions (II-B) 2-31

•

2.2.21 Write System Value

Format:

wrval

Operation:

!PALcode format

if (PS<mode> EQ 1) then
{Initiate opDec fault}

endif
sysvalue ~ aD

Exceptions:

Opcode reserved to Digital

Instruction mnemonics:

wrval

Description:

Write system value

The write system value (wrval) instruction writes the value passed in aO to a 64
bit system value register. The combination of wrval with the rdval instruction,
described in Section 2.2.6, allows access by the operating system to a 64-bit per
processor value. On return from the wrval instruction, registers to, t8..t11, and aO
are UNPREDICTABLE.

2-32 DEC OSF/1 Software (II-B)

2.2.22 Write Virtual Page Table Pointer

Format:

wrvptptr

Operation:

! PALcode format

if (PS<mode> EQ 1) then
{Initiate opDec fault}

endif
VPTPTR +- aD

Exceptions:

Opcode reserved to Digital

Instruction mnemonics:

wrvptptr Write virtual page table pointer

Description:

The write virtual page table pointer (wrvptptr) instruction writes the pointer passed
in aO to the virtual page table pointer register (VPTPTR). The VPTPTR is described
in Section 3.6.2. On return from the wrvptptr instruction, registers to, t8..tll, and
aO are UNPREDICTABLE.

DEC OSF/1 PALcode Instruction Descriptions (II-B) 2-33

•

Chapter 3

DEC OSF/1 Memory Management (II-B)

3.1 Virtual Address Spaces

A virtual address is a 64-bit unsigned integer that specifies a byte location within the
virtual address space. Implementations subset the supported address space to one
of four sizes (43, 47,51, or 55 bits) as a function of page size. The minimal supported
virtual address size is 43 bits. If an implementation supports less than 64-bit virtual
addresses, it must check that all the VA<63:vaSize> bits are equal to VA<vaSize-1>.
This gives two disjoint ranges for valid virtual addresses. For example, for a
43-bit virtual address space, valid virtual address ranges are O..3FFFFFFFFFF16

and FFFFFC000000000016..FFFFFFFFFFFFFFFF16 0 Access to virtual addresses
outside an implementation's valid virtual address range cause an access-violation
fault.

The virtual address space is divided into three segments.
va<vaSize-1:vaSize-2> select a segment as shown in Table 3-1.

Table 3-1: Virtual Address Space Segments

The two bits

VA<vaSize-l:vaSize-2> Name Mapping Access Control

Ox

10

11

segO

kseg

segl

Mapped via TB

PA ~ sext(VA<vaSize-3:0»

Mapped via TB

Programmed in PTE

Kernel ReadIWrite

Programmed in PTE

For kseg, the relocation, sharing, and protection are fixed. For segO and seg1, the
virtual address space is broken into pages, which are the units of relocation, sharing,
and protection. The page size ranges from BK bytes to 64K bytes. Therefore, system
software should allocate regions with differing protection on 64K-byte virtual address
boundaries to ensure image compatibility across all Alpha AXP implementations. •

Memory management provides the mechanism to map the active part of the virtual
address space to the available physical address space. The operating system controls
the virtual-to-physical address mapping tables and saves the inactive (but used)
parts of the virtual address space on external storage media.

3.1.1 Segment SegO and Seg1 Virtual Address Format

The processor generates a 64-bit virtual address for each instruction and operand in
memory. A segO or seg1 virtual address consists of three level-number fields and a
byte_within_page field, as shown in Figure 3-1.

DEC OSF/1 Memory Management (II-B) 3-1

Figure 3-1: Virtual Address Format

63

SEXT (level1 <level size-1 » level1 level2 level3 byte_within_page

The byte_within_page field can be either 13, 14, 15, or 16 bits depending on a
particular implementation. Thus, the allowable page sizes are 8K bytes, 16K bytes,
32K bytes, and 64K bytes. The low-order bit in each level-number field is 0 and each
field is Ooon bits, where for example, n is 9 for an 8K page size. Level-number fields
are the same size for a given implementation.

The level-number fields are a function of the page size; all page table entries at any
given level do not exceed one page. The PFN field in the PTE is always 32 bits wide.
Thus, as the page size grows, the virtual and physical address size also grows.

Table 3-2 shows the virtual address options and physical address size (in bits)
calculations. The physical address (bits) column is the maximum physical address
allowed by the smaller of the kseg size or available physical address bits for a given
page size (segO/segl). The available physical address bits is calculated by combining
the number of bits in the PFN (always 32) with the number of bits in the byte_
within_page field. The kseg segment is calculated from the virtual address size
minus 2.

Table 3-2: Virtual Address Options

Page Byte_within_ Level Virtual Physical Physical
Size page Size Address Address Address
(bytes) (bits) (bits) (bits) (bits) Limited by

8K 13 10 43 41 kseg

16K 14 11 47 45 kseg

32K 15 12 51 47 segO/seg1

64K 16 13 55 48 segO/seg1

3.1.2 Kseg Virtual Address Format

The processor generates a 64-bit virtual address for each instruction and operand
in memory. A kseg virtual address consists of segment select field with a value
of 102 and a physical address field. The segment select field is the two bits
va<vaSize-l:vaSize-2>. The physical address field is va<vaSize-3:0>.

3-2 DEC OSF/1 Software (II-B)

Figure 3-2: Kseg Virtual Address Format

63

SEXT (segment_select<1 » Segment Select=10 2 Physical Address

Figure 3-3: Page Table Entry (PTE)

16151413121110 9 8 7 6 5 4 3 2 1 0
"" R R R

S UK S UK
S GH

AF F F
V WW V RR V SO OOV
0 EE 1 EE 2 ME~R

.....

"

3.2 Physical Address Space

Physical addresses are at most vaSize-2 bits. This allows all of physical memory
to be accessed via kseg. A processor may choose to implement a smaller physical
address space by not implementing some number of high-order bits.

The two most significant implemented physical address bits delineate the four
regions in the physical address space. Implementations use these bits as appropriate
for their systems. For example, in a workstation with a 30-bit physical address space,
bit<29> might select between memory and non-memory-like regions, and bit <28>
could enable or disable cacheing (see Common Architecture, Chapter 5).

3.3 Memory Management Control

Memory management is always enabled. Implementations must provide an
environment for PALcode to service exceptions and to initialize and boot the
processor. For example PALcode might run with I-stream mapping disabled.

3.4 Page Table Entries

The processor uses a quadword page table entry (PTE) to translate segO and segl
virtual addresses to physical addresses. A PTE contains hardware and software
control information and the physical page frame number (PFN). A PTE is a quadword •
with fields as shown in Figure 3-3 and described in Table 3-3.

DEC OSF/1 Memory Management (II-B) 3-3

Table 3-3: Page Table Entry (PTE) Bit Summary

Bits Name Meaning

63-32

31-16

15-14

13

12

11-10

9

8

7

PFN

SW

RSVO

UWE

KWE

RSV1

URE

KRE

RSV2

Page frame number

The PFN field always points to a page boundary. If V is set, the PFN
is concatenated with the byte_within_page bits of the virtual address to
obtain the physical address.

Reserved for software.

Reserved for hardware; SBZ.

User write enable.

This bit enables writes from user mode. If this bit is 0 and a store is
attempted while in user mode, an access-violation fault occurs. This bit
is valid even when V=O.

Note:

If a write enable bit is set and the corresponding read enable bit is
not, the operation of the processor is UNDEFINED.

Kernel write enable.

This bit enables writes from kernel mode. If this bit is 0 and a store is
attempted while in kernel mode, an access-violation fault occurs. This
bit is valid even when v=o.

Reserved for hardware; SBZ.

User read enable.

This bit enables reads from user mode. If this bit is 0 and a load or
instruction fetch is attempted while in user mode, an Access Violation
occurs. This bit is valid even when V=O.

Kernel read enable.

This bit enables reads from kernel mode. If this bit is 0 and a load or
instruction fetch is attempted while in kernel mode, an access-violation
fault occurs. This bit is valid even when v=o.

Reserved for hardware; SBZ.

3-4 DEC OSF/1 Software (II-B)

Table 3-3 (Cont.): Page Table Entry (PTE) Bit Summary

Bits Name Meaning

6-5

4

3

2

1

o

GH

ASM

FOE

FOW

FOR

v

Granularity hint.

Software may set these bits to a non-zero value to supply a hint to
translation buffer implementations that a block of pages can be treated
as a single larger page:

1. A block is an aligned group of 8**N pages, where N is the value of
PTE<6:5>, for example, a group of 1,8,64, or 512 pages starting at
a virtual address with page_size + 3*N low-order zeros.

2. The block is a group of physically contiguous pages that are aligned
both virtually and physically. Within the block, the low 3*N bits of
the PFNs describe the identity mapping and the high 32-3*N PFN
bits are all equal.

3. Within the block, all PTEs have the same values for bits <15:0>.
Hardware may use this hint to map the entire block with a single
TB entry, instead of 8, 64, or 512 separate TB entries.

Address space match.

When set, this PTE matches all address space numbers. For a given VA,
ASM must he set consistently in all processes; otherwise, the address
mapping is UNPREDICTABLE.

Fault on execute.

When set, a Fault on Execute exception occurs on an attempt to execute
any location in the page.

Fault on write.

When set, a Fault on Write exception occurs on an attempt to write any
location in the page.

Fault on read.

When set, a Fault on Read exception occurs on an attempt to read any
location in the page.

Valid.

Indicates the validity of the PFN field. When V is set, the PFN field is
valid for use by hardware. When V is clear, the PFN field is reserved •
for use by software. The V bit does not affect the validity ofPTE<15:1>
bits.

3.4.1 Changes to Page Table Entries

The operating system changes PTEs as part of its memory management functions.
For example, the operating system may set or clear the V bit, change the PFN field
as pages are moved to and from external storage media, or modify the software bits.
The processor hardware never changes PTEs.

Software must guarantee that each PTE is always internally consistent. Changing a
PTE one field at a time can cause incorrect system operation, such as setting PTE<V>

DEC OSF/1 Memory Management (II-B) 3-5

with one instruction before establishing PTE<PFN> with another. Execution of an
interrupt service routine between the two instructions could use an address that
would map using the inconsistent PTE. Software can solve this problem by building
a complete new PTE in a register and then moving the new PTE to the page table
by using an STQ instruction.

Multiprocessing complicates the problem. Another processor could be reading (or
even changing) the same PTE that the first processor is changing. Such concurrent
access must produce consistent results. Software must use some form of software
synchronization to modify PTEs that are already valid. Whenever a processor
modifies a valid PTE, it is possible that other processors in a multiprocessor system
may have old copies of that PTE in their translation buffer. Software must inform
other processors of changes to PTEs. Hardware must ensure that aligned quadword
reads and writes are atomic operations. Hardware must not cache invalid PTEs
(PTEs with the V bit equal to 0) in translation buffers. See Section 3.7 for more
information.

3.5 Memory Protection

Memory protection is the function of validating whether a particular type of access
is allowed to a specific page from a particular access mode. Access to each page is
controlled by a protection code that specifies, for each access mode, whether read or
write references are allowed. The processor uses the following to determine whether
an intended access is allowed:

• The virtual address, which is used to either select kseg mapping or provide the
index into the page tables.

• The intended access type (read or write).

• The current access mode base on processor mode.

For protection checks, the intended access is read for data loads and instruction
fetches, and write for data stores.

3.5.1 Processor Access Modes

There are two processor modes, user and kernel. The access mode of a running
process is stored in the processor status mode bit (PS<mode».

3.5.2 Protection Code

Every page in the virtual address space is protected according to its use. A program
may be prevented from reading or writing portions of its address space. A protection
code associated with each page describes the accessibility of the page for each
processor mode.

For segO and segl, the code allows a choice of read or write protection for each
processor mode. For each mode, access can be read/write, read-only, or no
access. Read and write accessibility and the protection for each mode are specified
independently.

For kseg, the protection code is kernel read/write, user no-access.

3-6 DEC OSF/1 Software (II-B)

3.5.3 Access-Violation Faults
An access-violation memory-management fault occurs if an illegal access is
attempted, as determined by the current processor mode and the page's protection.

3.6 Address Translation for 5egO and 5eg1

The page tables can be accessed from physical memory, or (to reduce overhead) can
be mapped to a linear region of the virtual address space. The following sections
describe both access methods.

3.6.1 Physical Access for 5egO and 5eg1 PTEs

SegO and seg1 address translation can be performed by accessing entries in a three
level page table structure. The page table base register (PTBR) contains the physical
page frame number (PFN) of the highest level (level 1) page table. Bits <leveI1> of
the virtual address are used to index into the first level page table to obtain the
physical PFN of the base of the second level (level 2) page table. Bits <leveI2> of
the virtual address are used to index into the second level page table to obtain the
physical PFN of the base of the third level (level 3) page table. Bits <leveI3> of the
virtual address are used to index the third level page table to obtain the physical
PFN of the page being referenced. The PFN is concatenated with virtual address bits
<byte_within_page> to obtain the physical address of the location being accessed.

If part of any page table does not reside in a memory-like region, or does reside in
nonexistent memory, the operation of the processor is UNDEFINED.

If the first-level or second-level PTE is valid, the protection bits are ignored; the
protection code in the third-level PTE is used to determine accessibility. If a first
level or second level PTE is invalid, an access-violation fault occurs if the PTE<KRE>
equals zero. An access-violation fault on a first-level or second-level PTE implies that
all lower-level page tables mapped by that PTE do not exist.

The algorithm to generate a physical address from a segO or segl virtual address
follows:
IF (SEXT(VA<vaSize-l:O» neq VA} THEN

{ initiate access-violation fault}

levell_PTE ~ ({PTBR * page_size} + {8 * VA<levell>})
IF levell_PTE<v> EQ 0 THEN

IF levell_PTE<KRE> eq 0 THEN
{ initiate access-violation fault}

ELSE
{ initiate translation-not-valid fault}

leve12_PTE ~ ({levell_PTE<PFN> * page_size} + {8 * VA<leve12>})
IF leve12_PTE<v> EQ 0 THEN

IF leve12_PTE<KRE> eq 0 THEN
{ initiate access-violation fault}

ELSE
{ initiate translation-not-valid fault}

leve13_PTE ~ ({leve12_PTE<PFN> * page_size) + {8 * VA<leve13>})

Read physical

Read physical

Read physical

•

DEC OSF/1 Memory Management (II-B) 3-7

IF {{{level3_PTE<UWE> eq O} AND {write access} AND {ps<mode> EQ 1} } OR
{{level3_PTE<URE> eq O} AND {read access} AND {ps<mode> EQ 1} } OR
{{level3_PTE<KWE> eq O} AND {write access} AND {ps<mode> EQ O} } OR
{{level3_PTE<KRE> eq O} AND {read access} AND {ps<mode> EQ O} } }

THEN
{initiate memory-management fault}

ELSE
IF level3_PTE<v> EQ 0 THEN

{initiate memory-management fault}

IF level3_PTE<FOW> eq 1} AND {write access} THEN
{initiate memory-management fault}

IF level3_PTE<FOR> eq 1} AND {read access} THEN
{initiate memory-management fault}

IF level3_PTE<FOE> eq 1} AND {execute access} THEN
{initiate memory-management fault}

Physical_address ~ {level3_PTE<PFN> * page_size} OR VA<byte_within-page>

3.6.2 Virtual Access for SegO or Seg1 PTEs

The page tables can be mapped into a linear region of the virtual address space,
reducing the overhead for segO and segl PTE accesses. The mapping is done as
follows:

1. Select a 2(3*lg(pageSize/B»+3 byte-aligned region (an address with 3 *Ig(pageSize/8) +3

low-order zeros) in the segO or segl address space.

2. Create a level 1 PTE to map the page tables as follows.

= 1
= 1

level l_PTE< 8>
levell_PTE<O>

levell_PTE = 0 ! Initialize all fields to 0
levell_PTE<63:32> = pfn_of_Level_l-pagetable

! Set the PFN to the PFN of the level one pagetable
! Set the kernel read enable bit
! Set the valid bit

3. Set the level 1 page table entry that corresponds to the VPTPTR to the created
levell_PTE.

4. Set all level 1 and level 2 valid PTEs to allow kernel read access. With this setup
in place, the algorithm to fetch a segO or segl PTE is:
tmp ~ left_shift (va, {64 - {{lg(pageSize) *4} - 9}})
tmp ~ right_shift (tmp, {64 - {{lg(pageSize) *4} - 9} + 19(pageSize) - 3})
tmp ~ VPTB OR tmp
tmp<2: 0> ~ 0
level3_PTE, ~ (tmp) ! Load PTE using it's virtual address

5. Set the virtual page table pointer (VPTPTR) with a write virtual page table
pointer instruction (wrvptptr) to the selected value.

The virtual access method is used by PALcode for most TB fills.

3.7 Translation Buffer

In order to save actual memory references when repeatedly referencing the
same pages, hardware implementations include a translation buffer to remember
successful virtual address translations and page states. When the process context
is changed, a new value is loaded into the address space number (ASN) internal
processor register with a swap process context (swpctx) instruction. This causes

3-8 DEC OSF/1 Software (II-B)

address translations for pages with PTE<ASM> clear to be invalidated on a processor
that does not implement address space numbers.

Additionally, when the software changes any part (except the software field) of a
valid PTE, it must also execute a CALL_PAL tbi instruction. The entire translation
buffer can be invalidated by tbia, and all ASM=O entries can be invalidated by tbiap.
The translation buffer must not store invalid PTEs. Therefore, the software is not
required to invalidate translation buffer entries when making changes for PTEs that
are already invalid.

After software changes a valid first- or second-level PTE, software must flush the
translation for the corresponding page in the virtual page table. Then software must
flush the translations of all valid pages mapped by that page. In the case of a change
to a first-level PTE, this action must be taken through a second iteration.

3.8 Address Space Numbers

The Alpha AXP architecture allows a processor to optionally implement address
space numbers (process tags) to reduce the need for invalidation of cached address
translations for process-specific addresses when a context switch occurs. The
supported address space number (ASN) range is O..MAX_ASN; MAX_ASN is
provided in the HWRPB MAX_ASN field.

The address space number for the current process is loaded by software in the
address space number (ASN) with a swpctx instruction. ASNs are processor
specific and the hardware makes no attempt to maintain coherency across multiple
processors. In a multiprocessor system, software is responsible for ensuring the
consistency of TB entries for processes that might be rescheduled on different
processors.

Programming Note:

System software should not assume that the number of ASNs is a power of two.
This allows hardware, for example, to use N TB tag bits to encode (2**N)-3 ASN
values, one value for ASM=l PTEs, and one for invalid.

There are several possible ways of using ASNs that result from several
complications in a multiprocessor system. Consider the case where a process
that executed on processor-l is rescheduled on processor-2. If a page is deleted
or its protection is changed, the TB in processor-l has stale data.

• One solution is to send an interprocessor interrupt to all the processors on
which this process could have run and cause them to invalidate the changed
PTE. That results in significant overhead in a system with several processors.

• Another solution is to have software invalidate all TB entries for a process
on a new processor before it can begin execution, if the process executed on
another processor during its previous execution. This ensures the deletion of
possibly stale TB entries on the new processor.

• A third solution is to assign a new ASN whenever a process is run on a
processor that is not the same as the last processor on which it ran.

DEC OSF/1 Memory Management (II-B) 3-9

I

3.9 Memory-Management Faults

On a memory-management fault, the fault code (MMCSR) is passed in a1 to specify
the type of fault encountered, as shown in Table 3-4.

Table 3-4: Memory-Management Fault Type Codes
Fault MMCSR value

Translation not valid 0

Access-violation 1

Fault on read 2

Fault on execute 3

Fault on write 4

• A translation-not-valid fault is taken when a read or write reference is attempted
through an invalid PTE in a first, second, or third-level page table.

• An access-violation fault is taken on a reference to a segO or seg1 address when
the protection field of the third-level PTE that maps the data indicates that the
intended page reference would be illegal in the specified access mode. An access
violation fault is also taken if the KRE bit is a zero in an invalid first or second
level PTE. An access-violation fault is generated for any access to a kseg address
when the mode is user (PS<mode> EQ 1).

• A fault-on-read (FOR) fault occurs when a read is attempted with PTE<FOR>
set.

• A fault-on-execute (FOE) fault occurs when an instruction fetch is attempted
with PTE<FOE> set.

• A fault-on-write (FOW) fault occurs when a write is attempted with PTE<FOW>
set.

3-10 DEC OSF/1 Software (II-B)

Chapter 4

DEC OSF/1 Process Structure (II-B)

4.1 Process Definition

A process is a single thread of execution. It is the basic entity that can be scheduled
and is executed by the processor. A process consists of an address space and both
software and hardware context. The hardware context of a process is defined by the
the following:

• Thirty integer registers (excludes R31 and SP)

• Thirty-one floating-point registers (excludes F31)

• The program counter (PC)

• The two per-process stack pointers (USPIKSP)

• The processor status (PS)

• The address space number (ASN)

• The charged process cycles

• The page table base register (PTBR)

• The process unique value (unique)

• The floating-point enable register (FEN)

• The performance monitoring enable bit (PME)

This information must be loaded if a process is to execute.

While a process is executing, some of its hardware context is being updated in the
internal registers. When a process is not being executed, its hardware context is
stored in memory in a software structure called the process control block (PCB).
Saving the process context in the PCB and loading new values from another PCB
for a new context is called context switching. Context switching occurs as one process
after another is scheduled for execution.

4.2 Process Control Block (PCB)

As shown in Figure 4-1, the PCB holds the state of a process.

The contents of the PCB are loaded and saved by the swap process context (swpctx)
instruction. The PCB must be quadword aligned and lie within a single page of
physical memory. It should be 64-byte aligned for best performance.

DEC OSF/1 Process Structure (II-B) 4-1

•

Figure 4-1: Process Control Block (PCB)

636261 3231 1 0

Kernel Stack Pointer (KSP)

User Stack Pointer (USP)

Page Table Base Register (PTBR)

Address Space Number (ASN) I Charged Process Cycles

Process Unique Value (unique)

P F
M E
E N

Reserved to Digital

Reserved to Digital

:00

:08

:16

:24

:32

:40

:48

:56

The PCB for the current process is specified by the process control block base address
register (PCBB); see Table 1-3.

The swap privileged context instruction (swpctx) saves the privileged context of the
current process into the PCB specified by PCBB, loads a new value into PCBB, and
then loads the privileged context of the new process into the appropriate hardware
registers.

The new value loaded into PCBB, as well as the contents of the PCB, must satisfy
certain constraints or an UNDEFINED operation results:

1. The physical address loaded into PCBB must be quadword aligned and describes
eight contiguous quadwords that are in a memory-like region (see Common
Architecture, Chapter 5).

2. The value of PTBR must be the page frame number (PFN) of an existent page
that is in a memory-like region.

It is the responsibility of the operating system to save and load the non-privileged
part of the hardware context.

The swpctx instruction returns ownership of the current PCB to operating system
software and passes ownership of the new PCB from the operating system to the
processor. Any attempt to write a PCB while ownership resides with the processor
has UNDEFINED results. If the PCB is read while ownership resides with the
processor, it is UNPREDICTABLE whether the original or an updated value of a
field is read. The processor is free to update a PCB field at any time. The decision
as to whether or not a field is updated is made individually for each field.

The charged process cycles is the total number of PCC register counts that are
charged to the process (modulo 2**32). When a process context is loaded by the
swpctx instructions, the contents of the PCC count field (PCC_CNT) is subtracted
from the contents of PCB[24] <31:0> and the result is written to the PCC offset field
(PCC_OFF):

4-2 DEC OSF/1 Software (II-B)

PCC<63:32> +- (PCB[24]<31:0> - PCC<31:0»

When a process context is saved by the swpctx instruction, the charged process cycles
is computed by performing an unsigned add of PCC<63:32> and PCC<31:0>. That
value is written to PCB[24]<31:0>.

Software Programming Note:

The following example returns in RO the current PCC register count (modulo
2**32) for a process. Notice the care taken not to cause an unwanted sign
extension.

RPCC
SLL
ADDQ
SRL

RO
RO, #32, Rl
RO, Rl, RO
RO, #32, RO

Read the processor cycle counter
Line up the offset and count fields
Do add
Zero extend the cycle count to 64 bits

If ASNs are not implemented, the ASN field is not read or written by PALcode.

The process unique value is that value used in support of multithread
implementations. The value is stored in the PCB when the process is not active.
When the process is active, the value may be cached in hardware internal storage
or kept in the PCB only.

The FEN bit reflects the setting of the FEN IPR.

Setting the PME bit alerts any performance hardware or software in the system to
monitor the performance of this process.

Kernel mode code must use the rdusp/wrusp instructions to access the USP. Kernel
mode code can read the PTBR, the ASN, the FEN, and the PME for the current
process from the PCB. The unique value can be accessed with the rdunique and
wrunique instructions.

DEC OSF/1 Process Structure (II-B) 4-3

I

Chapter 5

DEC OSF/1 Exceptions and Interrupts (II-B)

5.1 Introduction

At certain times during the operation of a system, events within the system require
the execution of software outside the explicit flow of control. When such an event
occurs, an Alpha AXP p.rocessor forces a change in control flow from that indicated by
the current instruction stream. The notification process for such an event is either
an exception or an interrupt.

5.1.1 Exceptions
Exceptions occur primarily in relation to the currently executing process. Exception
service routines execute in response to exception conditions caused by software. All
exception service routines execute in kernel mode on the kernel stack. Exception
conditions consist of faults, arithmetic traps, and synchronous traps:

• A fault occurs during an instruction and leaves the registers and memory in
a consistent state such that elimination of the fault condition and subsequent
reexecution of the instruction gives correct results. Faults are not guaranteed to
leave the machine in exactly the same state it was in immediately prior to the
fault, but rather in a state such th·at the instruction can be correctly executed if
the fault condition is removed. The PC saved in the exception stack frame is the
address of the faulting instruction. An rti instruction to that PC reexecutes the
faulting instruction.

• An arithmetic trap occurs at the completion of the operation that caused the
exception. Since several instructions may be in various stages of execution at any
point in time, it is possible for multiple arithmetic traps to occur simultaneously.

The PC that is saved in the exception frame on traps is that of the next
instruction that would have been issued if the trapping conditions had not
occurred. However, that PC is not necessarily the address of the instruction I
immediately following the instructions that encountered the trap condition.
Further, intervening instructions may have changed operands or other state used
by the instructions encountering the trap conditions.

An rti instruction to that PC does not reexecute the trapping instructions, nor
does it reexecute any intervening instructions; it simply continues execution from
the point at which the trap was taken.

In general, it is difficult to fix up results and continue program execution at the
point of an arithmetic trap. Software can force a trap to be continued more easily
without the need for complicated fixup code. This is accomplished by following a
set of code generation restrictions in the code that could cause arithmetic traps

DEC OSF/1 Exceptions and Interrupts (II-B) 5-1

that are to be completed by a software trap handler (see Common Architecture,
Chapter 4, Imprecise / Software Completion Trap Modes), including specifying
the IS software completion modifier in each such instruction.

The AND of all the software completion modifiers for trapping instructions is
provided to the arithmetic trap handler in the exception summary SWC bit. If
the SWC is set, a trap handler may find the trigger instruction by scanning
backward from the trap PC until each register in the register write mask has
been an instruction destination. The trigger instruction is the first instruction in
the I-stream order to get a trap within a trap shadow. (See Common Architecture,
Chapter 4, Imprecise I Software Completion Trap Modes, for a definition of trap
shadow.) If the SWC bit is clear, no fixup is possible.

• A synchronous trap occurs at the completion of the operation that caused the
exception. No instructions can be issued between the completion of the operation
that caused the exception and the trap.

5.1.2 Interrupts

The processor arbitrates interrupt requests. When the interrupt priority level (IPL)
of an outstanding interrupt is greater than the current IPL, the processor raises
IPL to the level of the interrupt and dispatches to entInt, the interrupt entry to
the OS. Interrupts are serviced in kernel mode on the kernel stack. Interrupts
can come from one of five sources: interprocessor interrupts, 110 devices, the clock,
performance counters, or machine checks.

5.2 Processor Status

The processor status (PS) is a four-bit register that contains the current mode
(PS<mode» in bit <3> and a three-bit interrupt priority level (PS<IPL» in bits
<2..0>. The PS<mode> bit is zero for kernel mode and one for user mode. The
PS<IPL> bits are always zero if the mode is user and can be zero to 7 if the mode
is kernel. The PS is changed when an interrupt or exception is initiated and by the
rti, retsys, and swpipl instructions.

The uses of the PS values are shown in Table 5-1.

Table 5-1: Processor Status Summary

PS<mode> PS<IPL> Mode Use

1 0 User User software

0 0 Kernel System software

0 1 Kernel System software

0 2 Kernel System software

0 3 Kernel Low priority device interrupts

0 4 Kernel High priority device interrupts

5-2 DEC OSF/1 Software (II-B)

Table 5-1 (Cont.): Processor Status Summary

PS<mode> PS<IPL> Mode Use

o
o
o
o

5

6

6

7

Kernel

Kernel

Kernel

Kernel

Clock, and interprocessor interrupts

Real-time devices

Correctable error reporting

Machine checks

5.3 Stack Frames

There are two types of system entries: entries for the callsys instruction and entries
for exceptions and interrupts. Both types use the same stack frame layout, as shown
in Figure 5-1. The stack frame contains space for the PC, the PS, the saved GP, and
the saved registers aO, aI, a2. On entry, the SP points to the saved PS.

The callsys entry saves the PC, the PS, and the GP. The exception and interrupt
entries save the PC, the PS, the GP, and also save the registers aO..a2.

Figure 5-1: Stack Frame Layout
63

PS

PC

GP

aO

a1

a2

:00

:08

:16

:24

:32

:40

I

DEC OSF/1 Exceptions and Interrupts (II-B) 5-3

5.4 System Entry Addresses

All system entries are in kernel mode. The interrupt priority PS bits (PS<IPL» are
set as shown in the following table. The system entry point address is set by the
CALL_PAL wrent instruction, as described in Section 2.2.14.

Table 5-2: Entry Point Address Registers

Entry Point Value in aO Value in al Value in a2 PS<IPL>

entArith Exception Register mask UNPREDICT- Unchanged
summary ABLE

entIF Fault or trap UNPREDICT- UNPREDICT- Unchanged
type code ABLE ABLE

entlnt Interrupt type Vector Interrupt Priority of interrupt
parameter

entMM VA MMCSR Cause Unchanged

entSys pO pI p2 Unchanged

entUna VA Opcode Src/Dst Unchanged

5.4.1 System Entry Arithmetic 'Trap (entArith)

The arithmetic trap entry, entArith, is called when an arithmetic trap occurs. On
entry, aO contains the exception summary register and al contains the exception
register write mask. Section 5.4.1.1 describes the exception summary register and
Section 5.4.1.2 describes the register write mask.

5.4.1.1 Exception Summary Register

The exception summary register, shown in Figure 5-2 and described in Table 5-3,
records the various types of arithmetic exceptions that can occur together. Those
types of exceptions are listed and described in Table 5-3.

Figure 5-2: Exception Summary Register

63 7 6 5 4 3 2 1 0

1

---------------,.11UOD 1S
Zero 0 N N V Z N W

VEFFEVC

5-4 DEC OSF/1 Software (II-B)

Table 5-3: Exception Summary Register Bit Definitions

Bit Description

63-7 Zero.

6 Integer overflow (IOV)

An integer arithmetic operation or a conversion from floating to integer overflowed the
destination precision.

An IOV trap is reported for any integer operation whose true result exceeds the
destination register size. Integer overflow trap enable can be specified in each
arithmetic integer operate instruction and each floating-point convert-to-integer
instruction. If integer overflow occurs, the result register is written with the truncated
true result.

5 Inexact result (INE)

A floating arithmetic or conversion operation gave a result that differed from the
mathematically exact result.

An INE trap is reported if the rounded result of an IEEE operation is not exact. Inexact
result trap enable can be specified in each IEEE floating-point operate instruction. The
rounded result value is stored in all cases.

IInvalid operation (INV)

An attempt was made to perform a floating arithmetic, conversion, or comparison
operation, and one or more of the operand values were illegal.

An INV trap is reported for most floating-point operate instructions with an input
operand that is an IEEE NaN, IEEE infinity, or IEEE denormal.

Floating invalid operation traps are always enabled. If this trap occurs, the result
register is written with an UNPREDICTABLE value.

2

1

4 Underflow (UNF)

A floating arithmetic or conversion operation underflowed the destination exponent.

An UNF trap is reported when the destination's smallest finite number exceeds in
magnitude the non-zero rounded true result. Floating underflow trap enable can be
specified in each floating-point operate instruction. If underflow occurs, the result
register is written with a true zero.

3 Overflow (OVF)

A floating arithmetic or conversion operation overflowed the destination exponent.

An OVF trap is reported when the destination's largest finite number is exceeded in
magnitude by the rounded true result. Floating overflow traps are always enabled. If
this trap occurs, the result register is written with an UNPREDICTABLE value.

Division by zero (DZE)

An attempt was made to perform a floating divide operation with a divisor of zero.

A DZE trap is reported when a finite number is divided by zero. Floating divide by
zero traps are always enabled. If this trap occurs, the result register is written with
an UNPREDICTABLE value.

DEC OSF/1 Exceptions and Interrupts (II-B) 5-5

Table 5-3 (Cont.): Exception Summary Register Bit Definitions

Bit Description

o Software completion (SWC)

Is set when all of the other arithmetic exception bits were set by floating-operate
instructions with the /S software completion trap modifier set. See Common
Architecture, Chapter 4, Imprecise / Software Completion Trap Modes, for rules about
setting the /S modifier in code that may cause an arithmetic trap, and Section 5.1.1
for rules about using the SWC bit in a trap handler.

5.4.1.2 Exception Register Write Mask

The exception register write mask parameter records all registers that were targets
of instructions that set the bits in the exception summary register. There is a one
to-one correspondence between bits in the register write mask quadword and the
register numbers. The quadword, starting at bit 0 and proceeding right to left,
records which of the registers rO through r31, then ill through £31, received an
exceptional result.

Note:

For a sequence such as:

ADDF Fl,F2,F3
MULF F4,F5,F3

if the add overflows and the multiply does not, the OVF bit is set in the exception
summary, and the F3 bit is set in the register mask, even though the overflowed
sum in F3 can be overwritten with an in-range product by the time the trap is
taken. (This code violates the destination reuse rule for software completion. See
Common Architecture, Chapter 4, Imprecise / Software Completion Trap Modes,
for the destination reuse rules.)

The PC value saved in the exception stack frame is the virtual address of the next
instruction. This is defined as the virtual address of the first instruction not executed
after the trap condition was recognized.

5.4.2 System Entry Instruction Fault (entIF)
The instruction fault or synchronous trap entry is called for bpt, bugchk, gentrap,
and opDec synchronous traps, and for a FEN fault (floating-point instruction when
the floating-point unit is disabled, FEN EQ 0). On entry, aO contains a 0 for a bpt,
a 1 for bugchk, a 2 for gentrap, a 3 for FEN fault, and a 4 for opDec. No additional
data is passed in al..a2. The saved PC at (SP+OO) is the address of the instruction
that caused the fault for FEN faults. The saved PC at (SP+OO) is the address of the
instruction after the instruction that caused the bpt, bugchk, gentrap, and opDec
synchronous traps.

5-6 DEC OSF/1 Software (II-B)

5.4.3 System Entry Hardware Interrupts (entlnt)
The interrupt entry is called to service a hardware interrupt or a machine check.
Table 5-4 shows what is passed in aOooa2 and the PS<IPL> setting for various
interrupts.

Table 5-4: System Entry Hardware Interrupts

Entry Type Value in aO Value in al Value in a2 PS<IPL>

Interprocessor 0 UNPREDICT- UNPREDICT- 5
interrupt ABLE ABLE

Clock 1 UNPREDICT- UNPREDICT- 5
ABLE ABLE

Correctable 2 Interrupt Pointer to 7
error vector Logout Area

Machine check 2 Interrupt Pointer to 7
vector Logout Area

I/O device 3 Interrupt UNPREDICT- Level of device
interrupt vector ABLE

Performance 4 Interrupt UNPREDICT- 6
counter vector ABLE

On entry to the hardware interrupt routine, the IPL has been set to the level of the
interrupt. For hardware interrupts, register al contains a platform-specific interrupt
vector. That platform-specific interrupt vector is typically the same value as the
SCB offset value that would be returned if the platform was running OpenVMS
AXP PALcode.

For a correctable error or machine check interrupt, al contains a platform-specific
interrupt vector and a2 contains the kseg address of the platform-specific logout
area. The interrupt vector value and logout area format are typically the same as
those used by the platform when running OpenVMS AXP PALcode.

The machine check error summary (MCES) register, shown in Figure 5-3 and
described in Table 5-5, records the correctable error and machine check interrupts
in progress.

Figure 5-3: Machine Check Error Status (MCES) Register

63 32 31 5 4 3 2 1 0

I IMP I Reserved 1=
.....--- --.r..,, --I~

DEC OSF/1 Exceptions and Interrupts (II-B) 5-7

•

Table 5-5: Machine Check Error Status (MCES) Register Bit Definitions
Bit Symbol Description

63-32

31-5

4 DSC

3 DPC

2 PCE

1

o

SCE

MIP

IMP.

Reserved.

Disable system correctable error in progress.

Set to disable system correctable error reporting.

Disable processor correctable error in progress.

Set to disable processor correctable error reporting.

Processor correctable error in progress.

Set when a processor correctable error is detected. Should be cleared by the
processor correctable error handler when the logout frame may be reused.

System correctable error in progress.

Set when a system correctable error is detected. Should be cleared by the
system correctable error handler when the logout frame may be reused.

Machine check in progress.

Set when a machine check occurs. Must be cleared by the machine check
handler when a subsequent machine check can be handled. Used to detect
double machine checks.

The MIP flag in the MCES register is set prior to invoking the machine check
handler. If the MIP flag is set when a machine check is being initiated, a double
machine check halt is initiated instead. The machine check handler needs to clear
the MIP flag when it can handle a new machine check.

Similiarly, the SCE or PCE flag in the MCES register is set prior to invoking
the appropriate correctable error handler. That error handler should clear the
appropriate correctable error in progress when the logout area can be reused by
hardware or PALcode. PALcode does not overwrite the logout area.

Correctable processor or system error reporting may be suppressed by setting the
respective DPC or DSC flag in the MCES register. When the DPC or DSC flag is set,
the corresponding error is corrected, but no correctable error interrupt is generated.

5.4.4 System Entry MM Fault (entMM)
The memory-management fault entry is called when a memory management
exception occurs. On entry, aO contains the faulting virtual address and al contains
the MMCSR (see Section 3.9). On entry, a2 is set to a minus one (-1) for an
instruction fetch fault, to a plus one (+1) for a fault caused by a store instruction,
or to a 0 for a fault caused by a load instruction.

5-8 DEC OSF/1 Software (II-B)

5.4.5 System Entry Call System (entSys)

The system call entry is called when a callsys instruction is executed in user mode.
On entry, only registers (t8..t11) have been modified. The PC+4 of the callsys
instruction, the user global pointer, and the current PS are saved on the kernel
stack. Additional space for aO..a2 is allocated. After completion of the system service
routine, the kernel code executes a CALL_PAL retsys instruction.

5.4.6 System Entry Unaligned Access (entUna)

The unaligned access entry is called when a load or store access is not aligned. On
entry, aO contains the faulting virtual address, a1 contains the zero extended six-bit
opcode (bits <31:26» of the faulting instruction, and a2 contains the zero extended
data source or destination register number (bits<25:21> of the faulting instruction.

5.5 PALcode Support

5.5.1 Stack Writeability and Alignment

PALcode only accesses the kernel stack. Any PALcode accesses to the kernel stack
that would produce a memory-management fault will result in a kernel-stack-not
valid halt. The stack pointer must always point to a quadword-aligned address. If
the kernel stack is not quadword aligned on a PALcode access, a kernel-stack-not
valid halt is initiated.

DEC OSF/1 Exceptions and Interrupts (II-B) 5-9

•

Windows NT AXP Software (II-C)

This section describes how a particular implementation of the Windows NT AXP operating
system relates to the Alpha AXP architecture. It is important to note the following:

• The interfaces described in this section will change as necessary to support the Microsoft
Windows NT operating system.

• Effectively, many of the interfaces described in this section are private agreements
between the PALcode and the kernel. Other software should not assume that those
interfaces are available.

• In particular, the interfaces in this section must not be used by software developers who
are writing device drivers; use instead the portable Windows NT device driver interfaces.

• The only interfaces in this section that may be used by nonsystem software are the bpt,
rdteb, and gentrap PALcode instructions.

The following chapters are included in this section:

• Chapter 1, Introduction to Windows NT AXP Software (II-C)

• Chapter 2, Processor, Process, and Thread Structures and Registers (II-C)

• Chapter 3, Memory Management (II-C)

• Chapter 4, Exceptions, Interrupts, and Machine Checks (II-C)

• Chapter 5, Windows NT AXP PALcode Instruction Descriptions (II-C)

• Chapter 6, Initialization and Firmware Transitions (II-C)

Contents

Chapter 1 Introduction to Windows NT AXP Software (II-C)

1.1 Overview of System Components. 1-2
1.2 Calling Standard Register Usage. 1-3
1.3 Code Flow Conventions .. 1-4

Chapter 2 Processor, Process, and Thread Structures and Registers (II-C)

2.1 Processor Status. 2-1
2.2 Internal Processor Register Summary . 2-2
2.3 Internal Processor Registers 2-3
2.4 Processor Data Areas. 2-6
2.4.1 Processor Control Region. 2-6
2.4.2 PALcode Version Control . 2-7
2.5 Caches and Cache Coherency. 2-7
2.6 Stacks. 2-7
2.7 Processes and Threads. 2-8
2.7.1 Swapping Thread Context to Another Thread. 2-9
2.7.2 Swapping Thread Context to Another Process. 2-9

Chapter 3 Memory Management (II-C)

3.1 Virtual Address Space . 3-1
3.2 I/O Space Address Extension. 3-1
3.3 Canonical Virtual Address Format. 3-2
3.4 Page Table Entries. 3-2
3.4.1 Single-Level Virtual Traversal of the Page Tables . 3-3
3.4.2 Two-Level Physical Traversal of the Page Tables. 3-3
3.4.3 Page Table Entry Summary. 3-5
3.5 Translation Buffer Management 3-5
3.6 Implications of Recursive TB Mapping. 3-6

Chapter 4 Exceptions, Interrupts, and Machine Checks (II-C)

4.1 Exceptions .
4.1.1 Exception Dispatch .
4.1.2 Exception Classes .
4.1.3 Returning from Exceptions .
4.1.4 Trap Frames .
4.1.5 Memory Management Exceptions .

4-1
4-1
4-1
4-2
4-3
4-3

iii

•

4.1.6 System Service Calls . 4-4
4.1.7 General Exceptions 4-4
4.1.7.1 Arithmetic Exceptions . 4-5
4.1.7.2 Unaligned Access Exceptions. 4-7
4.1.7.3 Illegal Instruction Exceptions 4-7
4.1.7.4 Invalid (Non-Canonical Virtual) Address Exceptions. 4-8
4.1.7.5 Software Exceptions. 4-8
4.1.7.6 Breakpoints and Debugger Support. 4-9
4.1.7.7 Subsetted IEEE Instruction Exceptions. 4-9
4.1.7.8 General Exceptions: Common Operations. .. 4-10
4.1.8 Panic Exceptions .. 4-10
4.1.8.1 Kernel Stack Corruption 4-11
4.1.8.2 Unexpected Exceptions 4-11
4.1.8.3 Panic Exception Trap Frame and Dispatch .. 4-11
4.2 Interrupts. .. 4-12
4.2.1 Interrupt Level Table (ILT) .. 4-12
4.2.2 Interrupt Mask Table (IMT). .. 4-12
4.2.3 Interrupt Dispatch Table (IDT) 4-13
4.2.4 Interrupt Dispatch. .. 4-13
4.2.5 Interrupt Acknowledge. .. 4-15
4.2.6 Synchronization Functions. .. 4-16
4.2.7 Software Interrupt Requests 4-16
4.3 Machine Checks. .. 4-17
4.3.1 Correctable Errors. .. 4-17
4.3.2 Uncorrectable Errors .. 4-17
4.3.3 Machine Check Error Handling .. 4-18
4.3.4 Catastrophic Errors .. 4-19

Chapter 5 Windows NT AXP PALcode Instruction Descriptions (II-C)

5.1 Privileged PALcode Instructions 5-2
5.1.1 Clear Software Interrupt Request . 5-4
5.1.2 Disable All Interrupts 5-5
5.1.3 Drain All Aborts Including Machine Checks 5-6
5.1.4 Data Translation Buffer Invalidate Single. 5-7
5.1.5 Enable Interrupts 5-8
5.1.6 Halt the Operating System by Trapping to Illegal Instruction. 5-9
5.1.7 Initialize PALcode Data Structures with Operating System Values. 5-10
5.1.8 Read the Software Event Counters 5-12
5.1.9 Read the Current IRQL from the PSR .. 5-13
5.1.10 Read Initial Kernel Stack Pointer for the Current Thread. 5-14
5.1.11 Read the Machine Check Error Summary Register. .. 5-15
5.1.12 Read the Processor Control Region Base Address 5-16
5.1.13 Read the Current Processor Status Register (PSR) .. 5-17
5.1.14 Read the Current Internal Processor State 5-18

iv

5.1.15 Read the Thread Value for the Current Thread. .. 5-19
5.1.16 Reboot-Transfer to Console Firmware. .. 5-20
5.1.17 Restart the Operating System from the Restart Block. .. 5-21
5.1.18 Return from System Service Call Exception. .. 5-22
5.1.19 Return from Exception or Interrupt. .. 5-24
5.1.20 Set Software Interrupt Request. .. 5-26
5.1.21 Swap Thread Context 5-27
5.1.22 Swap the Current IRQL (Interrupt Request Level) .. 5-29
5.1.23 Swap the Initial Kernel Stack Pointer (IKSP) for the Current Thread 5-30
5.1.24 Swap the Currently Executing PALcode 5-31
5.1.25 Swap Process Context (Swap Address Space). .. 5-32
5.1.26 Translation Buffer Invalidate All .. 5-33
5.1.27 Translation Buffer Invalidate Single 5-34
5.1.28 Translation Buffer Invalidate Single for ASN 5-35
5.1.29 Write Kernel Exception Entry Routine. .. 5-36
5.1.30 Write the Machine Check Error Summary Register. .. 5-38
5.1.31 Write Performance Counter Interrupt Control Information. 5-39
5.2 Unprivileged PALcode Instructions .. 5-40
5.2.1 Breakpoint Trap (Standard User-Mode Breakpoint). .. 5-41
5.2.2 Call Kernel Debugger. .. 5-42
5.2.3 System Service Call .. 5-43
5.2.4 Generate a Trap. .. 5-45
5.2.5 Instruction Memory Barrier. .. 5-46
5.2.6 Kernel Breakpoint Trap. .. 5-47
5.2.7 Read Thread Environment Block Pointer. .. 5-48
5.3 Debug PALcode and Free PALcode. .. 5-49
5.3.1 Kernel Stack Checking. .. 5-49
5.3.2 I/O Address Checking 5-49
5.3.3 Event Counters 5-50

Chapter 6 Initialization and Firmware Transitions (II-C)

6.1 Initialization .
6.1.1 Pre-PALcode Initialization .
6.1.2 PALcode Initialization .
6.1.3 Kernel Callback Initialization of PALcode .
6.1.4 Interrupt Table Initialization .
6.2 Firmware Interfaces .
6.2.1 Reboot Instruction-Transition to Firmware PALcode Context .
6.2.2 Reboot and Restart Tasks and Sequence .
6.2.3 Swppal Instruction-Transition to Any PALcode Environment .

6-1
6-1
6-1
6-2
6-3
6-3
6-3
6-5
6-6

v

•

Figures

2-1 Processor Status Register. 2-1
3-1 Virtual Address (Virtual View) . 3-3
3-2 Virtual Address (Physical View) . 3-3
3-3 Page Table Entry . 3-5
4-1 Floating-Point Register Mask (FLOAT_REGISTER_MASK) 4-5
4-2 Integer Register Mask (INTEGER_REGISTER_MASK). 4-6
4-3 Exception Summary Register (EXCEPTION_SUMMARY) . 4-6
4-4 Software Interrupt Request Register .. 4-16
4-5 Machine Check Error Summary. .. 4-18
6-1 PAL_BASE Internal Processor Register. 6-4

Tables

1-1 General Purpose Integer Registers. 1-3
1-2 General Purpose Floating-Point Registers. 1-3
2-1 Processor Status Register Fields ... 2-1
2-2 Processor Status Register IRQL Field Summary . 2-2
2-3 Processor Privilege Mode Map . 2-2
2-4 Internal Processor Register Summary . 2-2
2-5 Internal Processor Registers 2-3
3-1 Virtual Address Map. 3-1
3-2 I/O Address Extension Address Map . 3-2
3-3 Page Table Entry Fields. 3-5
3-4 Translation Buffer Management Instructions 3-6
4-1 Trap Frame Definitions . 4-3
4-2 Exception Summary Register Fields 4-6
4-3 Breakpoint 'I'ypes . 4-9
4-4 Interrupt Mask Table (IMT). .. 4-12
4-5 Software Entries of the IMT 4-13
4-6 Software Interrupt Request Register Fields. .. 4-16
4-7 Machine Check Error Summary Fields 4-18
4-8 Machine Check 'I'ypes 4-19
5-1 Privileged PALcode Instruction Summary. 5-2
5-2 Exception Class Values 5-37
5-3 Unprivileged PALcode Instruction Summary. .. 5-40

vi

Chapter 1

Introduction to Windows NT AXP Software (II-C)

The primary goal of the Windows NT AXP PALcode implementation is total
compatibility with the base operating system design and existing implementations
of Windows NT for all processor architectures. Maintaining compatibility with
Windows NT and software portability between versions of Windows NT requires the
stipulations mentioned in the introduction to this section. It is important that all
software developers read those stipulations.

The PALcode mechanism, coupled with the Windows NT AXP design, provides
binary compatibility for native system components across different processor
implementations. The PALcode also provides a clean abstracted processor model
that matches Windows NT requirements, requires minimal porting effort for new
platforms, and provides the best possible performance while offering those features.

Windows NT AXP is a 32-bit operating system. Therefore, the PALcode is a 32
bit implementation, with, for example, a 32-bit virtual address space. The internal
processor registers are 32 bits, in canonical longword format. The page table entry
(PTE) format is also 32 bits. The PALcode manages any required transformation
between the 32-bit processor-independent formats and the 64-bit internal processor.

A Windows NT AXP PALcode image is processor specific and platform independent.
A single version of the PALcode (for a particular processor implementation) runs on
all systems. The difference between processors is entirely hidden by the PALcode
for each implementation. Thus, the PALcode interface allows the Windows NT
AXP operating system images to be binary-compatible across different processor
implementations.

The PALcode image is read from the disk during the boot process, like all other
components of the running operating system. The boot environment PALcode need
only support the common swppal instruction to allow the operating system to load
and initialize the PALcode.

Some functions and parameters must be implemented on a per-platform basis.
Platform-dependent functions are implemented in the HAL (hardware abstraction
layer), which is a system-specific library, loaded and dynamically linked at boot time.

The basic Windows NT AXP design, therefore, consists of a platform-independent
PALcode definition and binary-compatible kernel with system-dependent functions
in the HAL.

The PALcode was designed to work smoothly and quickly with the Windows NT AXP
kernel. For example, the PALcode builds Windows NT AXP trap frames and passes
Windows NT AXP status codes. Wherever possible, parameters and return values
are passed in registers between the kernel and the PALcode.

Introduction to Windows NT AXP Software (II-C) 1-1

I

The PALcode was also designed to keep dependencies on the kernel to a minimum.
For example, only the processor control region and the kernel trap frame definition
are shared between the PALcode and the Windows NT AXP kernel.

1.1 Overview of System Components

The kernel is a binary-compatible image that can run on any Alpha AXP processor,
platform, or system. The kernel is binary compatible because of cooperation between
it and other system components that provide the processor- and system-specific
functions. Those cooperating components are the firmware, the OS Loader, the HAL
(hardware abstraction layer), and the PALcode.

The firmware and OS Loader are the first components in the boot sequence and are
responsible for establishing the environment in which the kernel, HAL, and PALcode
execute. The kernel reads the configuration information provided by the firmware
through the OS Loader, and uses the standard interfaces provided by the HAL and
the PALcode.

Firmware
The firmware contributes the following components to the boot sequence:

1. Establishes the privileged environment in which the OS Loader executes and the
kernel begins executing (that is, provides memory management support and the
swppal instruction).

2. Provides platform- and configuration-dependent services to the OS loader (such
as I/O services) via ARC call-back routines.

3. Creates the configuration database: devices, memory size, and so forth.

4. Reads the OS Loader from the disk and executes it.

OS Loader
The OS Loader is a linking loader that reads the component operating system images
from the disk, performs necessary relocation, and binds the dynamically linked
images together. The OS Loader loads the appropriate HAL and PALcode, based
on the configuration information provided by the firmware.

The OS Loader loads the appropriate boot drivers as read from the operating system
configuration files. The OS Loader also builds the loader parameter block structure
by using information provided by the firmware. The loader parameter block includes
configuration information (processor, system, device, and memory configuration) and
per-processor data structures.

Once the operating system components are loaded, the OS Loader jumps to the
beginning of the kernel to begin execution of the operating system. The OS Loader
loads the operating system PALcode on a 64K-byte-aligned address. The kernel
activates the operating system PALcode by executing the swppal instruction.

Hardware Abstraction Layer (HAL)
The HAL provides the system-specific layer between the kernel and the system
hardware. The HAL provides interfaces for the following types of functions:

1-2 Windows NT AXP Software (II-C)

1. Interrupt handling, including dispatch and acknowledge

2. DMA control

3. Timer support

4. Low-level I/O support

5. Cache coherency

If a processor implementation requires PALcode intervention to support any of those
functions, then the PALcode must support those processor-specific functions in a
system-independent manner.

PALcode
The PALcode is specific to a particular processor implementation and must hide the
internal workings of the processor from the kernel. The PALcode for a particular
processor may include per-processor functions, but they must be called only by the
HAL.

1.2 Calling Standard Register Usage

Table 1-1: General Purpose Integer Registers

Register Number Symbolic Name Volatility Description

rO vO Volatile
r1 - r8 to - t7 Volatile
r9 - r14 sO - s5 Nonvolatile
r15 s6/fp Nonvolatile
r16 - r21 aO - a5 Volatile
r22 - r25 t8 - tIl Volatile
r26 ra Volatile
r27 t12 Volatile
r28 at Volatile
r29 gp Nonvolatile
r30 sp Nonvolatile
r31 zero Constant

Return value register
Temporary registers
Saved registers
Saved register/frame pointer
Argument registers
Temporary registers
Return address register
Temporary register
Assembler temporary register
Global pointer
Stack pointer
RAZ / writes ignored

Table 1-2: General Purpose Floating-Point Registers

Register Number Volatility Description

fO
fl
f2-f9
no - £15
£16 - £21
£22 - illO
ill1

Volatile
Volatile
Nonvolatile
Volatile
Volatile
Volatile
Constant

Return value register (real part)
Return value register (imaginary part)
Saved registers
Temporary registers
Argument registers
Temporary registers
RAZ / writes ignored

Introduction to Windows NT AXP Software (II-C) 1-3

•

1.3 Code Flow Conventions

The code flows are shown as an ordered sequence of instructions. The instructions in
the sequence may be reordered so long as the results of the sequence of instructions
are not altered. In particular, if an instructionj is listed subsequent to an instruction
i and i writes any data that is used by j, then i must be executed before j.

1-4 Windows NT AXP Software (II-C)

IRQL RW

Chapter 2

Processor, Process, and Thread Structures and
Registers (II-C)

This chapter describes structures and registers that support the processor, process,
and thread environment.

2.1 Processor Status

The processor status register (PSR) defines the processor status. The PSR is shown
in Figure 2-1 and described in Tables 2-1, 2-2, and 2-3.

Figure 2-1: Processor Status Register

31 5 4 3 2 1 0I------R-A-Z/-IG-N---------..,Bi

Table 2-1: Processor Status Register Fields
Field Type Description

Interrupt request level, in the range 0 - 7, as described in Table 2-2. Any
interrupt disabled at a lower priority level is also disabled at a higher priority
level.

IE RW Interrupt enable: 0 =interrupts disabled
1 =interrupts enabled

A global interrupt enable to turn interrupts on and off without changing the
IRQL.

MODE RW Processor mode: 0 =kernel mode
1 = user mode

Describes the current processor privilege mode: user (unprivileged) or kernel
(privileged). The processor privilege mode defines the instructions that can be
executed and the memory protection that is used, as described in Table 2-3.

Processor, Process, and Thread Structures and Registers (II-C) 2-1

•

Table 2-2: Processor Status Register IRQL Field Summary

ffiQL Name Description

o
1

2

3

4

5

6

7

PASSIVE_LEVEL

APC_LEVEL

DISPATCH_LEVEL

DEVICE_LEVEL

DEVICE_HIGH_LEVEL

CLOCK_LEVEL

IPI_LEVEL

HIGH_LEVEL

All interrupts enabled.

APC software interrupts disabled.

Dispatch software interrupts disabled.

Low-priority device hardware interrupts disabled.

High-priority device hardware interrupts disabled.

Clock hardware interrupts disabled.

Interprocessor hardware interrupts disabled.

All maskable interrupts disabled.

Table 2-3: Processor Privilege Mode Map

Operation Privileged Unprivileged

Access to all Access to only those pages with
pages the Owner bit =1

Yes No

Superpage access

Page protection

Privileged PALcode instructions

Yes No

2.2 Internal Processor Register Summary

The following internal processor registers are defined across all implementations.
Implementation of these registers within the processor is implementation
dependent.

Table 2-4: Internal Processor Register Summary

Name Initial Value Description

ASN 0

GENERAL_ENTRY 0

IKSP 0

INTERRUPT_ENTRY 0

ISP 0

ISP_FLAG 0

KGP 0

2-2 Windows NT AXP Software (II-C)

Address space number of owning process of current
thread

General exception class kernel handler address

Initial kernel stack pointer

Interrupt exception class kernel handler address

Interrupt stack pointer

On interrupt stack flag

Kernel global pointer

PAL_BASE t
PANIC_ENTRY 0

PCR t
PDR 0

PSR t
RESTART_ADDRESS t
SIRR 0

SYSCALL_ENTRY 0

TEB 0

THREAD 0

Table 2-4 (Cont.): Internal Processor Register Summary

Name Initial Value Description

MCES t Machine check error summary

MEM_MGMT_ENTRY 0 Memory management exception class kernel handler
address

PALcode image base address

Panic exception class kernel handler address

Processor control region base address

Page directory base address

Processor status register

Restart execution address

Software interrupt request register

System service exception class kernel handler address

Thread environment block base address

Thread unique value (kernel thread address)

tThe register has an architected initial value. See the register description in Table 2-5.

2.3 Internal Processor Registers

Table 2-5: Internal Processor Registers

Name Description

ASN Address space number of owning process of current thread

Bits <15:0> of the ASN register contain the address space number
for the current process. Bits <31:16> are RAZ.

The ASN is a process tag that may be used by the processor to
qualify each virtual translation. When translations are qualified,
it is not necessary for the processor to flush all virtual translations
for previous processes when performing a context swap or process
swap. The swpctx and swpprocess instructions provide the ASN.

General exception class kernel handler address

The GENERAL_ENTRY register contains the entry address (in
32-bit superpage format) for the kernel exception handler for
the General class of exceptions. The wrentry instruction writes
GENERAL_ENTRY.

Processor, Process, and Thread Structures and Registers (II-C) 2-3

I

Table 2-5 (Cont.): Internal Processor Registers

Name Description

IKSP Initial kernel stack pointer

The IKSP register contains the initial kernel stack address. IKSP
points to the top of the kernel stack for the currently executing
thread. The rdksp instruction reads IKSP and the swpksp
instruction writes IKSP. IKSP is also written by swpctx and during
system initialization by initpal.

INTERRUPT_ENTRY Interrupt exception class kernel handler address

The INTERRUPT_ENTRY register contains the entry address (in
32-bit superpage format) of the kernel exception handler for the
Interrupt class of exceptions. The wrentry instruction writes
INTERRUPT_ENTRY.

ISP Interrupt stack pointer

The ISP register contains the interrupt stack pointer address (in
32-bit superpage format). ISP points to the top of the interrupt
stack. The initpal instruction establishes the ISP.

ISP_FLAG On interrupt stack flag

The ISP_FLAG register indicates, when nonzero, that the code is
executing on the interrupt stack.

KGP Kernel global pointer

The KGP register contains the kernel global pointer, the gp value.
The PALcode restores the kernel global pointer to the general
purpose register gp whenever dispatching to a kernel exception
handler. The initpal instruction writes KGP.

MCES Machine check error summary

The MCES register is used to report and control the current state
of machine check handling. The MCES register contains multiple
fields that are described in Section 4.3. The initial values for the
MCES register fields DSC, DPC, and DMK are implementation
specific, and all other fields set to o. The recommended initial
values are DMK =0, DPC =1, and DSC =1.

MEM_MGMT_ENTRY Memory management exception class

The MEM_MGMT_ENTRY register contains the entry address (in
32-bit superpage format) of the kernel exception handler for the
Memory Management class of exceptions. The wrentry instruction
writes MEM_MGMT_ENTRY.

PAL_BASE PALcode image base address

The PAL_BASE register contains the physical address of the base
of the currently active PALcode image. Its initial value is the
address of the PALcode entry point. PAL_BASE controls which
PALcode image is currently active and is written during PALcode
initialization. The PAL_BASE register is illustrated and described
in Section 6.2.

2-4 Windows NT AXP Software (II-C)

SIRR

Table 2-5 (Cont.): Internal Processor Registers

Name Description

PANIC_ENTRY Panic exception class kernel handler address

The PANIC_ENTRY register contains the entry address (in 32
bit superpage format) of the kernel exception handler for the
Panic class of exceptions. The wrentry instruction writes PANIC_
ENTRY.

PCR Processor control region base address

The PCR register contains the base address (in 32-bit superpage
format) of the processor control region page. The processor control
region is a page of per-processor data. The PCR is passed as an
initialization parameter and the rdpcr instruction reads it.

PDR Page directory base address

The PDR register contains the base physical address of the page
directory page. The page directory page contains all of the first
level page table entries (the page directory entries or PDEs). As
such, the page directory page defines an address space for a process.
The swpctx and swpprocess instructions write the PDR when the
address space is swapped. The initpal instruction also writes the
PDR.

PSR Processor status register

The PSR controls the privilege state and interrupt priority of the
processor. The PSR register contains multiple fields that are
described in Section 2.1. The initial values for the fields in the
PSR are IRQL=7, IE=1, and MODE=O (kernel).

RESTART_ADDRESS Restart execution address

The RESTART_ADDRESS register contains the address where
the processor resumes execution when the PALcode exits. For
example, upon entry to each of the PALcode instructions, the
RESTART_ADDRESS register contains the virtual address + 4 of
that instruction. The initial value of the RESTART_ADDRESS
register is the kernel initialization continuation address, passed
as a parameter to the initialization routine.

Software interrupt request register

The SIRR register indicates requested software interrupts. SIRR
contains multiple fields that are defined in Section 4.2.7.

System service exception class kernel handler address

The SYSCALL_ENTRY register contains the entry address (in
32-bit superpage format) of the kernel exception han<Uer for the
System Service class of exceptions. The wrentry instruction writes
SYSCALL_ENTRY.

Processor, Process, and Thread Structures and Registers (II-C) 2-5

I

Table 2-5 (Cont.): Internal Processor Registers
Name .Description

TEB

THREAD

Thread environment block base address

The TEB register contains the address of the user thread
environment block. Each swpctx instruction writes the TEB; the
rdteb instruction reads it.

Thread unique value (kernel thread address)

The THREAD register contains the address of the currently
executing kernel thread structure. Each swpctx instruction writes
the THREAD register; the rdthread instruction reads it.

2.4 Processor Data Areas

The operating system per-processor data structure is the processor control region.
The processor control region is a one-page (superpage) data structure that stores
information that may be specific to a particular architecture. This information is
data that is shared between the PALcode, the HAL, and/or the architecture-specific
portions of the kernel. See Section 3.1 for information on the superpage.

2.4.1 Processor Control Region

The processor control region contains a number of data structures that are of
importance to the PALcode, including:

• A 3K-byte region that is reserved for the PALcode and is the only per-processor
data region available to the PALcode.

• The interrupt level table (ILT), which maps the interrupt enable masks for each
possible interrupt request level. The PALcode may continually read these masks
or may read them once and cache them inside the processor.

• The interrupt dispatch table (IDT), which contains the address of an interrupt
handler for each possible interrupt vector.

• The interrupt mask table (IMT), which maps each possible pattern of interrupt
requests to the highest priority interrupt vector and the corresponding
synchronization level.

• The panic stack pointer.

• The restart block pointer.

• The firmware restart address.

The PALcode is responsible for initializing the PALcode base address field and
several PALcode revision fields within the processor control region.

The rdpcr instruction returns the base address of the processor control region.

2-6 Windows NT AXP Software (II-C)

2.4.2 PALcode Version Control

The PALcode is responsible for writing version information in the processor
control region. The PalMajorVersion, PalMinorVersion, and PalSequenceVersion are
provided for maintenance and debugging. The PALcode writes these fields, but the
values are implementation specific.

The kernel may use the PalMajorSpecification and PalMinorSpecification fields for
check-pointing with the PALcode.

The PALcode writes the specification fields with version numbers that correspond
to the version of the specification to which the PALcode image complies. Minor
revisions within the same major revision are backwards compatible. The kernel may
read the PalMajorSpecification and determine if it is compatible with the version of
the PALcode. If the kernel is not compatible (if the PalMajorSpecification is greater
than the kernel's expected PALcode major specification), the kernel runs down in a
controlled manner.

The version agreement between the PALcode and the kernel is a private agreement
between these two system components. No other system component, including the
HAL and device drivers, may depend on any values from those fields.

2.5 Caches and Cache Coherency

Implementations may include caches that are not kept coherent with main memory.
The imb instruction provides an architected common way to make the instruction
execution stream coherent with main memory. The imb instruction guarantees
that subsequently executed instructions are fetched coherently with respect to main
memory on only the current processor.

User-mode code that directly modifies the instruction stream, either through writes
or by DMA from an I/O device, must call the appropriate Windows NT API to ensure
I-cache coherency. User-mode code that uses standard APls to modify the instruction
stream works as expected and is handled by the APIs themselves.

2.6 Stacks

There are five stacks:

• Interrupt Stack

A processor-wide stack upon which all hardware interrupts are executed. An
interrupt stack is allocated for each processor and must remain valid for the life
of the system. The initpal instruction establishes the interrupt stack pointer •
(ISP). The ISP points to the top of the interrupt stack. On return from a
hardware interrupt, the rfe instruction causes an exit from the interrupt stack
and execution resumes on the appropriate previous stack.

• Kernel stack

Processor, Process, and Thread Structures and Registers (II-C) 2-7

Each thread is allocated its own pages for a kernel stack. The kernel stack is
the two pages of virtual address space below the IKSP for a thread, where the
IKSP points to the byte beyond the top of the two pages. The initial kernel
stack pointer (IKSP) points to the top of the currently active kernel stack for the
current thread. '!\vo PALcode instructions provide access to the IKSP: rdksp to
read the IKSP and swpksp to atomically read the current IKSP and write a new
one.

Must remain valid for the currently executing thread. Software must guarantee
that the kernel stack pointer remains 16-byte aligned.

• User Stack

A per-thread stack on which all user-mode components are executed.

• Deferred procedure call (DPC) stack

A processor-wide stack upon which all deferred procedure calls are executed.
Must remain valid for the lifetime of the system.

• Panic stack

Allows the operating system to remain coherent through a system crash. Must
remain valid for the lifetime of the system.

The interrupt, kernel, DPC, and panic stacks execute in kernel mode; the user stack
executes in user mode.

2.7 Processes and Threads

Windows NT AXP is designed as a multithread operating system with multiple
threads executing within the same process. Each thread has its own processor
context, user-mode stack, and kernel stack. Memory and the address space are
shared across all threads in the same process.

The PALcode "knows" nothing about the structure of threads or processes. The
PALcode implements the means to swap from one thread context to another and to
allow a thread to attach to the address space of another process.

The state to accomplish these operations is passed entirely in registers. The PALcode
maintains the THREAD and TEB internal processor registers. They allow threads
to query about the state of the currently executing thread.

The THREAD register, a unique value identifying the current thread, is written
when the thread context is swapped. The privileged instruction rdthread reads the
THREAD register.

The TEB register, a user-accessible pointer to the thread environment block for the
new thread, is written when thread context is swapped. The unprivileged rdteb
instruction reads the TEB register. Again, the PALcode knows nothing about the
structure of the thread environment block; the PALcode simply maintains the TEB
register value when context is switched.

2-8 Windows NT AXP Software (II-C)

2.7.1 Swapp8ng Thread Context to Another Thread
The swpctx instruction swaps the context from one thread to another thread. The
following parameters are passed to swpctx:

Initial kernel stack pointer
Swpctx must switch to the new kernel stack for the new thread. The initial kernel
stack pointer is written to the internal processor register IKSP.

THREAD internal processor register (unique thread value)
TEB internal processor register (thread environment block pointer)
These registers are maintained by the kernel and only written during a context
switch. Implicitly, the values in these registers for a particular thread cannot change
while that thread is executing.

PFN of the directory table base page for the new process
ASN for the new process
ASN_wrap_indicator
The PFN and ASN allow switching to a new process address space. The PFN of the
directory table base page is an overloaded parameter; it is used to indicate if the
process needs to be swapped.

• The PFN is set to a negative value in the kernel if the previous thread and the
new thread are in the same process (address space). There is no need to swap
the address space if the two threads are in the same process. The values for the
ASN parameters are then UNPREDICTABLE.

• If the two threads are in different processes, the PFN is greater than or equal
to zero and is used to write the PDR internal processor register. When the PFN
is valid (greater than zero), the ASN must also be valid and is used to write the
ASN internal processor register.

Swapping to a new process address space involves establishing a new directory
pointer to the page table base page for the new process and possibly performing
translation buffer operations. A set ASN_wrap_indicator signals that the PALcode
must perform an invalidation operation for each cached translation in the translation
buffers and virtual caches that does not have the address space match (ASM) bit set.

2.7.2 Swapping Thread Context to Another Process

The swpprocess (swap process) instruction allows a thread to attach to another
process (in another address space). Swpprocess requires the PFN of the new
directory table base page and the new ASN as input. Swpprocess performs the
same address space swapping operation as does swpctx when the PFN of the page
directory is valid.

Processor, Process, and Thread Structures and Registers (II-C) 2-9

•

Chapter 3

Memory Management (II-C)

3.1 Virtual Address Space

Windows NT AXP is a 32-bit implementation with a 32-bit virtual address space, as
represented in Table 3-1.

Table 3-1: Virtual Address Map

Address Range16 (32 bits) Permission Description

00000000-7FFFFFFF

80000000-BFFFFFFF

COOOOOOO-CIFFFFFF

C2000000-FFFFFFFF

User and Kernel

Kernel

Kernel

Kernel

General user address space

Nonmapped kernel space (32-bit
superpage)

Mapped, page table space

Mapped, general kernel space

The address map takes advantage of the 32-bit superpage feature of the Alpha
AXP architecture. If the implementation of the 32-bit superpage is not done in
hardware, it must be implemented in software (PALcode). The entire 1-GB address
space mapped by the 32-bit superpage must be valid at all times for both instruction
fetch and data access.

Implementation Note (Hardware):

It is strongly recommended that implementations include a hardware mapping
of the 32-bit superpage for both instruction and data stream.

3.2 1/0 Space Address Extension

The Windows NT AXP kernel implementation takes advantage of the architecture's
64-bit address space to provide a nonmapped extended address for I/O space. The
extended address space uses the 43-bit superpage that is available in the Alpha
AXP architecture. The superpage allows kernel mode access to an address space
with a predetermined translation. Therefore, those accesses never require page
table mapping or cause a translation buffer miss.

The extended superpage provides nonmapped access to a 41-bit physical address
space. The extended address space is important because the bus mapping scheme
that has been designed for industry-standard buses uses a shifted physical address,

Memory Management (II-C) 3-1

•

where the lower address bits are used to determine the byte enables. Therefore, the
effective page size is smaller.

The nonmapped superpage I/O accesses provide Alpha AXP systems with a
performance advantage because there is no need to write as many page table entries
and to fill as many translation buffer misses as would be necessary without it. The
extended address space is desirable because the likely physical address space is 34
bits or more and the 32-bit superpage can only allow accesses to 30 bits of physical
address space. The extended address space is the only exception to the 32-bit virtual
address map shown in Table 3-1. The extended address space is intended for I/O
access only and can only be used in kernel mode. The address mapping for the
extended address space is shown in Table 3-2.

Table 3-2: 1/0 Address Extension Address Map

Address Range16 (64 bits) Permission Description

FFFFFCOOOOOOOOOO
FFFFFDFFFFFFFFFF

Kernel Nonmapped kernel mode I/O extension

3.3 Canonical Virtual Address Format

All virtual addresses, with the exception of the large superpage addresses, must be
in canonicallongword form. The PALcode must check the faulting virtual addresses
in the first level miss flows and raise an exception if the addresses are not canonical
longwords. The check is required because the processor may generate 64-bit
addresses that are not canonical longwords, but the common memory management
code only knows about 32-bit addresses and so cannot necessarily identify or signal
the exception to the offending code. The PALcode cannot simply resolve the miss
by using only the lower 32 bits. When the faulting instruction is re-executed, it
attempts again to access the noncanonical address. If a virtual address fails the
canonical form test, the PALcode raises a general exception (see Section 4.1.7.)

3.4 Page Table Entries

Page table entries (PTEs) provide the translation from virtual addresses to their
physical addresses. The PTE includes the physical address in the form of a page
frame number (PFN), protection information, and performance hints. The virtual
address is related to a page table entry based solely upon the position of the PTE
within a set of page tables.

Two methods may be used to traverse the page tables to retrieve the corresponding
PTE for a given virtual address. The first is to view the page tables as a single
level virtually contiguous table. The second is to view the page tables as a two-level
physical table.

3-2 Windows NT AXP Software (II-C)

3.4.1 Single-Level Virtual Traversal of the Page Tables

For a single-level virtual traversal, a virtual address must be viewed as shown in
Figure 3-1, where 2**N is the implementation page size:

Figure 3-1: Virtual Address (Virtual View)

31 N N·1

Virtual Page Number (VPN) Byte offset within page

To access the corresponding PTE for a VA (virtual address) using the single-level
virtual method, use the following algorithm.

In the algorithm:
VIRTUAL_PTE_BASE = C000000016
PAGE_SHIFT = N

Clear upper bits in case va is sign-extended:
va +- BYTE_ZAP (va, FO)

! Get virtual page number:
vpn +- RIGHT_SHIFT (va, PAGE_SHIFT)

! 4 bytes per pte, offset + base:
pte_va +- VIRTUAL_PTE_BASE + (vpn * 4)

! Do a virtual load of pte:
pte +- (pte_va)

3.4.2 Two-Level Physical Traversal of the Page Tables

The two-level physical method can be used to find the corresponding PTE for a
virtual address when the virtual access method cannot be used (for example, if the
PTE address is not valid). The key to physically traversing the page tables is the
PDR internal processor register. The PDR is maintained on a per-process basis
whenever process context is swapped. The PDR is the physical address of the page
directory page that forms the first level of the page tables. The first level of the
page tables easily fits within a single page. Each entry in the page directory page
is called a PDE (page directory entry). One PDE maps one page of PTEs.

A virtual address must be viewed as shown in Figure 3-2 for a two-level, physical
traversal of the page tables. In Figure 3-2, 2**N is the implementation page size,
and 2**P is (PTEs per page = page size / 4).

Figure 3-2: Virtual Address (Physical View)

Page Directory Page Table Byte offset
Index (POI) Index (PTI) within page

31 N+P N+P-l N N-l

Memory Management (II-C) 3-3

•

The following algorithm uses the two-level physical traversal method to access the
corresponding PTE for a VA (virtual address).

In the algorithm:
PDE_SHIFT N + P
PAGE_SHIFT = N

Clear upper bits in case va is sign-extended:
va +- BYTE_ZAP (va, FO)

! Get pde number:
pde_index +- RIGHT_SHIFT (va, PDE_SHIFT)

! 4 bytes per pde, index * 4 byte offset:
pde_offset +- pde_index * 4

! Offset + base:
pde-pa +- PDR + pde_offset

! Do a physical load of the page directory entry:
pde +- (pde-pa)

! Get PFN of pte page from pde:
pte-pfn +- pde<PFN>

! Get physical address of pte page:
pte-page +- LEFT_SHIFT (pte-pfn, PAGE_SHIFT)

! Extract page table index from virtual address:
pte_index +- va<pti>

! Calculate offset, 4 bytes per pte:
pte_offset +- pte_index * 4

! Address base + offset:
pte-pa +- pte-page + pte_offset

! Do a physical load to read the pte:
pte +- (pte-pa)

Page directory entries are themselves page table entries and so they have the same
format. There are some implications for DTB implementation because the PDEs
establish a recursive mapping for addresses within the PTE address space. The
implications and a description of the recursive mapping are described in Section 3.6.

3-4 Windows NT AXP Software (II-C)

3.4.3 Page Table Entry Summary
The format for a PTE is shown in Figure 3-3 and described in Table 3-3.

Figure 3-3: Page Table Entry

31 9 8 7 6 5 4 3 2 1 0

I~-----P-F-N----~

Table 3-3: Page Table Entry Fields

Field Description

PFN Page frame number

SFW Reserved for software (operating system)

GH Granularity hints

Optional hint that provides for mapping translations larger than the standard
implementation page size. These large pages must be both virtually and physically
aligned. Defines the translation in terms of a multiple of the page size, where the
multiplier equals 8**N, where N is the granularity hint value in the range 0-3.

G Global translation hint (address space match)

Optional hint that the indicated translation is global for all processes.

R Reserved

D Dirty: 0 = page is not dirty
1 = page is dirty

Implemented as the inverse of fault on write (FOW). Serves double duty by causing
faults for the first write to a page. Serves as a write-protect bit and as a marker that
allows the operating system to track dirty pages.

o Owner: 0 = kernel access only
1 = user access permitted

Indicates whether user-mode is allowed across this page, either for instruction fetch
or data access. Kernel mode code has implied access to all pages that have a valid
translation.

V Valid: 0 = translation not valid
1 = valid translation

3.5 Translation Buffer Management

As shown in Table 3-4, the PALcode provides the tbis, tbisasn, dtbis, and tbia •
instructions to manage the cached virtual translations maintained in the translation
buffers and virtual caches.

Memory Management (II-C) 3-5

Table 3-4: Translation Buffer Management Instructions

InstructionOperation

tbis

tbisasn

dtbis

tbia

Invalidates a single translation for a specific virtual address, passed as a
parameter. Tbis invalidates the translation for both instruction and data stream
access.

Invalidates a translation for a single virtual address for a specified address space
number (ASN). The address space number mayor may not be for the currently
executing thread. Tbisasn invalidates the translation for both instruction and
data stream access.

Invalidates a single data stream translation for a specified address. It is
designed for those cases when the operating system can determine that the
translation is not used in the instruction stream. Implementations may
advantageously use dtbis to avoid needing to invalidate instruction stream
translations in both, potentially, an instruction TB and a virtual I-cache.

Invalidates all page table translations for both instruction and data stream
access. The translations invalidated are limited to "page table translations"
because it is possible that an implementation has used fixed TB entries to
implement one or more of the required superpages. These fixed translations
are considered "hard-wired" by the operating system and must be valid at all
times.

On processors that implement physical, noncoherent instruction caches, instructions
that invalidate I-stream translations must also invalidate instruction cache blocks
from the physical pages that correspond to the invalidated virtual translations.

3.6 Implications of Recursive T8 Mapping

The recursive virtual mapping has an implication for data translation buffer
implementations: it is possible for two identical translations to be written in the DTB
during the same miss handling sequence. If the DTB cannot correctly operate with
two identical translations, the PALcode must include additional checks to prevent
the condition from occurring.

The page tables can be viewed either as a virtual contiguous single-level table or
as a two-level table that must be traversed physically. When viewed as a two-level
table, the first level is a single page called the page directory page. Each page
directory page entry, called a PDE, provides the first-level translation so that the
TB-fill code can find the page table page that contains the PTE with the translation
for the faulted virtual address. All page table pages are mapped by a PDE in the
page directory page.

The page tables are recursive. The page directory page is a standard page table page
and it is virtually mapped in the single-level virtual page table. Therefore, there
exists one PDE that maps the page directory page. The PDE that maps the page
directory page in a two-level lookup is also the PTE that maps the page directory
page for the single-level virtual mapping. This special PDE is called the root PTE
or RPTE.

3-6 Windows NT AXP Software (II-C)

Assume that the processor implementation has two data stream TB miss flows
one for the misses taken in native mode and one for the misses taken in the PALcode
environment. For the case when a native-mode virtual access is made to the page
directory page, PALcode takes the following flows:

Native Miss Flow

1. {get va for PTE that maps
the faulted va: VA}

2. {get the PTE using its va}
ldl rx, O(ry)
where ry ~va of PTE

7. {load completes, rx ~RPTE }
8. {write the translation for the

faulting va, VA, into the DTB }
9. {RPTE is now in the DTB twice }
10. {Re-execute the original native-mode

instruction that faulted when
accessing VA }

PALcode Environment Miss Flow

3. (ldl rx, O(ry) from
PALcode environment faulted }

4. {resolve this fault by making the va
of the missed PTE valid }

5. {translation for RPTE is written
into the DTB }

6. Ire-execute the load that failed
since the va of the PTE is now valid}

Since there is only one PTE, RPTE, that exhibits this behavior, the PALcode can
check the faulting PTE address in the second-level fill routine to special case for
RPTE. It is preferable not to slow down even the second-level fill flow. However, this
is a processor implementation decision.

Memory Management (II-C) 3-7

I

Chapter 4

Exceptions, Interrupts, and Machine Checks (II-C)

At certain times during the operation of a system, events within the system require
the execution of software outside the explicit flow of control. When such an
exceptional event occurs, an Alpha AXP processor forces a change in control flow
from that indicated by the current instruction stream. The notification process for
such events is an exception, an interrupt, or a machine check.

4.1 Exceptions

4.1.1 Exception Dispatch

When the processor encounters an exception, it traps to PALcode that provides
preliminary exception dispatch for the operating system. Some exceptions, such
as TB miss, may be handled entirely by the PALcode without the intervention of the
operating system.

The PALcode provides a simple and efficient method of dispatching to the operating
system for those exceptions that require operating system action. In general, the
following operations characterize exception dispatch:

1. Switch to kernel mode (if in user mode).

2. Allocate a trap frame on the kernel stack.

3. Save the necessary processor state in the trap frame.

4. Prepare arguments to the kernel exception handler using the standard argument
registers where possible.

5. Set the processor state for executing the kernel (establish the stack pointer so
it points to the kernel stack, establish the global pointer to point to the kernel
global area, and mark that not on the interrupt stack).

6. Restart execution at the address of the kernel exception handler registered for
the class of exception that was encountered.

4.1.2 Exception Classes

The PALcode classifies each exception into one of the following catagories:

• Memory management exceptions

Memory management exceptions, described in Section 4.1.5 are raised for:

Translation not valid faults: accesses to addresses that do not have a valid
translation for the currently executing context

Exceptions, Interrupts, and Machine Checks (II-C) 4-1

I

- Access violations: accesses to addresses for which the currently executing
context does not have permission for the access

• System service call exceptions

Although not really exceptions, system service calls are handled as exceptions
to allow unprivileged code to request and receive privileged services. System
services may be requested from both unprivileged and privileged modes (user and
kernel mode respectively). System service calls are described in Section 4.1.6.

• General exceptions

The general exception class, described in Section 4.1.7, is the catchall category
for all of the other exceptions that may be raised by unprivileged code:

Arithmetic exceptions

Unaligned memory access

Illegal instruction execution

Invalid (non-canonical virtual) address exceptions

Software exceptions

Breakpoints

Subsetted instruction execution

• Panic exceptions

The panic exception class, described in Section 4.1.8, is reserved for conditions
from which execution cannot reliably be continued. The following general cases
of panic exceptions are anticipated:

Invalid kernel stack (including overflow and underflow)

Unexpected exceptions from PALcode

4.1.3 Returning from Exceptions

The rfe and retsys instructions are provided for returning from exceptions.

The rfe (return from exception or interrupt) instruction allows the operating system
to return from an exception. Rfe may also be used to transition from kernel mode
to user-mode startup code.

The rfe instruction reverses the effect of an exception by restoring the original
processor state from the trap frame on the kernel stack. In addition, rfe accepts a
parameter that allows it to set software interrupt requests for the execution context
that is about to be reestablished.

Two exception classes do not use rfe to return to the previously executing context:
system service call and panic exceptions. The retsys instruction is used for returning
from system service call exceptions because a system service call has different
semantics with regard to the saved processor state than the other exceptions.

4-2 Windows NT AXP Software (II-C)

Panic exceptions do not return because they precipitate a controlled crash of the
operating system.

4.1.4 Trap Frames
Trap frames are allocated on the kernel stack for all classes of exceptions in PALcode.
The PALcode also partially writes the trap frame; the fields written are based upon
the exception being handled. The kernel stack must be guaranteed to remain aligned
on a 16-byte boundary, as specified in the Windows NT AXP calling standard. The
trap frame itself is guaranteed in size to be a multiple of 32 bytes. The PALcode
may over-align the kernel stack pointer when allocating the trap frame in order
to improve memory throughput, with consideration for the extra memory being
consumed. The trap frame is structured so that writes aggregate. The register
values stored in the trap frame are 64-bit values. This is required as the register
set is 64 bits and may contain 64-bit values (as opposed to canonicallongwords).

Trap frame definitions are shown in Table 4-1.

Table 4-1: Trap Frame Definitions

Symbolic Name Size Description

TrIntSp
TrPsr
TrFir
TrPreviousKsp
TrIntAO
TrIntAl
TrIntA2
TrIntA3
TrIntFp
TrIntGp
TrIntRa

Quadword
Longword
Quadword
Longword
Quadword
Quadword
Quadword
Quadword
Quadword
Quadword
Quadword

Stack pointer register at point of exception
Processor status register at point of exception
Exception program counter
Initial ksp if first dispatch on ISP
Register aO at point of exception
Register al at point of exception
Register a2 at point of exception
Register a3 at point of exception
Frame pointer register at point of exception
Global pointer register at point of exception
Return address register at point of exception

4.1.5 Memory Management Exceptions

PALcode recognizes two classes of memory management exceptions: translation not
valid faults and access violations. Translation not valid faults are detected when a
page table entry for a virtual address has the valid bit cleared. The invalid page
table entry can be either a first- or second-level table entry. Access violations are
detected by the hardware when the processor attempts to access a virtual address
and that type of access is not permitted according to the protection mask in the page
table entry that maps the translation for the virtual address.

The PALcode dispatches to the kernel in the same manner for each of these two
classes of exceptions, according to the following description:

Exceptions, Interrupts, and Machine Checks (II-C) 4-3

•

previousPSR +- PSR
if (PSR<Mode> EQ User) then

PSR<Mode> +- kernel
tp +- (IKSP - TrapFrameLength)

else
Establish trap pointer

tp +- (sp - TrapFrameLength) Establish trap pointer
endif
TrlntSp(tp) +- sp
TrlntFp{tp) +- fp
TrlntRa{tp) +- ra
TrlntGp{tp) +- gp
TrlntAO(tp) +- aO
TrlntAl{tp) +- al
TrlntA2(tp) +- a2
TrlntA3(tp) +- a3
TrFir{tp) +- ExceptionPC
TrPsr(tp) +- previousPSR
sp +- tp
TrPreviousKSP(tp) +- 0 No switch to interrupt stack
RESTART_ADDRESS +- MEM_MGMT_ENTRY
fp +- sp
gp +- KGP
aO +- 1 if store; 0 if load
al +- faulting virtual address
a2 +- previousPSR<Mode>
a3 +- previousPSR

All other general-purpose registers must be preserved across the memory
management exception dispatch.

If the kernel can resolve the fault, it uses the rfe instruction to restart the faulting
thread, thus reissuing the instruction that faulted. Otherwise, the kernel raises the
appropriate exception.

4.1.6 System Service Calls

System service calls are initiated from both user and kernel modes via the callsys
instruction. The privileged retsys instruction returns from a system service back to
the caller. The callsys and retsys instructions are described in Sections 5.2.3 and
5.1.18, respectively.

4.1.7 General Exceptions

General exceptions are those exceptions, other than memory management exceptions
and system service call exceptions, that can be raised by hardware or software. All
general exceptions are handled in approximately the same manner in the PALcode
and in exactly the same manner in the lowest level kernel exception dispatch.

The following exceptions are grouped together as general exceptions:

1. Arithmetic exceptions

2. Unaligned access exceptions

3. Illegal instruction exceptions

4. Invalid (non-canonical virtual) address exceptions

4-4 Windows NT AXP Software (II-C)

5. Software exceptions

6. Breakpoints

7. Subsetted IEEE instruction exceptions

A general exception builds a trap frame on the kernel stack and populates the
exception record within the trap frame and then dispatches to the kernel general
exception entry point. The common dispatch for general exceptions is shown in
Section 4.1.7.8.

The differences between each type of exception are the population of the exception
record and the meaning of the faulting instruction field within the trap frame. The
values for each specific exception are detailed in the sections that follow.

4.1.7.1 Arithmetic Exceptions

Arithmetic exceptions for the Alpha AXP architecture are imprecise; the processor
might not signal an exception until some arbitrary number of instructions after the
instruction that caused the exception. Special handling is required in the kernel
and compiler to deterministically raise the appropriate exceptions to user programs.
Important to this discussion is the definition of the ExceptionPC that is written to
the TrFir offset of the trap frame. The exception PC written into the trap frame is
the virtual address of the first instruction after the faulting instruction that has not
yet executed.

Arithmetic traps write the following information into the exception record of the trap
frame, where er is the exception record pointer:

ErExceptionCode(er) ~ STATUS_ALPHA ARITHMETIC
ErExceptionInformation<O> (er) ~ FLOATING_REGISTER_MASK
ErExceptionInformation<l> (er) ~ INTEGER_REGISTER_MASK
ErExceptionInformation<2> (er) ~ EXCEPTION_SUMMARY
ErNumberParameters(er)~ 3
ErExceptionFlags(er) ~ 0
ErExceptionRecord(er) ~ 0

The floating register masks indicate which floating-point registers were destinations
of instructions that caused an exception. A one in the corresponding position for a
register indicates that the register was the destination of an instruction that faulted.
A zero indicates that the register was not the destination of an instruction that
faulted. The definition of the correspondence between the floating registers and the
bits in the mask is shown in Figure 4-1.

Figure 4-1: Floating-Point Register Mask (FLOAT_REGISTER_MASK)

31 3029 2 1 0

~~F~ ~-------------'1;Q1Fa
l2EJ F29 through F2 tfl

Exceptions, Interrupts, and Machine Checks (II--e) 4-5

I

The integer register masks indicate which integer registers were destinations of
instructions that caused an exception. A one in the corresponding position for a
register indicates that the register was the destination of an instruction that faulted.
A zero indicates that the register was not the destination of an instruction that
faulted. The definition of the correspondence between the integer registers and the
bits in the mask is shown in Figure 4-2.

Figure 4-2: Integer Register Mask (INTEGER_REGISTER_MASK)

31 3029 2 1 0

§8~R~-------------~~1R

ol2f] R29 through R2 ~

The format of the exception summary register (EXCEPTION_SUMMARY) is shown
in Figure 4-3 and the fields are defined in Table 4-2.

Figure 4-3: Exception Summary Register (EXCEPTION_SUMMARY)

31 7 6 5 4 321 0

I I UO DIS
RAZ ON NV ZNW

VE F F Eve

Table 4-2: Exception Summary Register Fields

Field Name Description

RAZ

IOV Integer overflow

INE Inexact result

UNF Underflow

OVF Overflow

DZE Division by zero

Read as zero.

Result of integer operation overflowed the destina
tion's precision.

Result of floating operation caused loss of precision.

Result of floating operation underflowed the destina
tion exponent.

Result of floating operation overflowed the destina
tion exponent.

Floating-point divide attempt with a divisor of zero.

4-6 Windows NT AXP Software (II-C)

Table 4-2 (Cont.): Exception Summary Register Fields

Field Name Description

INV

SWC

Invalid operation

Software completion

One or more of the operands of a floating-point
operation was an illegal value.

The software completion option IS was selected for
all of the faulting instructions.

4.1.7.2 Unaligned Access Exceptions

Unaligned access exceptions are reported to and handled by the kernel and are
precise. Therefore, the address written to the faulting instruction offset of the
trap frame is the virtual address of the load or store instruction that accessed the
unaligned address.

The PALcode writes the following information into the exception record of the trap
frame for an unaligned access exception, where er is the exception record pointer.

ErExceptionCode{er) +- STATUS_DATATYPE_MISALIGNMENT
ErExceptionlnformation<O> (er) +- Faulting opcode
ErExceptionlnformation<l> (er) +- Destination register
ErExceptionlnformation<2> (er) +- Unaligned virtual address
ErNumberParameters(er) +- 3
ErExceptionFlags{er) +- 0
ErExceptionRecord(er) +- 0

4.1.7.3 Illegal Instruction Exceptions

PALcode raises the following types of illegal operations as illegal instruction
exceptions:

1. Attempt to execute an instruction with an opcode reserved to Digital.

2. Attempt to execute an instruction with an unimplemented PALcode function code.

3. Attempt to execute a privileged PALcode instruction from user (unprivileged)
mode.

4. Attempt to execute an instruction with an illegal operand.

5. Attempt to execute an unimplementedlsubsetted instruction.

Note:

Instructions with illegal operands cause illegal instruction exceptions to be raised
only if the processor raises an exception for these operations.

Illegal instruction exceptions are precise; the faulting address written into the trap
frame is the virtual address of the instruction that caused the exception.

The PALcode writes the following information into the exception record of the trap
frame for an illegal instruction exception, where er is the exception record pointer.

Exceptions, Interrupts, and Machine Checks (II-C) 4-7

•

ErExceptionCode(er) +- STATUS_ILLEGAL_INSTRUCTION
ErNumberParameters(er) +- 0
ErExceptionFlags(er) +- 0
ErExceptionRecord(er) +- 0

4.1.7.4 Invalid (Non-Canonical Virtual) Address Exceptions

The PALcode raises a general exception if the PALcode detects an invalid faulting
virtual address, that is, a faulting virtual address that is not a canonical longword.
The implementation must test for the non-canonical format for both data stream
and instruction stream translation buffer fills.

For data stream faults, the faulting address written to the trap frame is the virtual
address of the instruction that caused the reference to the invalid address.

Instruction stream invalid addresses present a more difficult problem because the
exception address itself is invalid and cannot be properly interpreted by a 32-bit
operating system. In the case of instruction stream virtual addresses, the ra (return
address) register minus 4 (ra-4) is written to the faulting address field of the trap
frame. The ra register is used because it probably yields a sane address within the
correct program that faulted. Also, the (ra-4) is the most probable faulting address,
as the most likely instruction to have caused the fault is: jsr ra, (rx).

"The PALcode writes the following information into the exception record of the trap
frame for a non-canonical virtual address fault, where er is the exception record
pointer.

ErExceptionCode(er) +- STATUS_INVALID_ADDRESS
ErExceptionlnformation<O> (er) +- 1 if store; 0 otherwise
ErExceptionlnformation<l> (er) +- invalid va<63 .. 32>
ErExceptionlnformation<2> (er) +- invalid va<31 .. 0>
ErNumberParameters(er) +- 3
ErExceptionFlags(er) +- 0
ErExceptionRecord(er) +- 0

4.1.7.5 Software Exceptions

Software may raise exceptions via the unprivileged gentrap (generate trap)
instruction. The gentrap instruction is used to raise exceptions recognized (possibly)
in user-mode software for conditions such as divide by zero. (The Alpha AXP
architecture does not provide an integer divide instruction; division is accomplished
by specialized divide routines.)

The gentrap instruction takes a single parameter that is preserved but not
interpreted by the PALcode. The gentrap parameter is written into the exception
record where it is interpreted by the kernel exception handler. Gentrap uses the
STATUS_ALPHA_GENTRAP status as an exception code. The kernel exception
dispatcher interprets the gentrap parameter to determine the appropriate Windows
NT AXP status to raise to the currently executing thread.

The faulting address for a gentrap exception is the virtual address of the executed
gentrap instruction.

4-8 Windows NT AXP Software (II-C)

The PALcode writes the following information into the exception record for a gentrap
instruction, where er is the exception record pointer:

ErExceptionCode(er) +- STATUS_ALPHA_GENTRAP
ErExceptionInformation<O> (er) +- gentrap parameter

(aO<31 .. 0> upon
execution of gentrap)

ErExceptionInformation<l> (er) +- gentrap parameter
(aO<63 .. 32> upon

execution of gentrap)
ErNumberParameters(er) +- 2
ErExceptionFlags(er) +- 0
ErExceptionRecord(er) +- 0

4.1.7.6 Breakpoints and Debugger Support

There are several breakpoint instructions and each raises a general exception.
Several of these breakpoints are implemented to support the kernel debugger and
are essentially special subroutine calls. The exact semantics of these calls are not
important to the PALcode; all breakpoints are handled in the same manner and are
distinguished only by the breakpoint type that is written into the exception record.

All breakpoints are implemented as unprivileged PALcode instructions, which allows
the kernel to decide whether the breakpoint can be taken in the current mode.

Table 4-3 lists the breakpoint mnemonics and their corresponding breakpoint types:

Table 4-3: Breakpoint Types

Mnemonic Type Description

bpt

kbpt

callkd

USER_BREAKPOINT

KERNEL_BREAKPOINT

Passed in vO

User breakpoint

Kernel breakpoint

Call kernel debugger

The faulting instruction address for all breakpoints is the virtual address of the
breakpoint instruction.

PALcode completes the exception record for breakpoints as follows, where er is the
exception record pointer:

ErExceptionCode(er) +- STATUS BREAKPOINT
ErExceptionInformation<O> (er) +- breakpoint type
ErNumberParameters(er) +- 1
ErExceptionFlags(er) +- 0
ErExceptionRecord(er) +- 0

4.1.7.7 Subsetted IEEE Instruction Exceptions I
Floating-point instructions are always enabled. Therefore, FEN (floating enable)
faults are not supported.

Exceptions, Interrupts, and Machine Checks (II-C) 4-9

Hardware Implementation Note:

Windows NT AXP requires implementation of IEEE floating point in each
processor implementation.

VAX floating-point format is not supported.

The PALcode raises an illegal instruction exception for any subsetted IEEE floating
point instruction-that is, for any IEEE floating-point instruction not implemented
in hardware.

4.1.7.8 General Exceptions: Common Operations

The common operations for all general exceptions are as follows.

previousPSR +- PSR
if (PSR<Mode> EQ User) then

PSR<Mode> +- kernel
tp +- (IKSP - TrapFrameLength)

else
tp +- (sp - TrapFrameLength)

Establish trap pointer

Establish trap pointer
endif
TrlntSp(tp) +- sp
TrlntFp(tp) +- fp
TrlntGp(tp) +- gp
TrlntRa (tp) +- ra
TrlntAO(tp) +- aO
TrlntAl (tp) +- al
TrlntA2(tp) +- a2
TrlntA3(tp) +- a3
TrPsr(tp) +- previousPSR
TrFir(tp) +- ExceptionPC
sp +- tp
TrPreviousKSP(tp) +- 0 no switch to interrupt stack
RESTART_ADDRESS +- GENERAL_ENTRY
fp +- sp
gp +- KGP
aD +- tp + TrExceptionRecord ; pointer to exception record
a3 +- previousPSR

All other general-purpose registers must be preserved across the general exception
dispatch.

4.1.8 Panic Exceptions
Severe problems produce panic exceptions. Severe problems are not recoverable; the
operating system cannot continue executing normally. Panic exception handling
shuts down the machine in a controlled manner that assists in debugging the
problem. With the exception of hardware errors, panic exceptions are not expected
to occur in the production operating system.

The PALcode raises a panic exception to the kernel and describes the condition that
causes the panic with a bugcheck code. When the kernel receives a panic exception,
it enters the kernel debugger if it is enabled.

4-10 Windows NT AXP Software (II-C)

The classes of panic exceptions are:

1. Kernel stack corruption

2. Unexpected exceptions in PALcode

4.1.8.1 Kernel Stack Corruption

The PALcode can recognize the following types of kernel stack corruption: invalid
kernel stack, kernel stack overflow, and kernel stack underflow. The kernel stack for
an executing thread must always be valid. The PALcode raises a panic exception if
the processor faults when accessing the kernel stack and the page tables indicate that
the kernel stack address is not valid. The PALcode may also check for kernel stack
underflow and overflow and raise a panic exception if either condition is detected.

The kernel stack is the two pages of virtual address space below the IKSP for a
thread, where the IKSP points to the byte beyond the top of the two pages. When
raising a kernel stack corruption exception, the PALcode sets the bugcheck code to
PANIC_STACK_SWITCH.

4.1.8.2 Unexpected Exceptions

The PALcode may raise a panic exception when it detects an unexpected condition
caused by PALcode. Such unexpected conditions are implementation dependent.
It is anticipated that those conditions indicate a bug in the PALcode or that the
processor is no longer executing correctly. The PALcode raises the bugcheck code
TRAP_CAUSE_UNKNOWN.

4.1.8.3 Panic Exception Trap Frame and Dispatch

The PALcode builds a trap frame for the kernel before it dispatches. The PALcode
also fills in the exception record that exists within the trap frame. The PALcode
attempts to maintain all possible register state in order to assist in debugging.

The PALcode performs the following operations when dispatching a panic exception
to the kernel:

previousPSR +- PSR
if (PSR<Mode> EQ User) then

PSR<Mode> +- Kernel
endif
panicStack +- PcPanicStack(PCR)
tp +- (panicStack - TrapFrameLength)

TrlntSp(tp} +- sp
TrlntFp(tp} +- fp
TrlntGp(tp) +- gp
TrlntRa(tp) +- ra
TrlntAO(tp) +- aO
TrlntAl(tp) +- al
TrlntA2 (tp) a2
TrlntA3(tp) +- a3
TrPsr(tp) +- previousPSR
TrFir(tp) +- ExceptionPC
sp +- tp

Get the panic stack
Allocate trap frame

on panic stack

I
Exceptions, Interrupts, and Machine Checks (II-C) 4-11

fp ~ sp
gp ~ KGP
aD ~ NT bugcheck code
al ~ PALcode error code
a2, a3, a4 ~ Bugcheck parameters
RestartAddress +- PANIC_ENTRY

All other general-purpose registers must be preserved across the panic exception
dispatch.

4.2 Interrupts

The PALcode supports two software interrupt levels and an implementation-specific
limit of hardware interrupt sources. The Windows NT AXP PALcode supports eight
levels of interrupt priority known as interrupt request levels (IRQL). The supported
IRQLs are numbered 0-7.

The platform independence of interrupt dispatch is accomplished via three tables:
Interrupt Level Table, Interrupt Mask Table, and Interrupt Dispatch Table.

4.2.1 Interrupt Level Table (ILT)

The Interrupt Level Table consists of eight entries, indexed 0-7. The index values
and symbols for the entries are described in Table 2-1. Each table entry corresponds
to an IRQL by its index within the table. The value of each entry is an enable value
that indicates which interrupt sources are to be enabled within the processor for
the corresponding IRQL. One full longword is reserved for each table entry. The
interpretation of the bits within the enable mask is processor specific.

Implementation Note (Software):

The Interrupt Level Table is probably the most important optional set of data
that can be cached within the processor. Implementations should consider
implementing a PALcode instruction that causes the ILT to be reread and
recached within the processor. Some processors may have an effectively
hardwired ILT. In such a case, the HAL has no influence over which interrupts
are enabled for each IRQL.

4.2.2 Interrupt Mask Table (IMT)

The Interrupt Mask Table relates a mask value of requested interrupts to both an
interrupt vector and a synchronization IRQL. The table resolves implicit interrupt
priorities because only one interrupt vector can be assigned for each request mask.
The IMT is divided into two sub-tables as described in Table 4-4.

Table 4-4: Interrupt Mask Table (IMT)

Index Range Interrupt Source Description

0-3

4-131

Software (2 sources)

Hardware

4-12 Windows NT AXP Software (II-C)

Each entry in the table is a longword that consists of two word values: the interrupt
vector number and the synchronization level. The use of the software portion of the
table is strictly defined and consistent across all processor implementations.

Implementation Note:

In an implementation, the relation between pending interrupts and their
interrupt vectors and synchronization levels may be hardwired. In that case,
the IMT is not used and the HAL is not able to influence the setting of priority
or assignment of interrupts.

The software entries are used only if no hardware interrupts are pending. The
entries must be initialized so that deferred procedure call (DPC) software interrupts
are higher priority than asynchronous procedure call (APC) software interrupts. The
expected initialization of the software portion of the IMT is defined in Table 4-5.

Table 4-5: Software Entries of the IMT

Index Synchronization Level Vector

0 PASSIVE_LEVEL = 0 Passive release vector

1 APC_LEVEL = 1 APC dispatch vector

2 DISPATCH_LEVEL = 2 DPC dispatch vector

3 DISPATCH_LEVEL = 2 DPC dispatch vector

The hardware portion of the IMT is designed for flexible use. Each implementation
must define a relation f that defines a mapping of requested and enabled hardware
interrupt sources to entries in the IMT. The relation f is implementation specific,
but f must be a function in the mathematical sense (for each input there is a single
unambiguous result). All interrupts other than software interrupts are considered
hardware interrupts. Hardware interrupts can include external interrupt signals,
performance counter interrupts, and correctable read interrupts.

4.2.3 Interrupt Dispatch Table (lOT)

The Interrupt Dispatch Table (IDT) has an entry for each possible interrupt vector.
The possible interrupt vectors are in the range 0-255. Each entry is a longword
pointer, which is the virtual address of the interrupt dispatch routine for the vector
that corresponds to the index of the entry within the table. The PALcode does not
read or write the IDT; it is maintained and used entirely by the kernel and HAL.

4.2.4 Interrupt Dispatch

Interrupt dispatch within the PALcode goes through the following steps:

I
Exceptions, Interrupts, and Machine Checks (II-C) 4-13

irr +- currently requested interrupt mask
(from internal processor state)

ier +- currently enabled interrupt mask
(from current IRQL)

! Mask of requested and enabled interrupt sources:
irm +- irr AND ier

! Retrieve value from interrupt mask table:
CASE

Hardware Interrupt Pending :
index = f(irm)
sirql +- (IMT<{index*4}»<SynchronizationIRQL>
vector +- (IMT<{index*4}»<InterruptVector>

Software Interrupt Pending:
sirql +- (IMT<{irm*4}»<SynchronizationIRQL>
vector +- (IMT<{irm*4}»<InterruptVector>

Otherwise:
Passive release, restart execution

ENDCASE
Set processor to sirql IRQL
if (processor interrupt) then
{ acknowledge the interrupt }
endif

If a hardware interrupt, check if already on the interrupt stack (the on-interrupt
stack indicator is nonzero). If on the interrupt stack, zero out TrPreviousKSP. Ifnot
on the interrupt stack, save the IKSP in TrPreviousKSP for return from interrupt.
In either case, set the on-interrupt stack indicator and place the interrupt stack
address (ISP) in the IKSP.

Once synchronization level has been set and the interrupt service routine has been
determined, the PALcode builds a trap frame and dispatches to the kernel interrupt
exception handler passing in the interrupt vector.

In the case of software interrupts:

previousPsr +- PSR
if (PSR<Mode> EQ User) then

PSR<Mode> +- Kernel
tp +- (IKSP - TrapFrameLength)

else
tp +- (sp - TrapFrameLength)

endif
TrIntSp(tp) +- sp
TrIntFp(tp) +- fp
TrIntGp(tp) +- gp
TrIntAD(tp) +- aD
TrIntAl(tp) +- al
TrIntA2(tp) +- a2
TrlntA3(tp) +- a3
TrFir(tp) +- ExceptionPC
TrPsr(tp) +- previousPSR
TrIntRa(tp) +- ra
sp +- tp
TrPreviousKSP(tp) +- D
fp +- sp
gp +- KGP

4-14 Windows NT AXP Software (II-C)

Establish trap pointer

Establish trap pointer

aO +- interrupt vector
al +- PCR
a2 +- synchronization IRQL
a3 +- previousPSR
RestartAddress +- INTERRUPT_ENTRY

In the case of hardware interrupts:

PreviousPSR+- PSR

if (PSR<Mode> EQ User) then
PSR<Mode> +- Kernel

endif
if (ISP_FLAG EQ 0) then

PreviousKsp +- IKSP
IKSP +- ISP
ISP_FLAG +- nonzero value
tp+- IKSP - TrapFrameLength

else
PreviousKSP +- D
tp +- (sp - TrapFrameLength)

endif
TrIntSp(tp) +- sp
TrIntFp(tp) +- fp
TrIntGp(tp) +- gp
TrIntAO(tp) +- aD
TrIntAl(tp) +- al
TrIntA2(tp) +- a2
TrIntA3 (tp) +- a3
TrFir(tp) +- ExceptionPC
TrPsr(tp) +- previousPSR
TrIntRa(tp) +- ra
sp +- tp
TrPreviousKSP(tp) +- PreviousKSP
fp +- sp
gp +- KGP
aO +- interrupt vector
al +- PCR
a2 +- synchronization IRQL
a3 +- previousPSR
RestartAddress +- INTERRUPT_ENTRY

Establish trap pointer

Establish trap pointer

All other general-purpose register values must be preserved across interrupt
dispatch.

The kernel uses the rfe instruction to restart the interrupted code sequence.

4.2.5 Interrupt Acknowledge

Interrupts are acknowledged according to their origin. Internal processor interrupts,
such as software interrupts and performance counters, are acknowledged by the
PALcode. System-level interrupts are acknowledged in the native interrupt dispatch
routines.

Exceptions, Interrupts, and Machine Checks (II-C) 4-15

I

4.2.6 Synchronization Functions
The swpirql, di, and ei instructions allow the kernel to affect the processor's current
interrupt enable state:

• Swpirql swaps the current interrupt request level (IRQL) of the processor.
Swpirql takes the new IRQL as a parameter and returns the previous IRQL.

• Di disables all interrupts without changing the current IRQL.

• Ei enables interrupts at the currently set IRQL.

Those instructions and the existence of the interrupt enable bit in the PSR are used
as a global interrupt enable for all interrupts.

4.2.7 Software Interrupt Requests
The PALcode includes the software interrupt request register (SIRR), an architected
internal processor register, for controlling software interrupt requests. The PALcode
also includes two instructions, ssir and csir, to control the state of the SIRR register.

The format of the SIRR is shown in Figure 4-4 and the fields are defined in
Table 4-6.

Figure 4-4: Software Interrupt Request Register

31 2 1 0

I..... R_AZ I
Table 4-6: Software Interrupt Request Register Fields
Field Type Description

DPC RW DPC software interrupt requested

APC RW APC software interrupt requested

The ssir and csir instructions affect the state of software interrupt requests.

The ssir instruction sets software interrupt requests by taking as a parameter the
interrupt request levels to be set. Setting the appropriate bit in SIRR indicates
that the corresponding software interrupt is requested. The csir instruction clears
software interrupt requests by taking as a parameter the interrupt request level
to be cleared. Setting the appropriate bit in SIRR indicates that the corresponding
software interrupt request must be cleared.

4-16 Windows NT AXP Software (II-C)

4.3 Machine Checks

Machine checks are initiated when the hardware detects a hardware error condition.
However, machine checks are not the only way that detected hardware errors are
reported. Hardware error conditions can be reported from three sources:

• At the pin level. Hardware may choose to signal errors via hardware interrupts.
PALcode delivers such hardware error interrupts to the kernel as standard
interrupts, where they may be hooked by the HAL for system-specific processing.
Such interrupts are not processed by the PALcode as machine checks and are not
described in this section.

• From an implementation-dependent internal error interrupt. It is an
implementation decision whether to deliver such an interrupt as a standard
interrupt or as a machine check. If delivered as a machine check, processing
the interrupt is described in this section.

• At the machine check hardware vector. Hardware errors that are signalled by
the processor through a specific machine check hardware vector are considered
machine checks and are described in this section.

The machine check condition may be correctable or uncorrectable. If uncorrectable,
the hardware may choose to retry the operation that returned the error.

The PALcode recognizes the following types of machine checks:

1. Correctable errors

2. Uncorrectable errors

3. Catastrophic errors

4.3.1 Correctable Errors

Processor correctable errors are data errors that are detected by the processor and
can be reliably corrected. System correctable errors are detected and corrected by
the system hardware; incorrect data is not read into the processor.

Correctable errors are maskable via the MCES internal processor register
(Figure 4-5). It is recommended that correctable errors be disabled during PALcode
initialization and subsequently be explicitly enabled by the HAL. Correctable errors
are delivered from the PALcode to allow the HAL to log the errors. The PALcode
builds a logout frame with per-processor information that assists the HAL in logging
the error.

4.3.2 Uncorrectable Errors

Uncorrectable errors from the processor are detected by the processor and exhibit
data errors that cannot be reliably corrected. Actual processor uncorrectable errors I
are defined by the processor implementation. Uncorrectable errors from the system
are detected but not corrected by the system hardware.

Although uncorrectable errors are likely to be also unrecoverable, a mechanism
exists in the exception record to allow one or more retries when appropriate. The

Exceptions, Interrupts, and Machine Checks (II-C) 4-17

HAL controls the retry count. For example, a parity error in the I-cache, although
uncorrectable, may disappear after an operation retry.

The machine check exception is raised to the HAL to allow per-platform error
handling. Uncorrectable errors are delivered immediately upon detection. The
PALcode creates a logout frame with per-processor information to assist the HAL
in handling the error condition.

4.3.3 Machine Check Error Handling

The general model for machine check handling has the following flow:

1. The PALcode corrects the error, if possible.

2. The PALcode sets the machine to a known state from which restart is possible.

3. The PALcode builds a logout frame describing the detected error.

4. The PALcode sets processor IRQL appropriately (see below).

5. The PALcode dispatches a general exception to the kernel.

6. In the case of a catastrophic error, PALcode returns control to the firmware, as
described in Section 4.3.4.

The machine check error summary (MCES) register, Figure 4--5, indicates and
controls the current state of the machine check handler for the processor. Table 4--7
describes the MCES register.

Figure 4-5: Machine Check Error Summary

31 6543210

DD DP 8M
Reserved M8 PC CC

KC CE EK

Table 4-7: Machine Check Error Summary Fields

Field Type Description

DMK RW

DSC RW

DPC RW

peE RW

SCE RW

MCK RW

Disable all machine checks

Disable system correctable error reporting

Disable processor correctable error reporting

Processor correctable error reported

System correctable error reported

Machine check (uncorrectable) reported

4-18 Windows NT AXP Software (II-C)

All machine checks (correctable and uncorrectable) are maskable via the DMK bit
in the MCES register. This bit is provided only for debugging systems.

The initial value in MCES is implementation specific but, wherever possible,
PALcode attempts to preserve the state of machine check enables from the previous
PALcode environment during initialization.

PALcode writes the exception record with the following values for a machine check,
where er is the exception record pointer.

ErExceptionCode(er} +- DATA_BUS_ERROR
ErExceptionlnformation<O> (er) +- machine check type
ErExceptionlnformation<l> (er) +- pointer to logout frame
ErNumberParameters(er} +- 2
ErExceptionFlags(er} +- 0
ErExceptionRecord(er} +- 0

The two-bit mask that shows the machine check type is shown in Table 4-8.

Table 4-8: Machine Check Types

Machine Check Type Mask Value (Bits 0:1)

Uncorrectable with no retries 00

Correctable 01

Uncorrectable with retries 10

Reserved 11

The virtual address of the logout frame is a 32-bit superpage address, and the logout
frame has a per-processor format.

Machine checks differ from all other general exceptions in that they affect and are
affected by the current processor IRQL. Corrected machine checks raise IRQL to
6 before dispatching to the kernel. Uncorrected machine checks raise IRQL to 7.
Where possible, corrected machine checks are delivered only if the current processor
IRQL is below 7. Correctable machine checks that are recognized when IRQL
equals 7 or when interrupts are disabled, are deferred until IRQL falls below 7 and
interrupts are enabled. Uncorrectable machine checks are delivered immediately,
regardless of the current IRQL.

The draina instruction, when coupled with appropriate implementation-specific
native code, can allow software to force completion of all previously executed
instructions, such that the previous instructions cannot cause machine checks to
be signalled while any instructions subsequent to the draina are executed.

4.3.4 Catastrophic Errors
Although particular catastrophic conditions are specific to the processor
implementation, such conditions indicate that the machine is left in a state where
execution cannot be reliably restarted. They also indicate that the hardware cannot

Exceptions, Interrupts, and Machine Checks (II-C) 4-19

I

be trusted to execute properly or the state of data within the system cannot be
determined.

An example ofa catastrophic condition is a machine check taken while machine check
handling is progress, as indicated by a set MCK bit in the MCES register. Taking
a machine check while in the PALcode environment is also considered catastrophic.
In those cases, control is returned to the firmware as follows:

1. Further machine check acknowledgement is turned off and a logout frame is
generated.

2. The restart block is verified:

• If the restart block is good, the current state in the restart block is saved,
the previous state is restored, and control is returned to the firmware at the
restart address.

• If the restart block is bad, the alternate path is used to re-execute the previous
PALcode image at its entry address. See Section 6.2.1.

4-20 Windows NT AXP Software (II-C)

Chapter 5

Windows NT AXP PALcode Instruction Descriptions
(II-C)

The PALcode instructions generally follow the Windows NT AXP calling standard.
Arguments are passed in the argument (aO-a5) registers and return values are
returned in the value (vO) register. The PALcode instructions also incorporate the
following conventions into their own calling standard:

1. Unless specific temporary registers are required, only the argument registers
aO-a5 are considered volatile.

2. Generally, all parameters are passed in registers.

The argument registers are used as volatile registers because often they contain
parameters to the PALcode instructions. In strict adherence to the calling standard,
the temporary registers to-t12 could also be considered volatile in the PALcode
instructions, but they are not. The temporary registers are not considered
necessarily volatile because PALcode instructions generally do not need more free
registers. Further, it is convenient in assembly language, from which the PALcode
instructions are most frequently called, to be able to assume that temporary registers
are preserved across the PALcode instruction.

All parameters to the PALcode instructions are passed in registers. If the number
of parameters exceeds the available number of argument registers, additional
temporary registers are used as arguments. This precludes the need for callers
to build an appropriate stack frame for PALcode instructions with more than six
parameters.

The RESTART_ADDRESS register indicates the next execution address when
the PALcode exits. Upon entry to each of the PALcode instructions, the
RESTART_ADDRESS register is considered to contain the address of the instruction
immediately following the PALcode instructions.

A range of privileged PALcode instructions is reserved for processor-implementation
specific PALcode instructions that allow specialized communication between the HAL
and the PALcode.

Note:

The Operation part of the PALcode instruction descriptions is shown as an I
ordered sequence of instructions. The instructions in the sequence may be
reordered as long as the results of the sequence of instructions are not altered.
In particular, if an instruction j is listed subsequent to an instruction i and i
writes any data that is used by j, then i must be executed before j.

Windows NT AXP PALcode Instruction Descriptions (II-C) 5-1

5.1 Privileged PALcode Instructions

Table 5-1 summarizes the privileged PALcode instructions.

Table 5-1: Privileged PALcode Instruction Summary

Mnemonic Description

csir

di

draina

dtbis

ei

halt

initpal

rdcounters

rdirql

rdksp

rdmces

rdpcr

rdpsr

rdstate

rdthread

reboot

restart

retsys

rfe

ssir

swpctx

swpirql

swpksp

swppal

swpprocess

tbia

tbis

tbisasn

wrentry

Clear software interrupt request

Disable interrupts

Drain aborts

Data translation buffer invalidate single

Enable interrupts

Halt the processor

Initialize the PALcode

Read PALcode event counters

Read current IRQL

Read initial kernel stack

Read machine check error summary

Read processor control region address

Read processor status register

Read internal processor state

Read the current thread value

Transfer to console or previous PALcode environment

Restart the processor

Return from system service call

Return from exception

Set software interrupt request

Swap privileged thread context

SwapIRQL

Swap initial kernel stack

Swap PALcode

Swap privileged process context

Translation buffer invalidate all

Translation buffer invalidate single

Translation buffer invalidate for single ASN

Write system entry

5-2 Windows NT AXP Software (II-C)

Table 5-1 (Cont.): Privileged PALcode Instruction Summary

Mnemonic Description

wrmces

wrperfmon

Write machine check error summary

Write performance monitoring values

Windows NT AXP PALcode Instruction Descriptions (II-C) 5-3

I

5.1.1 Clear Software Interrupt Request

Format:

csir

Operation:

! PALcode format

{aO Software interrupt requests to clear}

if (PSR<Mode> EQ User) then
{initiate illegal instruction exception}

endif
if (aO<l> EQ 1) then

SIRR<DPC> +- 0
endif
if (aO<O> EQ 1) then

SIRR<APC> +- 0
endif

GPR State Change:

aO - a5 are UNPREDICTABLE

IPR State Change:

SIRR +- aO<1..0>

Exceptions:

Illegal Instruction
Machine Checks

Description:

The csir instruction clears the specified bit in the SIRR internal processor register,
depending on the contents of aO. See Section 4.2.7.

5-4 Windows NT AXP Software (II-C)

5.1.2 Disable All Interrupts

Format:

di

Operation:

! PALcode format

if (PSR<Mode> EQ User) then
{initiate illegal instruction exception}

endif
PSR<IE> +- 0

GPR State Change:

None

IPR State Change:

PSR<IE> +- 0

Exceptions:

Illegal Instruction
Machine Checks

Description:

The di instruction disables all interrupts by clearing the interrupt enable bit (IE) in
the PSR internal processor register. The IRQL field is unaffected. Interrupts may
be re-enabled via the ei instruction.

Windows NT AXP PALcode Instruction Descriptions (II-C) 5-5

I

5.1.3 Drain All Aborts Including Machine Checks

Format:

draina

Operation:

! PALcode format

if (PSR<Mode> EQ User) then
{initiate illegal instruction exception}

endif
{ implementation-specific drain }

GPR State Change:

None

IPR State Change:

None

Exceptions:

Illegal Instruction
Machine Checks

Description:

The draina instruction facilitates the draining of all aborts, including machine
checks, from the current processor. When coupled with the appropriate
implementation-specific native code, draina can help guarantee that no abort is
signalled for an instruction issued before the draina while any instruction issued
subsequent to the draina is executing.

5-6 Windows NT AXP Software (II-C)

5.1.4 Data Translation Buffer Invalidate Single

Format:

dtbis

Operation:

! PALcode format

{aD Virtual address of translation to invalidate}

if (PSR<MODE> EQ User) then
{initiate illegal instruction exception}

endif
{ invalidate all translations in the data stream for the }
{ virtual address in aD }

GPR State Change:

aO - a5 are UNPREDICTABLE

IPR State Change:

None

Exceptions:

Illegal Instruction
Machine Checks

Description:

The dtbis instruction invalidates a single data stream translation. The translation
for the virtual address in aO must be invalidated in all data translation buffers and
in all virtual data caches.

Windows NT AXP PALcode Instruction Descriptions (II-C) 5-7

I

5.1.5 Enable Interrupts

Format:

ei

Operation:

! PALcode format

if (PSR<MODE> EQ User) then
{initiate illegal instruction exception}

endif
PSR<IE> +- 1

GPR State Change:

None

IPR State Change:

PSR<IE> +- 1

Exceptions:

Illegal Instruction
Machine Checks

Description:

The ei instruction sets the interrupt enable (IE) bit in the PSR internal processor
register, thus enabling those interrupts that are at the appropriate level for the
current IRQL field in the PSR.

5-8 Windows NT AXP Software (II-C)

5.1.6 Halt the Operating System by Trapping to Illegal Instruction

Format:

halt

Operation:

! PALcode format

initiate illegal instruction exception

GPR State Change:

See Section 4.1.7.3 for illegal instruction exception handling.

IPR State Change:

See Section 4.1.7.3 for illegal instruction exception handling.

Exceptions:

Illegal Instruction

Description:

The halt instruction forces an illegal instruction exception. See the reboot
instruction, Section 5.1.16, for transferring control to the console or previous
PALcode environment.

Windows NT AXP PALcode Instruction Descriptions (II-C) 5-9

•

5.1.7 Initialize PALcode Data Structures with Operating System Values

Format:

initpal

Operation:

{ aO
{ a1
{ a2
{ a3
{ gp
{ sp

! PALcode format

Page directory entry (PDE) page, superpage 32 address}
Initial thread value}
Initial TEB value}
Interrupt stack pointer (ISP)
Kernel global pointer}
Initial kernel stack pointer}

if (PSR<MODE> EQ User) then
{initiate illegal instruction exception}

endif
PDR +- (aO BIC 8000000016)
THREAD +- a1
TEB +- a2
ISP +- a3
IKSP +- sp
KGP +- gp
PcPalBaseAddress(PCR) +- PAL_BASE
PcPalMajorversion(PCR) +- PalMajorVersion
PcPalMinorVersion(PCR) +- PalMinorVersion
PcPalSequenceVersion(PCR) +- PalSequenceVersion
PcPalMajorSpecification(PCR) +- PalMajorSpecification
PcPalMinorSpecification(PCR) +- PalMinorSpecification
vO +- PAL_BASE

GPR State Change:

vO +- PAL_BASE
aO - a5 are UNPREDICTABLE

IPR State Change:

PDR +- aO
THREAD +- al
TEB +- a2
ISP +- a3
IKSP +- sp
KGP +- gp

5-10 Windows NT AXP Software (II-C)

Exceptions:

Illegal Instruction
Machine Checks

Description:

The initpal instruction is called early in the kernel initialization sequence to
establish IPR values for the initial thread PDR, THREAD, TEB, and IKSP. The
IPR values ISP and KGP persist for the life of the system. In addition, initpal
writes the PALcode version information into the PCR.

On return from the initpal instruction, the return value register, vO, contains the
PAL_BASE register (the base address in 32-bit superpage (ksegO) format).

Windows NT AXP PALcode Instruction Descriptions (II-C) 5-11

I

5.1.8 Read the Software Event Counters

Format:

rdcounters

Operation:

! PALcode format

aD Pointer to 32-bit superpage address of counter record buffer.
Address must be quadword aligned}

al Length of buffer in bytes}

if (PSR<MODE> EQ User) then
{initiate illegal instruction exception}

endif
{ dump event counter values to the counter record
vD +- status

GPR State Change:

vO +- status
aO - a5 are UNPREDICTABLE

IPR State Change:

None

Exceptions:

Illegal Instruction
Machine Checks

Description:

For debug PALcode (see Section 5.3), rdcounters causes that PALcode to write the
state of its internal software event counters into an implementation-specific counter
record pointed to by the address passed in the aO register. For production PALcode,
rdcounters returns a status value of zero, indicating that it is not implemented in
the current PALcode image.

On return from rdcounters, vO contains the status as follows:

If vO = 0 Interface is not implemented.
If vO~al vO is length of data returned.
If vO > al No data is returned and vO is length ofprocessor implementation counter

record.

5-12 Windows NT AXP Software (II-C)

5.1.9 Read the Current IRQL from the PSR

Format:

rdirql

Operation:

! PALcode format

if (PSR<MODE> EQ User) then
{initiate illegal instruction exception}

endif
vO +- PSR<IRQL>

GPR State Change:

vO +- <IRQL>

IPR State Change:

None

Exceptions:

Illegal Instruction
Machine Checks

Description:

The rdirql instruction returns in vO the contents of the interrupt request level (IRQL)
field of the PSR internal processor register.

Windows NT AXP PALcode Instruction Descriptions (II-C) 5-13

I

5.1.10 Read Initial Kernel Stack Pointer for the Current Thread

Format:

rdksp

Operation:

! PALcode format

if (PSR<MODE> EQ User) then
{initiate illegal instruction exception}

endif
vO +- IKSP

GPR State Change:

vO +- <IKSP>

IPR State Change:

None

Exceptions:

Illegal Instruction
Machine Checks

Description:

The rdksp instruction returns in vO the contents of the IKSP (initial kernel stack
pointer) internal processor register for the currently executing thread.

5-14 Windows NT AXP Software (II-C)

5.1.11 Read the Machine Check Error Summary Register

Format:

rdmces

Operation:

! PALcode format

if (PSR<MODE> EQ User) then
{initiate illegal instruction exception}

endif
vO +- MCES

GPR State Change:

vO +- MCES

IPR State Change:

none

Exceptions:

Illegal Instruction
Machine Checks

Description:

The rdmces instruction returns in vO the contents of the machine check error
summary (MCES) internal processor register.

Windows NT AXP PALcode Instruction Descriptions (II-C) 5-15

•

5.1.12 Read the Processor Control Region Base Address

Format:

rdpcr

Operation:

! PALcode format

if (PSR<MODE> EQ User) then
{initiate illegal instruction exception}

endif
vO +- peR

GPR State Change:

vO +- PCR

IPR State Change:

None

Exceptions:

Illegal Instruction
Machine Checks

Description:

The rdpcr instruction returns in vO the contents of the PCR internal processor
register (the base address value of the processor control region).

5-16 Windows NT AXP Software (II-C)

5.1.13 Read the Current Processor Status Register (PSR)

Format:

rdpsr

Operation:

! PALcode format

if (PSR<MODE> EQ User) then
{initiate illegal instruction exception}

endif
vO +- PSR

GPR State Change:

vO +- PSR

IPR State Change:

None

Exceptions:

Illegal Instruction
Machine Checks

Description:

The rdpsr instruction returns in vO the contents of the current PSR (Processor Status
Register) internal processor register.

Windows NT AXP PALcode Instruction Descriptions (II-C) 5-17

•

5.1.14 Read the Current Internal Processor State

Format:

rdstate

Operation:

! PALcode format

aD Pointer to 32-bit superpage address of state record buffer.}
Address must be quadword aligned}

al Length of buffer in bytes}

if (PSR<MODE> EQ User) then
{initiate illegal instruction exception}

endif
{ dump internal processor state record to processor state buffer}
vD +- status

GPR State Change:

vO +- status
aO - a5 are UNPREDICTABLE

IPR State Change:

None

Exceptions:

Illegal Instruction
Machine Checks

Description:

The rdstate instruction writes the internal processor state to the internal processor
state buffer pointed to by the address passed in the aO register. The form and content
of the internal processor state buffer are implementation specific.

On return from the rdstate instruction, the return value register, vO, contains the
status as follows:

If vO = 0 Interface is not implemented.
If vO~al vO is length of data returned.
If vO > al No data is returned and vO is length ofprocessor implementation counter

record.

5-18 Windows NT AXP Software (II-C)

5.1.15 Read the Thread Value for the Current Thread

Format:'

rdthread

Operation:

! PALcode format

if (PSR<MODE> EQ User) then
{initiate illegal instruction exception}

endif
vO +- THREAD

GPR State Change:

vO +- THREAD

IPR State Change:

None

Exceptions:

Illegal Instruction
Machine Checks

Description:

The rdthread instruction returns in vO the contents of the THREAD internal
processor register (for the currently executing thread).

Windows NT AXP PALcode Instruction Descriptions (II-C) 5-19

•

5.1.16 Reboot-Transfer to Console Firmware

Format:

reboot

Operation:

PALcode format

if (PSR<MODE> EQ User) then
{initiate illegal instruction exception}

endif
RestartBlockPointer +- PcRestartBlock(PCR}
{ if cannot verify restart block, restart previous PALcode }
{ save general register state in saved state area }
{ save internal processor register state in saved state area,
{ includes PAL_BASE}
{ save implementation-specific data in saved state area
{ set the saved state length in restart block }
{ compute and store Checksum for restart block }
{ restore previous privileged state }
PAL_BASE +- previous_PAL_BASE.
RESTART_ADDRESS +- PcFirmwareRestartAddress(PCR}

GPR State Change:

All registers are UNPREDICTABLE

IPR State Change:

PAL_BASE +-previous_PAL_BASE
RESTART_ADDRESS +-PcFirmwareRestartAddress(PCR)
All other registers are UNPREDICTABLE

Exceptions:

Illegal Instruction
Machine Checks

Description:

The reboot instruction stops the operating system from executing and returns
execution to the boot environment. Reboot is responsible for completing the
ARC Restart Block before returning to the boot environment. The PALcode
must accomplish two tasks to restore the boot environment: re-establish the
boot environment PALcode and restart execution in the boot environment at the
Firmware Restart Address.

5-20 Windows NT AXP Software (II-C)

5.1.17 Restart the Operating System from the Restart Block

Format:

restart

Operation:

! PALcode format

{aD Pointer to ARC restart block with Alpha AXP saved state area}

if (PSR<MODE> EQ User) then
{initiate illegal instruction exception}

endif
{ verify restart block }
{ if invalid then return to caller }
RestartBlockPointer +- PcRestartBlock(PCR)
{ restore general register state from saved state area }
{ restore internal processor register state from saved state area,}
{ restore implementation-specific data from saved state area }
RESTART_ADDRESS +- RbRestartAddress(RestartBlockPointer)

GPR State Change:

All registers are UNPREDICTABLE

IPR State Change:

RESTART_ADDRESS +-RbRestartAddress(RestartBlockPointer)
All other registers are UNPREDICTABLE

Exceptions:

Illegal Instruction
Machine Checks

Description:

The restart instruction restores saved processor state and resumes execution of the
operating system.

Windows NT AXP PALcode Instruction Descriptions (II-C) 5-21

•

5.1.18 Return from System Service Call Exception

Format:

retsys

Operation:

! PALcode format

aD Previous PSR}
al New software interrupt requests}
fp Pointer to trap frame}

if (PSR<MODE> EQ User) then
{initiate illegal instruction exception}

endif
if (al<l> EQ 1) then

SIRR<DPC> +- 1
endif
if (al<O> EQ 1) then

SIRR<APC> +- 1
endif
TrapFrame +- fp
ra +- TrlntRa(TrapFrame)
gp +- TrlntGp(TrapFrame)
fp +- TrlntFp(TrapFrame)
sp +- TrlntSp(TrapFrame)
RESTART_ADDRESS +- TrFir(TrapFrame)
PSR +- aO
{ Clear lock_flag register}
{ Clear intr_flag register}

GPR State Change:

ra +- TrIntRa(TrapFrame)
gp +- TrIntGp(TrapFrame)
fp +- TrIntFp(TrapFrame)
sp +- TrIntSp(TrapFrame)
at, to - t12, aO - a5 are UNPREDICTABLE

IPR State Change:

PSR +- aO
RESTART_ADDRESS +- TrFir(TrapFrame)
SIRR +- al<1..0>

5-22 Windows NT AXP Software (II-e)

Exceptions:

Illegal Instruction
Machine Checks
Invalid Kernel Stack

Description:

The retsys instruction returns from a system service call exception by unwinding
the trap frame, clearing the lock_flag and intr_flag (interrupt flag) registers, and
returning to the code stream that was executing when the original exception was
initiated. Retsys must return to the native code stream; it is illegal for retsys to
return to the PALcode environment and that must be guaranteed not to happen. In
addition, retsys accepts a parameter to set software interrupt requests that became
pending while the exception was handled.

Retsys is similar to the rfe instruction, with the following exceptions:

1. Retsys need not restore the argument registers aO-a3 from the trap frame.

2. Retsys need not preserve volatile register state.

3. Retsys returns to the address in the ra register at the point of the callsys
rather than the faulting instruction address (the ra was written to the faulting
instruction address by callsys).

Windows NT AXP PALcode Instruction Descriptions (II-C) 5-23

•

5.1.19 Return from Exception or Interrupt

Format:

rfe

Operation:

PALcode format

aO Previous PSR}
al New software interrupt requests}
fp Pointer to trap frame}

if (PSR<MODE> EQ User) then
{initiate illegal instruction exception}

endif
if (al<l> EQ 1) then

SIRR<DPC> +- 1
endif
if (al<O> EQ 1) then

SIRR<APC> +- 1
endif

if (ISP_FLAG NE 0) then
if (TrPreviousKSP(TrapFrame) NE 0) then

ISP_FLAG +- 0
IKSP +- TrPreviousKSP(TrapFrame)

endif
endif

PSR +- aO
TrapFrame +- fp
aO +- TrlntAO(TrapFrame)
al +- TrlntAl(TrapFrame)
a2 +- TrlntA2(TrapFrame)
a3 +- TrlntA3(TrapFrame)
ra +- TrlntRa(TrapFrame)
gp +- TrlntGp(TrapFrame)
fp +- TrlntFp(TrapFrame)
sp +- TrlntSp(TrapFrame)
RESTART_ADDRESS +- TrFir(TrapFrame)

{ Clear lock_flag register}
{ Clear intr_flag register}

GPR State Change:

aO +- TrlntAO(TrapFrame)
al +- TrlntAl(TrapFrame)
a2 +- TrlntA2(TrapFrame)
a3 +- TrlntA3(TrapFrame)
ra +- TrlntRa(TrapFrame)

5-24 Windows NT AXP Software (II-C)

gp ~ TrIntGp(TrapFrame)
fp ~ TrIntFp(TrapFrame)
sp ~ TrIntSp(TrapFrame)

IPR State Change:

PSR ~ aO
RESTART_ADDRESS ~ TrFir(TrapFrame)
SIRR ~ al<1..0>

Exceptions:

Illegal Instruction
Machine Checks
Invalid Kernel Stack

Description:

The rfe instruction returns from exceptions or interrupts by unwinding the trap
frame, clearing the lock_flag and intr_flag (interrupt flag) registers, and returning
to the code stream that was executing when the original exception or interrupt was
initiated. Rfe must return to the native code stream; it is illegal for rfe to return to
the PALcode environment and that must be guaranteed not to happen. In addition,
rfe accepts a parameter to set software interrupt requests that became pending while
the event was handled.

Windows NT AXP PALcode Instruction Descriptions (II-C) 5-25

•

5.1.20 Set Software Interrupt Request

Format:

ssir

Operation:

! PALcode format

{aO Software interrupt requests to set}

if (PSR<MODE> EQ User) then
{initiate illegal instruction exception}

endif
if (aO<l> EQ 1) then

SIRR<DPC> +- 1
endif
if (aO<O> EQ 1) then

SIRR<APC> +- 1
endif

GPR State Change:

aO - a5 are UNPREDICTABLE

IPR State Change:

SIRR +- aO<1..0>

Exceptions:

Illegal Instruction
Machine Checks

Description:

The ssir instruction sets software interrupt requests by setting the appropriate bits
in the SIRR internal processor register. See Section 4.2.7.

5-26 Windows NT AXP Software (II-C)

5.1.21 Swap Thread Context

Format:

swpctx

Operation:

{ aO
{ al
{ a2
{ a3
{

{ a4
{ as

PALcode format

New initial kernel stack va}
New thread address}
New thread environment block pointer}
New address space page frame number (PFN)}

or a negative number}
ASN}
ASN_wrap_indicator}

implementation page size

if (PSR<MODE> EQ User) then
{initiate illegal instruction exception}

endif
IKSP ~ aO
THREAD ~ al
TEB ~ a2
ASN_wrap_indicator +- as
if (a3 GE 0) then ! swap address space

temp ~ SHIFT_LEFT (a3, PAGE_SHIFT)
PDR ~ temp
ASN ~ a4
if (ASN_wrap_indicator NE 0) then

{ invalidate all translations and virtual cache blocks}
{ for which ASM EQ O}

endif
endif

Where: }
2* *PAGE_SHIFT

GPR State Change:

aD - a5 are UNPREDICTABLE

IPR State Change:

IKSP +- aO
THREAD ~ al
TEB +- a2
PDR +- a3 (possibly) I
ASN +- a4 (possibly)

Windows NT AXP PALcode Instruction Descriptions (II-C) 5-27

Exceptions:

Illegal Instruction
Machine Checks

Description:

The swpctx instruction swaps the privileged portions of thread context. Thread
context is swapped by establishing the new IKSP, THREAD, and TEB internal
processor register values.

Swpctx may also swap the address space (or process) for the new thread. If the new
thread is in the same process (address space) as the previous thread, the kernel
passes a negative value for the page frame number (PFN) in the page directory
page, indicating that the address space need not be switched. If the PFN is zero or
a positive number, it is used to swap the address space, just as if swpprocess had
been executed.

5-28 Windows NT AXP Software (II-C)

5.1.22 Swap the Current IRQL (Interrupt Request Level)

Format:

swpirql

Operation:

! PALcode format

{aD New IRQL}

if (PSR<MODE> EQ User) then
{initiate illegal instruction exception}

endif
vD +- PSR<IRQL>
PSR<IRQL> +- aD

GPR State Change:

vO +- PSR<IRQL>
aO - a5 are UNPREDICTABLE

IPR State Change:

PSR<IRQL> +- aO

Exceptions:

Illegal Instruction
Machine Checks

Description:

The swpirql instruction swaps the current IRQL field in the PSR internal processor
register by setting the processor so that only permitted interrupts are enabled for
the new IRQL. Swpirql updates the IRQL field and returns in vO the previous IRQL.

Windows NT AXP PALcode Instruction Descriptions (II-C) 5-29

•

5.1.23 Swap the Initial Kernel Stack Pointer (IKSP) for the Current Thread

Format:

swpksp

Operation:

! PALcode format

{ aO = New IKSP}

if (PSR<MODE> EQ User) then
{initiate illegal instruction exception}

endif
vO +- IKSP
IKSP +- aO

GPR State Change:

vO +- IKSP
aO - a5 are UNPREDICTABLE

IPR State Change:

IKSP +- aO

Exceptions:

Illegal Instruction
Machine Checks

Description:

The swpksp instruction returns in vO the value of the previous IKSP internal
processor register and writes a new IKSP for the currently executing thread.

5-30 Windows NT AXP Software (II-C)

5.1.24 Swap the Currently Executing PALcode

Format:

swppal

Operation:

! PALcode format

{ aO = Physical base address of new PALcode}
{ al-a5 = Arguments to the new PALcode environment}

if (PSR<MODE> EQ User) then
{initiate illegal instruction exception}

endif
{ load processor-dependent parameters}
{ jump to address in aO as a physical address in
{ the PALcode environment}

GPR State Change:

at and to - t12 are UNPREDICTABLE or contain processor-dependent parameters

IPR State Change:

None

Exceptions:

Illegal Instruction
Machine Checks

Description:

The swppal instruction swaps the currently executing PALcode by transferring to the
base address ofthe new PALcode image (provided in aO) in the PALcode environment.

Windows NT AXP PALcode Instruction Descriptions (II-C) 5-31

I

5.1.25 Swap Process Context (Swap Address Space)

Format:

swpprocess ! PALcode format

Operation:

{ aO
{ al
{ a2
{
{

Page frame number (PFN) of new POR}
Address space number (ASN) of new process}
Address space number wrap indicator (ASN_wrap_indicator):}

o = no wrap}
nonzero = wrap}

implementation page size

PSR<MOOE> EQ User) then
{initiate illegal instruction exception}

+- SHIFT_LEFT (aO, PAGE_SHIFT
+- temp
+- al

if (ASN_wrap_indicator NE 0) then
{ invalidate all translations and virtual cache blocks}
{ for which ASM EQ O}

endif

Where: }
2* *PAGE_SHIFT

endif
temp
POR
ASN

if

GPR State Change:

aO - a5 are UNPREDICTABLE

IPR State Change:

PDR +- aO
ASN +- al

Exceptions:

Illegal Instruction
Machine Checks

Description:

The swpprocess instruction swaps the privileged process context by changing the
address space for the currently executing thread. The address space change is
accomplished by establishing a new PDR and ASN. If the ASN_wrap_indicator
passed in a2 is nonzero, swpprocess causes invalidation of all translation buffer
entries and virtual cache blocks that have a clear address space match (ASM) bit.

5-32 Windows NT AXP Software (II-C)

5.1.26 Translation Buffer Invalidate All

Format:

tbia

Operation:

! PALcode format

if (PSR<MODE> EQ User) then
{initiate illegal instruction exception}

endif
{ invalidate all translations and virtual cache blocks
{ within the processor }

GPR State Change:

aO - a5 are UNPREDICTABLE

IPR State Change:

None

Exceptions:

Illegal Instruction
Machine Checks

Description:

The tbia instruction invalidates all translations and virtual cache blocks within the
processor.

Windows NT AXP PALcode Instruction Descriptions (II-e) 5-33

I

5.1.27 Translation Buffer Invalidate Single

Format:

tbis

Operation:

! PALcode format

{aD Virtual address of translation to invalidate}

if (PSR<MODE> EQ User) then
{initiate illegal instruction exception}

endif
{ invalidate all translations for the virtual address in aD,}
{ invalidate in all translation buffers and all virtual caches

GPR State Change:

aO - a5 are UNPREDICTABLE

IPR State Change:

None

Exceptions:

Illegal Instruction
Machine Checks

Description:

The tbis instruction invalidates a single virtual translation. The translation for the
passed virtual address must be invalidated in all processor translation buffers and
virtual caches.

5-34 Windows NT AXP Software (II-C)

5.1.28 Translation Buffer Invalidate Single for ASN

Format:

tbisasn

Operation:

! PALcode format

{aD Virtual address of translation to invalidate }
{al Address space number (ASN) }

if (PSR<MODE> EQ User) then
{initiate illegal instruction exception}

endif
{ invalidate the translation for the virtual address in aD }
{ that matches the ASN in al. The translation must be invalidated}
{ in all translation buffers and virtual caches}

GPR State Change:

aO - a5 are UNPREDICTABLE

IPR State Change:

None

Exceptions:

Illegal Instruction
Machine Checks

Description:

The tbisasn instruction invalidates a single virtual translation for a specified address
space number. The translation for the passed virtual address must be invalidated
in all processor translation buffers and virtual caches.

Windows NT AXP PALcode Instruction Descriptions (II-C) 5-35

I

5.1.29 Write Kernel Exception Entry Routine

Format:

wrentry

Operation:

! PALcode format

aO Address of exception entry routine, 32-bit}
superpage address}

al Exception class value}

if (PSR<MODE> EQ User) then
{initiate illegal instruction exception}

endif
case al begin

0:
PANIC_ENTRY +- aO
break;

1 :
MEM_MGMT_ENTRY +- aO
break;

2 :
INTERRUPT_ENTRY +- aO
break;

3 :
SYSCALL_ENTRY +- aO
break;

4:
GENERAL_ENTRY +- aD
break;

otherwise:
{initiate panic exception}

endcase;

GPR State Change:

aO - a5 are UNPREDICTABLE

IPR State Change:

*_ENTRY +-aO

5-36 Windows NT AXP Software (II-C)

Exceptions:

Illegal Instruction
Machine Checks
Panic Exception

Description:

The wrentry instruction provides the registry of exception handling routines for
the exception classes. The address in aO is registered for the exception class
corresponding to the exception class value in al. The kernel must use wrentry
to register an exception handler for each of the exception classes. The relationship
between the exception classes and class values is shown in Table 5-2.

Table 5-2: Exception Class Values
Exception Class Value

Panic exceptions 0

Memory management exceptions 1

Interrupt exceptions 2

System service call exceptions 3

General exceptions 4

Windows NT AXP PALcode Instruction Descriptions (II-C) 5-37

I

5.1.30 Write the Machine Check Error Summary Register

Format:

wrmces

Operation:

! PALcode format

{aO = New values for the machine check error}
summary (MCES) register.}

if (PSR<MODE> EQ User) then
{initiate illegal instruction exception}

endif
vO +- MCES
MCES<DMK> +- aO<5>
MCES<DSC> +- aO<4>
MCES<DPC> +- aO<3>
if (aO<2> EQ 1) then

MCES<PCE> +- 0
endif
if (aO<l> EQ 1) then

MCES<SCE> +- 0
endif
if(aO<O> EQ 1) then

MCES<MCK> +- 0
endif

GPR State Change:

vO +- previous MCES

IPR State Change:

MCES +- aO

Exceptions:

Illegal Instruction
Machine Checks

Description:

The wrmces instruction writes new values for the MCES internal processor register
and returns in vO the previous values of that register.

5-38 Windows NT AXP Software (II-C)

5.1.31 Write Performance Counter Interrupt Control Information

Format:

wrperfmon

Operation:

if (PSR<MODE> EQ User) then
{initiate illegal instruction exception}

endif

{ aD - as contain implementation-specific input values

GPR State Change:

vO +-implementation-dependent value
aO - a5 are UNPREDICTABLE

IPR State Change:

None

Exceptions:

Illegal Instruction
Machine Checks

Description:

The wrperfmon instruction controls any performance monitoring mechanisms in the
processor and PALcode. The wrperfmon instruction arguments and actions are chip
dependent, and when defined for an implementation, are described in Appendix D.

Windows NT AXP PALcode Instruction Descriptions (II-C) 5-39

I

5.2 Unprivileged PALcode Instructions

Table 5-3: Unprivileged PALcode Instruction Summary
Mnemonic Description

bpt

callkd

callsys

gentrap

imb

kbpt

rdteb

Breakpoint trap

Call kernel debugger

Call system service

Generate trap

Instruction memory barrier

Kernel breakpoint trap

Read thread environment block pointer

5-40 Windows NT AXP Software (II-C)

5.2.1 Breakpoint Trap (Standard User-Mode Breakpoint)

Format:

bpt

Operation:

See Sections 4.1.7.8 and 4.1.7.6

GPR State Change:

See Sections 4.1.7.8 and 4.1.7.6

IPR State Change:

See Sections 4.1.7.8 and 4.1.7.6

Exceptions:

Machine Checks
Kernel Stack Invalid

Description:

! PALcode format

The bpt instruction raises a breakpoint general exception to the kernel, setting a
USER_BREAKPOINT breakpoint type.

Windows NT AXP PALcode Instruction Descriptions (II-C) 5-41

I

5.2.2 Call Kernel Debugger

Format:

callkd

Operation:

{vO = Type of breakpoint}

See Sections 4.1.7.8 and 4.1.7.6

GPR State Change:

See Sections 4.1.7.8 and 4.1.7.6

IPR State Change:

See Sections 4.1.7.8 and 4.1.7.6

Exceptions:

Machine Checks
Kernel Stack Invalid

Description:

! PALcode format

The callkd instruction raises a breakpoint general exception to the kernel, setting
the breakpoint type with the value supplied in vO. The callkd instruction implements
special calls to the kernel debugger.

5-42 Windows NT AXP Software (II-C)

5.2.3 System Service Call

Format:

callsys

Operation:

! PALcode format

{ vO = System service code}
{ aO-aS = System call arguments}
previousPSR +- PSR
if(PSR<MODE> EQ UserMode) then

PSR<MODE> +- KernelMode
tp +- (IKSP - TrapFrameLength)

else
tp +- (sp - TrapFrameLength)

endif
TrlntSp (tp) +- sp
TrlntFp(tp) +- fp
TrlntRa(tp) +- ra
TrlntGp(tp) +- gp
TrFir (tp) +- ra
TrPsr(tp) +- previousPSR
gp +- KGP
sp +- tp
fp +- tp
to +- previousPSR<MODE>
tl +- THREAD
RESTART_ADDRESS +- SYSCALL_ENTRY

GPR State Change:

fp +-tp
gp +-KGP
sp +-tp
to +-PSR
tl +-THREAD
at and to - t12 are UNPREDICTABLE

IPR State Change:

PSR<MODE> +- KernelMode
RESTART_ADDRESS +- SYSCALL_ENTRY

Establish trap pointer

Establish trap pointer

I
Windows NT AXP PALcode Instruction Descriptions (II-C) 5-43

Exceptions:

Machine Checks
Kernel Stack Invalid

Description:

The callsys instruction raises a system service call exception to the kernel. The
system service call has the software semantics of a standard procedure call. That
is, arguments are passed in argument registers and on the stack, volatile registers
are considered free, and nonvolatile registers must be preserved across the call. In
addition to the standard calling sequence, callsys is passed the number of the desired
system service in the return value register vO. Callsys does not interpret this value,
but rather passes it directly to the operating system.

Callsys switches to kernel mode if necessary, builds a trap frame on the kernel
stack, and then enters the kernel at the kernel system service exception handler.
See Section 4.1.6.

The argument registers must be preserved through the instruction. Standard control
information, such as the previous PSR, is stored in the trap frame. Callsys then
restarts execution at the kernel system service call exception entry, passing the
previous mode as a parameter in the to register, and the current thread as a
parameter in the t1 register.

5-44 Windows NT AXP Software (II-C)

5.2.4 Generate a Trap

Format:

gentrap

Operation:

! PALcode format

{ aO = Trap number that identifies exception}

See Sections 4.1.7.8 and 4.1.7.5

GPR State Change:

See Sections 4.1.7.8 and 4.1.7.5

IPR State Change:

See Sections 4.1.7.8 and 4.1.7.5

Exceptions:

Machine Checks
Kernel Stack Invalid

Description:

The gentrap instruction generates a software general exception to the current thread.
The exception code is generated from a trap number that is specified as an input
parameter. Gentrap is used to raise software-detected exceptions such as bound
check errors or overflow conditions.

Windows NT AXP PALcode Instruction Descriptions (II-C) 5-45

I

5.2.5 Instruction Memory Barrier

Format:

imb

Operation:

! PALcode format

{From within kernel mode, make processor }
{ instruction stream coherent with main memory }

GPR State Change:

None

IPR State Change:

None

Exceptions:

Machine Checks

Description:

The imb instruction may only be called from kernel mode and guarantees that all
subsequent instruction stream fetches are coherent with respect to main memory on
the current processor. 1mb must be issued before executing code in memory that has
been modified (either by stores from the processor or DMA from an 110 processor).
See Common Architecture, Chapter 6.

User-mode software must not use the imb instruction, but rather use the appropriate
Windows NT interface to make the I-cache coherent.

5-46 Windows NT AXP Software (II-C)

5.2.6 Kernel Breakpoint Trap

Format:

kbpt

Operation:

See Sections 4.1.7.8 and 4.1.7.6

GPR State Change:

See Sections 4.1.7.8 and 4.1.7.6

IPR State Change:

See Sections 4.1.7.8 and 4.1.7.6

Exceptions:

Machine Checks
Kernel Stack Invalid

Description:

! PALcode format

The kbpt instruction raises a breakpoint general exception to the kernel, setting a
KERNEL_BREAKPOINT breakpoint type.

Windows NT AXP PALcode Instruction Descriptions (II-C) 5-47

I

5.2.7 Read Thread Environment Block Pointer

Format:

rdteb

Operation:

vO +- TEB

GPR State Change:

vO +- TEB

IPR State Change:

None

Exceptions:

Machine Checks

! PALcode format

Description:

The rdteb instruction returns in vO the contents of the TEB internal processor
register for the currently executing thread (the base address of the thread
environment block). See Section 2.7.

5-48 Windows NT AXP Software (II-C)

5.3 Debug PALcode and Free PALcode

The debug PALcode is a functional superset of the production PALcode, which
is specified in this document. The debug PALcode includes extra counters for
performance evaluation and additional sanity checks. An unacceptable performance
loss would occur if these features were implemented in production PALcode.
Therefore, the debug PALcode is used in the laboratory only.

The debug PALcode contains the following additional features:

1. Kernel stack underflow/overflow checking

2. Special I/O address checking

3. Event counters

5.3.1 Kernel Stack Checking

The debug PALcode checks for kernel stack underflow and overflow whenever it
allocates a trap frame and the previous mode was kernel mode. 1\vo pages of kernel
stack are allocated for each thread.

• Underflow occurs when the thread's kernel mode stack pointer (SP) is greater
than the initial kernel stack pointer (IKSP).

• Overflow is detected whenever the SP would be less than (IKSP - 2 * PAGE_SIZE).

Kernel stack underflow and overflow are indicated with a panic exception, described
in Section 4.1.8.

5.3.2 I/O Address Checking

Alpha AXP systems that use standard buses and drivers cannot provide direct
access to I/O space addresses (as would Intel-based systems). Instead, the Alpha
AX.P systems provide access to I/O space by allowing the standard device drivers
to use address handles, provided by the HAL, that may be treated as standard I/O
virtual addresses for all operations except the I/O accesses. The I/O accesses must
be performed by specialized routines in the HAL that are able to convert the address
handles to the actual virtual addresses used for the I/O space accesses.

By convention, the HAL uses the range of numbers A000000016 through
BFFFFFFF16 to represent these address handles whenever possible. This range
of numbers falls into the upper half of the 32-bit superpage address range. The
debug PALcode disables the 32-bit superpage in hardware and provides support for
the lower half of the 32-bit superpage in PALcode (the range of addresses 8000000016
through 9FFFFFFF16). Addresses in the range A000000016 through BFFFFFFF16
are treated as standard addresses and, since they are not mapped, cause memory
management faults (translation not valid). This support in the PALcode allows easy I
and precise trapping of device driver code that attempts to access I/O addresses
directly without using the intended access routines provided by the HAL.

Windows NT AXP PALcode Instruction Descriptions (II-C) 5-49

Note:

Physical system memory is limited to 512M bytes when running with the debug
PALcode.

5.3.3 Event Counters

The debug PALcode provides software counters to count significant events within the
PALcode. The PALcode also provides the privileged rdcounters instruction to allow
kernel-mode code to read the counters. The counted events are implementation
specific but must include the following: a separate counter for each of the different
PALcode instructions, TB miss counts, and interrupt counts. The format of the data
returned by rdcounters is also implementation specific. However, all counters must
be 64-bit counters.

5-50 Windows NT AXP Software (II-C)

Chapter 6

Initialization and Firmware Transitions (II-C)

This chapter describes the four phases of PALcode environment initialization and
the PALcode functions that provide the transition between the operating system and
the firmware.

6.1 Initialization

From the perspective of the PALcode environment there are four phases of
initialization:

1. Internal system-specific processor state is established before the PALcode runs.

2. PALcode initializes the internal processor state.

3. The kernel uses PALcode initialization callback instructions to prepare the
PALcode to handle exceptions.

4. Interrupt tables are initialized so that standard interrupt support can be used.

6.1.1 Pre-PALcode Initialization

Firmware must set the processor and system to a known good state before the
PALcode entry point is called. The firmware must initialize any internal processor
registers that contain system-specific parameters such as timing or memory size
information. This is necessary because the PALcode is entirely independent of the
system. The firmware must ensure that all caches are coherent with main memory
before calling the PALcode and that the memory system has been fully initialized.

Implementation Note (Hardware):

If system configuration information is written to write-only IPRs, those
configuration IPRs cannot have any control bits that need to be written by the
platform-independent operating system PALcode. If such bits were written in
that manner, the firmware would have to pass the configuration information
in internal processor state on a per-implementation basis. Hardware designers
should consider allowing configuration registers to be read as well as written
to allow the platform-independent layer to have visibility to the full internal
processor state.

6.1.2 PALcode Initialization

The PALcode is called at its first instruction, at the base of the PALcode image.
This is the reset vector for the PALcode. PALcode is called with the page frame
number (PFN) of the peR as a parameter in al. All other argument registers must
be preserved across PALcode initalization and are considered parameters to the
operating system and are not interpreted by the PALcode. That is, the PALcode

Initialization and Firmware Transitions (II-C) 6-1

I

is free to destroy volatile general-purpose integer and floating-point registers, but
must preserve the nonvolatile register state across the call. Register volatility is
listed in Section 1.2. The PALcode must accomplish the following initialization:

1. Deassert all interrupt requests and disable all interrupt enables (this includes
software, hardware and asynchronous trap interrupts).

2. Set the processor status register (PSR) such that interrupts are enabled,
interrupt request level is set to high level (7), and the mode is kernel.

3. Invalidate all virtual translation buffers.

4. Establish all required superpage mapping: 32-bit I-stream and D-stream, and
43-bit D-stream mapping.

5. Set the previous_PAL_BASE register to the previous value of the PAL_BASE
register.

6. Set the PAL_BASE register to the base address of the PALcode image.

7. Set the interrupt level table so that no interrupts are enabled for all interrupt
levels.

8. Initialize all architected internal processor registers to their specified
initialization values.

9. Begin any required implementation-specific initialization, such as unlocking
error registers.

When the PALcode has completed its initialization, it resumes execution at the
address passed in the ra (return address) register.

6.1.3 Kernel Callback Initialization of PALcode

The kernel uses the initpal and wrentry instructions to call back into the PALcode
with the initialization values that allow exceptions to be handled properly between
the PALcode and the kernel.

The kernel uses initpal to establish per-processor context for the PALcode, system
permanent context, and per-thread context for the initialization thread. The per
processor context established for the PALcode is the interrupt stack pointer (ISP),
the address of which is passed to the PALcode as a standard argument in 32-bit
superpage format. The system-permanent context passed to initpal is the kernel
global pointer (KGP), which is passed via the gp register.

The initialization thread data passed in initpal are the page directory page, the
initial kernel stack pointer, and the initialization thread address. The page directory
page and thread address are passed as standard parameters; the kernel stack pointer
is passed in the sp register. The initpal instruction also initializes the PALcode
information section of the processor control region.

The kernel uses wrentry to register the kernel exception entry points with the
PALcode. The wrentry instruction is called once for each kernel exception entry
point. Each call includes the exception entry point address and the number of the
exception class it handles.

6-2 Windows NT AXP Software (II-C)

6.1.4 Interrupt Table Initialization
The interrupt table values in the processor control region are system specific and
so are not initialized until HAL initialization. Until these tables are initialized,
the PALcode uses interrupt tables that are initialized such that all interrupts are
disabled. An implementation may choose to cache some portion of the interrupt
tables within the processor. If an implementation does cache the interrupt tables,
it must provide implementation-specific PALcode instructions to allow the HAL to
resynchronize the cached tables with the values written to the processor control
region.

6.2 Firmware Interfaces

The firmware PALcode environment is decoupled from the operating system
PALcode. The reboot/restart and swppal instructions permit the transition between
the operating system and the firmware PALcode context.

6.2.1 Reboot Instruction-Transition to Firmware PALcode Context

The reboot instruction performs a controlled transition to the firmware PALcode
context. Reboot essentially follows the semantics for a return to the ARC (Advanced
RISC Computing) firmware environment, with the addition ofAlpha AXP support for
switching to the firmware PALcode. The reboot function accomplishes the following
tasks:

1. Retrieves the restart block pointer from the processor control region.

The restart block is expected to be initialized by the firmware. The pointer to
the restart block is passed by the firmware through the OS Loader to the kernel
in the loader parameter block. The kernel writes the restart block pointer into
the processor control region during startup. The restart block pointer must be a
32-bit superpage address.

The firmware environment is responsible for allocating memory for the entire
restart block, including the saved state area that is specific to the Alpha AXP
architecture. The firmware is also responsible for initializing the restart block,
as specified by ARC.

2. Verifies the restart block and if invalid, initiates alternate restart.

The PALcode verifies the restart block by ensuring that the restart block
signature is valid and that the restart block and saved state area lengths are of
sufficient size to contain the state the PALcode saves. If the PALcode determines
that the restart block is not valid, an alternate restart is initiated.

The alternate restart allows the PALcode to restore the previous PALcode base
to the PAL_BASE register and to transfer control to the previous PALcode base
in the PALcode environment.

Figure 6-1 shows the structure of the PAL_BASE register.

Initialization and Firmware Transitions (II-C) 6-3

I

Figure 6-1: PAL_BASE Internal Processor Register

31 PA_BITS..K K-1 ..0

I__ADDR -4.---1R_AZ1
The hardware vectors into the appropriate PALcode handlers as offsets from the
base in the PAL_BASE register. The offsets for each handler and the type of
handler are implementation specific, except for the reset vector. The reset vector
is the PALcode initialization vector and must begin at offset 0 within the PALcode
image.

Explicitly, PAL_BASE contains the value <.PA_BITS..K>, where PAJ3ITS is the
physical address bits for the implementation, and 2**K is the minimum PALcode
byte alignment for the implementation.

Note that the OS Loader uses 64K-byte boundaries, so the maximum value for K
is 16. The minimum value for K is N, where 2**N = implementation page size.

3. Saves the general register state in the restart block.

The saved general register state includes all 32 integer registers and all 32
floating-point registers. In addition, the floating-point control register is also
saved.

4. Saves the architected internal processor register state in the restart block.

The internal processor register state is stored in its architected format so that it
may be interpreted in the firmware environment. In addition, remaining space is
allocated so that the total size of the restart block is 2040 bytes. The additional
space can be used for per-implementation data.

5. Saves the RESTART_ADDRESS in the restart block.

The RESTART_ADDRESS is stored in the saved state area to allow return from
reboot via the restart instruction. The HAL is responsible for populating the
Version, Revision, and RestartAddress fields of the restart block header.

6. Retrieves the firmware restart address from the processor control region.

The firmware restart address is the address to which the PALcode transfers
control upon completion of the reboot. The firmware restart address is
passed from the firmware through the OS Loader to the kernel and stored
in the processor control region as is the restart block pointer. The firmware
restart address is read from the processor control region and written to the
RESTART_ADDRESS register with implementation-specific (but well-defined)
interpretation.

7. Restores the PALcode base from the previous PALcode base.

The PALcode captures the previous PALcode environment when it is first
initialized. The PALcode base address is read from the PAL_BASE register and

6-4 Windows NT AXP Software (II-C)

written to the previous_PAL_BASE register. When the processor executes the
reboot function, it restores the previous PALcode environment by writing the
value in the previous_PAL_BASE register to the PAL_BASE register.

Hardware Implementation Note:
Several restrictions are imposed on the hardware design to support this model
for switching PALcode environments:

1. The currently active PALcode must be settable by writing the base address
of the PALcode image to an internal processor register.

2. No implementation can require, for the base of the PALcode, an alignment
of greater than 64K bytes or less than the implementation page size.

3. The internal processor register used to set the base of the PALcode must
be readable for each bit that is writable.

8. Completes the restart block by updating the boot status and the checksum.

9. Restarts execution at the firmware restart address passing a pointer to the
restart block in the aO register.

The restart instruction is provided to reverse the work done by a reboot instruction
and allows the processor to restart execution. The restart function performs the
inverse of the tasks that were performed in the reboot.

6.2.2 Reboot and Restart Tasks and Sequence

The tasks and sequence required for performing a reboot and restart are described
below:

1. Firmware allocates restart block, initializing signature, length, ID fields, and the
pointer to next restart block. Restart block pointer and firmware restart address
are passed to the kernel.

2. HAL populates the Version and Revision fields during HAL initialization.

3. Some external event triggers a halt, a reboot, or a power-fail.

4. The appropriate HAL routine populates the RestartAddress field of the restart
block with the address of the HAL restart routine.

5. The HAL executes the reboot instruction.

6. The PALcode saves processor state, including the RESTART_ADDRESS register
(the address in the HAL of the instruction after the reboot instruction).

7. The PALcode transfers to the firmware environment.

8. The firmware initializes a restart by calling the HAL restart routine (via the
address in the restart block header).

9. The HAL uses the swppal instruction to restore the operating system PALcode
environment.

10. The HAL uses the restart instruction to restore complete processor state.

Initialization and Firmware Transitions (II-C) 6-5

I

11. The PALcode restores state and then returns execution to the instruction after
the reboot instruction in the HAL.

12. The HAL completes the restart.

6.2.3 Swppal Instruction-Transition to Any PALcode Environment

The swppal instruction is a flexible interface that allows kernel code to transition
to any PALcode environment, as contrasted with reboot, which limits the caller to
transition to the previous PALcode environment.

6-6 Windows NT AXP Software (II-C)

Console Interface Architecture (III)

This part describes an architected console interface and contains the following chapters:

o Chapter 1, Console Subsystem Overview (III)

• Chapter 2, Console Interface to Operating System Software (III)

e Chapter 3, System Bootstrapping (III)

Contents

Chapter 1 Console Subsystem Overview (III)

1.1 Console Implementations. 1-2
1.2 Console Implementation Registry 1-3
1.3 Console Presentation Layer. 1-3
1.4 Messages. 1-4
1.5 Security. 1-4
1.6 Internationalization..... 1-4

Chapter 2 Console Interface to Operating System Software (III)

2.1 Hardware Restart Parameter Block (HWRPB) .
2.1.1 Serial Number, Revision, Type, and Variation Fields .
2.1.1.1 Serial Number and Revision Fields .
2.1.1.2 System Type and Variation Fields .
2.1.2 Translation Buffer Hint Block .
2.1.3 Per-CPU Slots in the HWRPB .
2.1.4 Configuration Data Block .
2.1.5 Field Replaceable Unit Table .
2.2 Environment Variables .
2.3 Console Callback Routines .
2.3.1 System Software Use of Console Callback Routines .
2.3.2 System Software Invocation of Console Callback Routines .
2.3.3 Console Callback Routine Summary .
2.3.4 Console Terminal Routines .
2.3.4.1 GETC - Get Character from Console Terminal .
2.3.4.2 PROCESS_KEYCODE - Process and Translates Keycode .
2.3.4.3 PUTS - Put Stream to Console Terminal .
2.3.4.4 RESET_TERM - Reset Console Terminal to default parameters .
2.3.4.5 SET_TERM_CTL - Set Console Terminal Controls .
2.3.4.6 SET_TERM_INT - Set Console Terminal Interrupts .
2.3.5 Console Generic I/O Device Routines .
2.3.5.1 CLOSE - Close Generic I/O Device for Access .
2.3.5.2 IOCTL - Perform Device-specific Operations .
2.3.5.3 OPEN - Open Generic I/O Device for Access .
2.3.5.4 READ - Read Generic I/O Device .
2.3.5.5 WRITE - Write Generic I/O Device .
2.3.6 Console Environment Variable Routines .
2.3.6.1 GET_ENV - Get an Environment Variable .
2.3.6.2 RESET_ENV - Reset an Environment Variable .

2-1
2-10
2-11
2-12
2-13
2-14
2-23
2-24
2-24
2-29
2-30
2-30
2-31
2-32
2-35
2-37
2-39
2-41
2-42
2-43
2-45
2-47
2-48
2-50
2-52
2-54
2-56
2-57
2-58

iii I

2.3.6.3 SAVE_ENV - Save Current Environment Variables. .. 2-59
2.3.6.4 SET_ENV - Set an Environment Variable .. 2-61
2.3.7 Miscellaneous Routines .. 2-62
2.3.7.1 FIXUP - Fixup Virtual Addresses in Console Routines 2-62
2.3.7.2 PSWITCH - Switch Primary Processors. .. 2-63
2.3.8 Console Callback Routine Data Structures 2-64
2.3.8.1 Console Routine Block. .. 2-64
2.3.8.1.1 Console Routine Block Initialization 2-66
2.3.8.1.2 Console Routine Remapping 2-66
2.3.8.2 Console Terminal Block Table 2-69
2.4 Interprocessor Console Communications .. 2-71
2.4.1 Interprocessor Console Communications Flags 2-71
2.4.2 Interprocessor Console Communications Buffer Area 2-72
2.4.3 Sending a Command to a Secondary. .. 2-73
2.4.3.1 Sending a Message to the Primary 2-73

Chapter 3 System Bootstrapping (III)

3.1 Processor States and Modes. 3-1
3.1.1 States and State Transitions . 3-1
3.1.2 Major Modes 3-3
3.2 System Initialization . 3-4
3.3 PALcode Loading and Switching. 3-5
3.3.1 PALcode Loading. 3-5
3.3.2 PALcode Switching. 3-5
3.3.2.1 PALcode Switching Procedure. 3-7
3.3.2.2 Specific PALcode Switching Implementation Information 3-8
3.3.2.3 Processor State at Exit for DEC OSF/1 from PALcode Switching Instruction 3-9
3.4 System Bootstrapping 3-9
3.4.1 Cold Bootstrapping in a Uniprocessor Environment 3-9
3.4.1.1 Memory Sizing and Testing .. 3-10
3.4.1.2 Bootstrap Address Space .. 3-14
3.4.1.3 Bootstrap Flags .. 3-18
3.4.1.4 Loading of System Software. .. 3-18
3.4.1.5 Processor Initialization 3-20
3.4.1.6 Transfer of Control to System Software. .. 3-21
3.4.2 Warm Bootstrapping in a Uniprocessor Environment .. 3-22
3.4.2.1 HWRPB Location and Validation. .. 3-22
3.4.3 Multiprocessor Bootstrapping 3-23
3.4.3.1 Selection of Primary Processor. .. 3-23
3.4.3.2 Actions of Console .. 3-23
3.4.3.3 PALcode Loading on Secondary Processors 3-23
3.4.3.4 Actions of the Running Primary. .. 3-25
3.4.3.5 Actions of a Console Secondary .. 3-26
3.4.3.6 Bootstrap Flags .. 3-27

iv

3-27
3-27
3-27
3-27
3-28
3-29
3-30
3-30
3-30
3-31
3-32
3-34
3-35
3-36
3-36
3-36
3-37
3-39
3-39
3-41
3-42
3-43
3-44
3-46
3-46
3-46
3-47

Addition of a Processor to a Running System .
System Software Requested Bootstraps .

System Restarts .
Actions of Console
Powerfail and Recovery - Uniprocessor .
Powerfail and Recovery - Multiprocessor .

United Powerfail and Recovery .
Split Powerfail and Recovery .

Error Halt and Recovery .
Operator Requested Crash .
Primary Switching .
Saving and Restoring Console Terminal State During HALT/RESTART .

SAVE_TERM - Save Console Terminal State .
RESTORE_TERM - Restore Console Terminal State .

Operator Forced Entry to Console I/O Mode .
Bootstrap Loading and Image Media Format .

Disk Bootstrapping .
Tape Bootstrapping .

Bootstrapping from ANSI-Formatted Tape .
Bootstrapping from Boot-Blocked Tape .

ROM Bootstrapping .
Network Bootstrapping .

BB_WATCH .
Implementation Considerations .

Embedded Console .
Multiprocessor Considerations .

Detached Console .

3.4.4
3.4.5
3.5
3.5.1
3.5.2
3.5.3
3.5.3.1
3.5.3.2
3.5.4
3.5.5
3.5.6
3.5.7
3.5.7.1
3.5.7.2
3.5.8
3.6
3.6.1
3.6.2
3.6.2.1
3.6.2.2
3.6.3
3.6.4
3.7
3.8
3.8.1
3.8.1.1
3.8.2

Figures

2-1 HWRPB Overview .
2-2 Hardware Restart Parameter Block Structure .
2-3 Per-CPU Slot in HWRPB .
2-4 Console Data Structure Linkage .
2-5 Console Routine Block .
2-6 Console Terminal Block .
2-7 Inter-Console Communications Buffer .
3-1 Major State Transitions .
3-2 Memory Cluster Descriptor Table .
3-3 Memory Cluster Descriptor .
3-4 Initial Virtual Memory Regions .
3-5 Initial Page Tables .
3-6 Alpha AXP Disk Boot Block .
3-7 Alpha AXP ROM Boot block .

2-2
2-4

2-16
2-64
2-65
2-70
2-72
3-2

3-12
3-13
3-16
3-17
3-38
3-42

v I

Tables

2-1
2-2
2-3
2-4
2-5
2-6
2-7
2-8
2-9
2-10
2-11
2-12
3-1
3-2
3-3
3-4
3-5
3-6
3-7
3-8
3-9

vi

HWRPB Fields .
System Variation Field (HWRPB[88]) .
Granularity Hint Fields .
Per-CPU Slot Fields .
Per-CPU State Flags .
Required Environment Variables .
Supported Languages .
Supported Character Sets .
Console Callback Routines .
CRB Fields .
CTB Fields .
Inter-Console Communications Buffer Fields .
Effects of Power-Up Initialization .
DEC OSF/1 PALcode Variation 2 .
Processor State for DEC OSF/1 at Exit from swppal .
Memory Cluster Descriptor Table Fields .
Memory Cluster Descriptor Fields .
Console Interpretation of BIP and RC flags .
Processor Initialization .
Initial HWPCB contents .
Bootstrap Devices and Image Media .

2-6
2-12
2-13
2-17
2-22
2-26
2-28
2-29
2-31
2-65
2-70
2-72
3-4
3-8
3-9

3-12
3-13
3-18
3-20
3-21
3-36

Chapter 1

Console Subsystem Overview (III)

On an Alpha AXP system, underlying control of the system platform hardware is
provided by a console. The console:

• Initializes, tests, and prepares the system platform hardware for Alpha AXP
system software.

• Bootstraps (loads into memory and starts the execution of) system software.

• Controls and monitors the state and state transitions of each processor in a
multiprocessor system in the absence of operating system control.

• Provides services to system software that simplify system software control of and
access to platform hardware.

• Provides a means for a "console operator" to monitor and control the system.

The console interacts with system platform hardware to accomplish the first three
tasks. The mechanisms of these interactions are specific to the platform hardware;
however, the net effects are common to all systems. Chapter 3 describes these
functions.

The console interacts with system software once control of the system platform
hardware has been transferred to that software. Chapter 2 discusses the basic
functions of a console and its interaction with Alpha AXP system software.

The console interacts with the console operator through a virtual display device
or console terminal. The console operator may be a person or a management
application. The console terminal forms the interface between the console and a
console presentation layer.

In an Alpha AXP multiprocessor system, there is one primary processor and one or
more secondary processors. The primary processor:

• Can legally refer to the console I/O devices

• Can legally send characters to the console terminal

• Can legally receive characters from the console terminal

• Has direct access to a BB_WATCH on the system

• Is named in response to an inquiry as to which processor is primary

All other processors in the system are secondary processors.

Console Subsystem Overview (III) 1-1 •

1.1 Console Implementations

The implementation of an Alpha AXP console varies from system to system.
Regardless of implementation, the console on each system provides the functionality
described in this chapter and in Chapters 2 and 3. The console may be implemented
as:

• "Embedded," or co-resident in the hardware platform complex that contains the
processors

• "Detached," or resident on a separate and distinct hardware platform

• Any hybrid of the above

The distinction is somewhat arbitrary. A detached console may have cooperating
special code that executes on one of the processors; an embedded console may have
a cooperating management application that executes on a remote machine.

Regardless of the actual implementation, each console must provide:

1. A virtual display device, the default "console terminal".

This device allows the console operator to issue commands and receive displays.
In the absence of hardware errors and with the proper console-lock setting, the
default console terminal device provides reliable communication with the rest of
the console.

2. Reliable access to console functionality by system software and the console
operator.

All console functionality must appear to be resident within the console at all
times. All console functions must be accessible in a timely manner, without prior
notification, and with sufficient reliability.

3. Secure communications with system software and the console operator.

All console communication paths must be able to be made secure by either
physical measures or encryption methods.

4. A mechanism by which the console can gain control of a processor that is
executing system software.

This mechanism must preserve the execution state of system software; it must
be possible for the console to gain control of the processor, and subsequently
continue system software execution successfully.

5. A mechanism that locks the console.

A console lock prohibits the user from accessing a selected subset (or all) of
console functions. The console lock may be a console password, a keyswitch,
jumper, or any other implementation-specific mechanism. The lock is either
"locked" or "unlocked."

1-2 Console Interface Architecture (III)

1.2 Console Implementation Registry

This chapter, and Chapters 2 and 3, specify required console functions. Some of these
functions have attributes that may vary with console implementation; consoles may
also extend beyond the required functions. Console functions or attributes that may
vary with implementation include:

1. Supported console terminal blocks (CTBs)

2. Supported environment variables

3. Environment variable value formats, such as BOOT_DEVor BOOT_OSFLAGS

4. Configuration data block format

5. Supported callback routines

6. Supported bootstrap media

7. Implementation-specific HALT codes or messages

The goal of the Alpha AXP console architecture is to promote a consistent
interface across all Alpha AXP systems. Some console functionality is inherently
implementation specific and cannot be required of all Alpha AXP systems; some
may be applicable to more than one Alpha AXP system. To prevent the proliferation
of interfaces and achieve commonality of function whenever possible, the Alpha AXP
console architecture requires that:

1. Any console function that is visible to system software which is not specified by
these chapters must be registered with the Alpha AXP architecture group.

2. Any console function which is visible to an on-site or remote console operator
(including Field Service engineers) which is not specified by these chapters must
be registered with the Alpha AXP architecture group.

3. Whenever possible, implementations must use previously registered functions
rather than inventing new variations.

Console functions intended for use solely by development engineering or expert-level
repair and diagnosis are excluded from the above.

1.3 Console Presentation Layer

The following functions are assumed to be provided in the console presentation layer:

• BOOT (bootstrap the system)

• CONTINUE (continue execution)

• START -CPU (start a given secondary)

• INITIALIZE (initialize system)

• INITIALIZE -CPU (initialize a given processor)

• HALT -CPU (force a given processor into console I/O mode)

Console Subsystem Overview (III) 1-3 I

• HALT -CRASH (cause a given processor to initiate a crash)

1.4 Messages

The console generates a binary message code to the console presentation layer to
signal messages, such as audit trail or error messages. The console presentation
layer interprets the binary code into something meaningful to the console operator.

1.5 Security

The means by which the console achieves a secure communications path with system
software and with the console operator is implementation specific. Embedded
consoles inherently have the capability of secure communications with system
software. Detached consoles can achieve this security by residing in the same room
as the Alpha AXP system and communicating with it over a private connection.
Detached consoles can also achieve security by using an encrypted protocol over
a shared connection. This latter method allows a workstation over a network to
function as the console.

1.6 Internationalization

Wherever possible, console implementations should support the goals of
internationalization:

• Each message has a binary message code. The console presentation layer
interprets the code into a meaningful message display of the appropriate
language and characters.

• Consoles should avoid explicitly interpreting character set encoding (such as
ISO Latin-I). Character strings are to be viewed as simple byte strings. Thus,
the GETC console callback routine supports from one-to-four-byte character
encodings, depending on the currently selected language and character set; the
PUTS routine outputs only a byte stream.

• ASCII strings are used in certain fields of the HWRPB and certain interprocessor
communications due to DEC Standard 12 and to present a common interface to
system software.

• The currently selected character set encoding and language to be used for the
console terminal are defined by the CHAR_SET and LANGUAGE environment
variables.

• The end of a character string passed between the console and the operating
system as an argument to a console callback routine is determined by passing
its length.

• Console callback routines should be written to be independent from character
set encoding and language. At a minimum, every implementation must support
ISO Latin-1 character set encodings, which requires the following properties:

1-4 Console Interface Architecture (III)

1. The GETC console callback routine returns a one byte character (see
Section 2.3.4).

2. The PROCESS_KEYCODE console callback routine returns a one-byte
character (see Section 2.3.4).

3. English console presentation layers are strongly encouraged to use the actual
values as defined in Table 2-6, rather than creating aliases.

Other supported character set encodings are determined by platform product
requirements.

• The console presentation layer is independent of the required console
functionality interface.

Note:

The chapters in Section III apply to both OpenVMS AXP and DEC OSF
/1 operating systems. The few functional descriptions that are unique to
one operating system are described as such. However, because of contextual
equivalence in this section and in the interests of brevity, any text concerning
the OpenVMS AXP hardware privileged context block (HWPCB) applies equally
to the DEC OSF/I privileged context block (PCB).

Console Subsystem Overview (III) 1-5 •

Chapter 2

Console Interface to Operating System Software (III)

This chapter describes the interactions between the console subsystem and system
software. These services depend on state that is shared between the console and
system software. Shared state is contained in the Hardware Restart Parameter
Block (HWRPB) and a number of environment variables. The HWRPB is a data
structure that is directly accessed by both the console and system software; the
environment variables are indirectly accessed by system software. Specifically, in
this chapter:

• Section 2.1 describes the HWRPB.

• Section 2.2 describes the environment variables.

• Section 2.3 describes the service, or callback, routines provided by the console to
system software.

• Section 2.4 describes the communication between the console and system
software.

2.1 Hardware Restart Parameter Block (HWRPB)

The Hardware Restart Parameter Block (HWRPB) is a page-aligned data structure
that is shared between the console and system software. The HWRPB is a critical
resource during bootstraps, powerfail recoveries, and other restart situations. An
overview of the HWRPB is shown in Figure 2-1. The individual HWRPB fields are
shown in Figure 2-2 and described in Table 2-1.

The console creates the HWRPB and the required per-CPU, CTB, CRB, MEMDSC,
and DSRDB offset blocks as a physically contiguous structure during console
initialization. Fields within the HWRPB and the required offset blocks are updated
by the console and system software during and after system bootstrapping. The
console must be able to locate the HWRPB and the required offset blocks at all times.
Neither the console nor system software may move the HWRPB or the required offset
blocks to different physical memory locations; subsequent operation of the system is
UNDEFINED if such an attempt is made.

The HWRPB and the required offset blocks must comprise a virtually contiguous
structure at all times. Prior to transferring control to system software, the console
maps the HWRPB and the required offset blocks into contiguous addresses beginning
at virtual address 0000 0000 1000 000016 in the initial bootstrap address space.
If system software subsequently changes this virtual mapping, any new mapping
must preserve the relative offsets of all fields and blocks; all physically contiguous

Console Interface to Operating System Software (III) 2-1 I

Figure 2-1: HWRPB Overview

HWRPB

General Information

TRB Offset
Per-CPU Offset

CTB Table Offset
CRB Offset

MEMDSC Offset
CONFIG Offset

FRU Table Offset

I CPU Restart Routine r- (Restart Routine Linkage Pair)
DSRDB Offset

Translation Buffer
Hint Block (TRB)

Per-CPU Slots

I PALcode Spaces 1--L PALcode Pointers

I CPU Logout Areas r- Logout Area Pointers

Console Terminal Block
(CTB) Table

Console Routine Block
(CRB)

I CRB Pages ~ CRB Map Entries

Memory Data
Descriptor Table

I Cluster # 1 Bitmap 1--L Register # 1 Bitmap Pointer

I Cluster # n Bitmap r- Register # n Bitmap Pointer

Optional Configuration
Data Block (CONFIG)

Optional Field Replaceable
Unit Table (FRU)

Dynamic System Recognition
Data Block (DSRDB)

pages must remain virtually contiguous. Some of the data structures located by
HWRPB fields need not be contiguous with the HWRPB. The structures that may
be discontiguous are the PALcode space(s), the logout area(s), the CRB pages, and
the memory bitmaps located by the MEMDSC table.

2-2 Console Interface Architecture (III)

All offset blocks must be at least quadword aligned. The starting address of an offset
block is determined by adding the contents of the HWRPB offset field to the starting
address of the HWRPB. For example, the starting address of the MEMDSC block is
given by:

MEMDSC Address = HWRPB address + MEMDSC OFFSET
= HWRPB address + (HWRPB[200])

The total size of the HWRPB and the required offset blocks is on the order of 8K
bytes to 16K bytes. The size is contained in the HWRPB_SIZE field at HWRPB[24].
The required offset blocks may be offset from the HWRPB in any order; the HWRPB
offset fields must not be used to infer the size of the HWRPB or any offset block.

Console Interface to Operating System Software (III) 2-3 •

Figure 2-2: Hardware Restart Parameter Block Structure

63

HWRPB

+08

+16

+24

:+32

'+40

:+48

:+56

:+64

:+80

:+88

:+96

:+104

:+112

:+120

:+128

:+136

:+144

:+152

:+160

:+168

:+176

:+184

:+192

:+200

:+208

:+216

:+224

:+232

:+240

:+248

Physical Address of the HWRPB :

lIHWRPBlI

HWRPB Revision :

HWRPB Size :

Primary CPU 10

Page Size (Bytes)

Number of PA Bits

Maximum Valid ASN

System Serial Number (SSN)

System Type

System Variation

System Revision

Interval Clock Interrupt Frequency

Cycle Counter Frequency

Virtual Page Table Base

Reserved for Architecture Use

Offset to Translation Buffer Hint Block

Number of Processor Slots

Per-CPU Slot Size

Offset to Per-CPU Slots

Number of CTBs

CTB Size

Offset to Console Terminal Block Table

Offset to Console Callback Routine Block

Offset to Memory Data Descriptor Table

Offset to Configuration Data Block (If Present)

Offset to FRU Table (If Present)

Virtual Address of Terminal Save State Routine

Procedure Value of Terminal Save State Routine

Virtual Address of Terminal Restore State Routine

Procedure Value of Terminal Restore State Routine

Figure 2-2 (continued on next page)

2-4 Console Interface Architecture (III)

Figure 2-2 (Cant.): Hardware Restart Parameter Block Structure

63

Virtual Address of CPU Restart Routine

Procedure Value of CPU Restart Routine

Reserved for System Software

Reserved for Hardware

Checksum

RXRDY Bitmask

TXRDY Bitmask

Offset to Dynamic System Recognition Data Block Table

:+256

:+264

:+272

:+280

:+288

:+296

:+304

:+312

I Translation Buffer Hint Block

1:+(HWRPB[136])

1 J
I Per-Processor Slots

1:+(HWRPB[160])

T T
I Console Terminal Block

1:+(HWRPB[184])

1 J
I Console Callback Routine Block

1:+(HWRPB[192])

1 J
I Memory Data Descriptor Table

1:+(HWRPB[200])

1 J
I Optional Configuration Data Block

1:+(HWRPB[208])

T J
I Optional Field Replaceable Unit Table

1:+(HWRPB[216])

T T
I Dynamic System Recognition Data Block

1:+(HWRPB[312])

1 J

Console Interface to Operating System Software (III) 2-5 •

Table 2-1: HWRPB Fields

Offset

HWRPB

+08

+16

+24

+32

+40

+48

+56

+64

+80

+88

Description

HWRPB PAl

Starting physical address of the HWRPB field. This field is used by the
console to validate the HWRPB.

HWRPB VALIDATION1

Quadword containing "HWRPB<O><O><O>" (0000 0042 5052 574816). This
field is used by the console to validate the HWRPB.

HWRPB REVISION1

Format of the HWRPB. See Section 2.1.1. The HWRPB revision level for
this version of the architecture specification is 6.

HWRPB SIZE1

Size in bytes of the HWRPB and required physically contiguous TBB, per
CPU, CTB, CRB, MEMDSC, CONFIG, FRU, and DSRDB offset blocks.
Unsigned field.

PRIMARY CPU ID1.3

WHAMI of the primary processor. System software modifies this field only
at primary switch; see Section 3.5.6. Unsigned field.

PAGE SIZE1

Number of bytes within a page for this Alpha AXP processor
implementation. Unsigned field.

PA SIZE1

Size of the physical address space in bits for this Alpha AXP processor
implementation. PA SIZE must be 48 bits or less. Unsigned field.

MAX VALID ASN1

Maximum ASN value allowed by this Alpha AXP processor implementa
tion. Unsigned field.

SYSTEM SERIAL NUMBER1

Full DEC STD 12 serial number for this Alpha AXP System. This octaword
field contains a 10-character ASCII serial number determined at the time of
manufacture; see DEC STD 12 for format information. See Section 2.1.1.1.

SYSTEM TYPE1

Family or system hardware platform. See Section 2.1.1. Unsigned field.

SYSTEM VARIATION1.3

Subtype variation of the system. This may include the member of the
system family, and whether the system has optional features such as
multiprocessor support or special power supply conditioning. See Sections
2.1.1 and 2.1.1.2 for optional features.

1Initialized by the console at cold system bootstrap only. Preserved unchanged by the console at all warm system
bootstraps.
3May be modified by system software.

2-6 Console Interface Architecture (III)

Table 2-1 (Cont.): HWRPB Fields

Offset Description

+96 SYSTEM REVISION CODEl

DEC STD 12 revision field for this Alpha AXP system. Four ASCII
characters. See Section 2.1.1.1.

+104

+112

+120

+128

+136

+144

+152

+160

+168

+176

INTERVAL CLOCK INTERRUPT FREQUENCyl

Number of interval clock interrupts per second (scaled by 4096) in this
Alpha AXP system. Interrupts occur only if enabled. Unsigned field.

CYCLE COUNTER FREQUENCyl

Number of SCC and PCC updates per second in this Alpha AXP system.
See the RPCC instruction and, for OpenVMS AXP, the CALL_PAL RSCC
instruction. Unsigned field.

VIRTUAL PAGE TABLE BASE2,3

Virtual address of the base of the entire page table structure. The console
sets this field at system bootstraps and restores the virtual page table base
register (pointer) with this value at all processor restarts. System software
is responsible for updating this field whenever the virtual page table base
register (pointer) is modified. See Sections 3.4.1.2, 3.4.3.5, and 3.5.1.

Reserved

Reserved for architecture use; SBZ.

TB HINT OFFSETl

Unsigned offset to the starting address of the Translation Buffer Hint Block
(TBB). See Section 2.1.2. '

NUMBER OF PER-CPU SLOTSl

Number of per-CPU slots present. Must be a number between 1 and 64,
inclusive. See Section 2.1.3 for the per-CPU slot format. Unsigned field.

PER-CPU SLOT SIZEl

Size in bytes of each per-CPU slot rounded up to the next integer multiple
of 128. See Section 2.1.3. Unsigned field.

CPU SLOT OFFSETl

Unsigned offset to the first per-CPU slot in the HWRPB. See Section 2.1.3.

NUMBER OF CTBl

Number of Console Terminal Blocks (CTBs) contained in the CTB table.
See Section 2.3.8.2. Unsigned field.

CTB SIZEl

Size in bytes of the largest Console Terminal Block (CTB) contained in the
CTB table. See Section 2.3.8.2. Unsigned field.

1Initialized by the console at cold system bootstrap only. Preserved unchanged by the console at all warm system
bootstraps.
2Initialized by the console at all system bootstraps (cold or warm).
3May be modified by system software.

Console Interface to Operating System Software (III) 2-7 I

+192

Table 2-1 (Cont.): HWRPB Fields

Offset Description

+184 CTB OFFSET!

Unsigned offset to the starting address of the Console Terminal Block
(CTB) table. See Section 2.3.8.2.

CRB OFFSET!

+200

+208

+216

+224

+232

+240

+248

+256

Unsigned offset to the starting address of the Console Callback Routine
Block (CRB). See Section 2.3.8.1.

MEMDSC OFFSET!

Unsigned offset to the starting address of the Memory Data Descriptor
Table (MEMDSC). See Section 3.4.1.1.

CONFIG OFFSET!

Unsigned offset to the starting address of the Configuration Data Table
(CONFIG). If zero, no CONFIG table exists. See Section 2.1.4.

FRU TABLE OFFSET!

Unsigned offset to the starting address of the Field Replaceable Unit Table
(FRU). If zero, no FRU table exists. See Section 2.1.5.

SAVE_TERM RTN VA2,3

Starting virtual address of a routine that saves console terminal state.
This routine is optionally provided by system software. See Section 3.5.7.
Set to zero by the console at system bootstraps.

SAVE_TERM VALUE2,3

Procedure value of the SAVE_TERM routine optionally provided by system
software. The console copies this value into R27 before invoking the
routine. See Section 3.5.7. Set to zero by the console at system bootstraps.

RESTORE_TERM RTN VA2,3

Starting virtual address of a routine that restores console terminal state.
This routine is optionally provided by system software. See Section 3.5.7.
Set to zero by the console at system bootstraps.

RESTORE_TERM VALUE2,3

Procedure value of the RESTORE_TERM routine optionally provided by
system software. The console copies this value into R27 before invoking the
routine. See Section 3.5.7. Set to zero by the console at system bootstraps.

RESTART RTN VA2,3

Starting virtual address of a CPU restart routine provided by system
software. The console restarts system software by transferring control
to this routine. See Section 3.5. Set to zero by the console at system
bootstraps.

1Initialized by the console at cold system bootstrap only. Preserved unchanged by the console at all warm system
bootstraps.
2Initialized by the console at all system bootstraps (cold or warm).
3May be modified by system software.

2-8 Console Interface Architecture (III)

Table 2-1 (Cont.): HWRPB Fields

Offset Description

+272

+264 RESTART VALUE2,3

Procedure value of the CPU restart routine provided by system software.
During the restart process, the console copies this value into R27 before
transferring control to the CPU restart routine. See Section 3.5. Set to
zero by the console at system bootstraps.

RESERVED FOR SYSTEM SOFTWARE2,3

+280

+296

+304

+312

Reserved for use by system software. Set to zero by the console at system
bootstraps.

RESERVED FOR HARDWARE!

Reserved for use by hardware.

HWRPB CHECKSUM2,3

Checksum of all the quadwords of the HWRPB from offset [00] to [280],
inclusive. Computed as a 64-bit sum, ignoring overflows. Used to validate
the HWRPB during warm bootstraps, restarts, and secondary starts. Set
by console initialization; recomputed and updated whenever a HWRPB
field with offset [00] to [280], inclusive, is modified by the console or system
software.

RXRDY BITMASK2,3

Secondary receive bitmask for interprocessor console communications.
When transmitting a command to a secondary, the primary processor sets
the RXRDY bit, which corresponds to the CPU ID of the secondary. The
number of active bits in this field is determined by the number of per-CPU
slots in HWRPB[144]. See Section 2.4. All bits are initialized as clear.

TXRDY BITMASK2,3

Secondary transmit bitmask for interprocessor console communications.
When transmitting a message to the primary, the secondary processor
sets the TXRDY bit, which corresponds to its CPU ID and requests an
interprocessor interrupt to the primary. The number of active bits in this
field is determined by the number of per-CPU slots in HWRPB[144]. See
Section 2.4. All bits are initialized as clear.

DSRDB OFFSET!

Unsigned offset to the starting address of the Dynamic System Recognition
Data Block.

+(HWRPB[136]) TB HINT BLOCK2,3

Quadword-aligned block that describes the characteristics of the
translation buffer (TB) granularity hints. See Section 2.1.2.

+288

1Initialized by the console at cold system bootstrap only. Preserved unchanged by the console at all warm system
bootstraps.
2Initialized by the console at all system bootstraps (cold or warm).
3May be modified by system software.

Console Interface to Operating System Software (III) 2-9 •

Table 2-1 (Cont.): HWRPB Fields

Offset Description

+(HWRPB[160]) Per-CPU SLOTS2,3

128 byte-aligned slots that describe each processor in the system. See
Section 2.1.3.

+(HWRPB[184]) CTB TABLEl

Quadword-aligned Console Terminal Block Table. Set at console
initialization; modified by console terminal callbacks. See Section 2.3.8.2.

+(HWRPB[192]) CONSOLE CALLBACK ROUTINE BLOCK2,3

Quadword-aligned block that describes the location and mapping of the
console callback routines. Set at system bootstrap; modified by console
FIXUP callback. See Section 2.3.8.1.

+(HWRPB[200]) MEMDSCl,3

Quadword-aligned Memory Data Descriptor Table. Set at console
initialization; preserved across warm bootstraps. See Section 3.4.1.1.

(+HWRPB[208]) CONFIG BLOCKl

Optional implementation-dependent configuration block. See Section 2.1.4.

(+HWRPB[216]) FRU TABLEl

Optional implementation-dependent field replaceable unit table. See
Section 2.1.5.

(+HWRPB[312]) DSRDBl

Quadword-aligned Dynamic System Recognition Data Block (DSRDB).

1Initialized by the console at cold system bootstrap only. Preserved unchanged by the console at all warm system
bootstraps.
2Initialized by the console at all system bootstraps (cold or warm).
3May be modified by system software.

2.1.1 Serial Number, Revision, Type, and Variation Fields

The HWRPB contains several serial number, revision, type, and variation fields that
describe the Alpha AXP system platform hardware and PALcode. System software
uses these fields to identify hardware-dependent support code that must be loaded
or enabled. These fields are examined early in operating system bootstrap; if one of
the fields contains a value that is unrecognized or incompatible with the operating
system, the bootstrap attempt fails. Diagnostic software uses these fields to guide
field installation and upgrade procedures and for material and parts control.

In multiprocessor systems, the processor type and PALcode revisions need not be
identical for all processors. Console and system software can use these fields to
determine ifmultiprocessor operation is viable. This evaluation may be performed by
the running primary, the starting secondary, or a combination of both. For example,
see Section 3.4.3.3.

2-10 Console Interface Architecture (III)

2.1.1.1 Serial Number and Revision Fields

The revision fields include:

1. HWRPB revision-HWRPB[16]

This field identifies the format of the HWRPB. Since the HWRPB is shared
between the console and system software, both must agree on the field offsets,
formats, and interpretations.

2. System serial number and revision-HWRPB[64] and HWRPB[96]

These fields identify the system platform hardware serial number and revision
according to DEC STD 12.

The system serial number and revision fields must be distinct from the
processor serial number and revision fields in the per-CPU table, pointed to by
HWRPB[152]. In particular, on multiprocessing systems, the system fields must
not simply be replicated from the fields of the primary processor. The system
fields must be constant regardless of which processor serves as primary and
must have persistence across processor failures and/or replacement.

3. Processor type and processor variation (capabilities)-SLOT[176] and SLOT[184]

These per-CPU slot fields identify each Alpha AXP processor and its capabilities.
The type field (SLOT[176]) contains a major and minor subfield. The major
subfield identifies the processor family and the minor subfield identifies the
particular membership in that family.

The variation (capabilities) field (SLOT[184]) identifies any system-specific
attributes (such as local memory or cache size).

4. Processor Revision-SLOT[192]

This per-CPU slot field identifies the processor hardware revision according to
DEC STD 12.

5. PALcode Revision-SLOT[168]

This field identifies the PALcode revision required and/or in use by the processor.
System software uses the PALcode variation and PALcode compatibility subfields.
The variation subfield indicates whether the PALcode image includes extensions
or functional variations necessary to a given operating system or application.

Programming Note:
For example, a PALcode variation may contain a different TB fill routine.
System software (and optionally the console) uses the compatibility subfield
to ensure that all processors in a multiprocessor system are using compatible
PALcode images.

PALcode revisions are specific to the system platform and processor major type.
The file name of distributed PALcode images must contain sufficient information
to distinguish the intended system platform and processor.

6. PALcode Revisions Available-SLOT[464]

Console Interface to Operating System Software (III) 2-11 I

This field identifies the PALcode variant revisions that have been previously
loaded on this processor. System software uses these fields to determine if a
given PALcode variant and revision are present prior to PALcode switching. The
format follows the PALcode revision field in SLOT[168].

2.1.1.2 System Type and Variation Fields

The system type and system variation fields are HWRPB[80] and HWRPB[88].

These fields identify the Alpha AXP system platform. System software infers
attributes such as physical address offsets and 110 device locations from the system
type. The system type field contains the family and member identification numbers,
along with the major and minor subfield identifiers. The system variation field is
described in Table 2-2.

The following system variations are defined:

Table 2-2: System Variation Field (HWRPB[88])

Bits Description

63-16 Reserved - MBZ

15-10 System Type Specific (STS). Registered system identifiers for system member
identification.

9 GRAPHICS - If set, indicates that the platform contains an embedded graphics
processor. Initialized by the console at all cold bootstraps.

8 POWERFAIL RESTART - If set, indicates that the console should restart all
available processors on a powerfail recovery. If clear, only the primary processor
will be restarted. Cleared by the console at system bootstraps; may be set by system
software.

7-5 POWERFAIL - Indicates the type of powerfail (if any) implemented by this
platform. See Section 3.5.3 for more information. Defined values include:

<7:5> Interpretation

000 Reserved
001 United
010 Separate
011 Full battery backup of system platform hardware

Initialized by the console at all cold bootstraps.

2-12 Console Interface Architecture (III)

Table 2-2 (Cant.): System Variation Field (HWRPB[88])

Bits Description

4-1 CONSOLE - Indicates the type of console. Defined values include:

<4:1>

0000
0001
0010
other

Interpretation

Reserved
Detached service processor
Embedded console
Reserved for future use

Initialized by the console at all cold bootstraps.

o MPCAP - If set, indicates this system platform is capable of being configured as a
multiprocessor; all support for multiprocessing is present, even if only one processor
is present. If clear, this system supports a uniprocessor only. Initialized by the
console at all cold bootstraps.

2.1.2 Translation Buffer Hint Block

The Translation Buffer Hint Block (TBB) contains information on the characteristics
of the instruction stream translation buffer (ITB) and data stream translation buffer
(DTB) granularity hints (GH). All processors in a multiprocessor Alpha AXP system
must implement the same granularity hints. The granularity hint fields are listed
in Table 2-3.

The TBB consists of 8 quadwords, 4 for each of the translation buffers (ITB and
DTB). The 4 quadwords contain 16 word fields; each word contains the number of
entries in the translation buffer that implement a combination of granularity hints
(including none).

Table 2-3: Granularity Hint Fields

Offset16 Granularity Hint

o None

2 1 page

4 8 pages

6 1 and 8 pages

8 64 pages

A 1 and 64 pages

C 8 and 64 pages

E 1, 8, and 64 pages

Console Interface to Operating System Software (III) 2-13 I

Table 2-3 (Cont.): Granularity Hint Fields

Offset16 Granularity Hint

10 512 pages

12 1 and 512 pages

14 8, and 512 pages

16 1, 8, and 512 pages

18 64 and 512 pages

lA 1,64, and 512 pages

Ie 8, 64, and 512 pages

IE 1,8,64, and 512 pages

2.1.3 Per-CPU Slots in the HWRPB

Information on the state of a processor is contained in a "per-CPU slot" data structure
for that processor. The per-CPU slots form a contiguous array indexed by CPU ID.
The starting address of the first per-CPU slot is given by the offset HWRPB[160]
relative to the starting address of the HWRPB. The number of per-CPU slots is given
in HWRPB[144]. Each per-CPU slot must be 128-byte-aligned to ensure natural
alignment of the hardware privileged context block (HWPCB) at SLOT[O]. The slot
size, rounded up to the nearest multiple of 128 bytes, is given in HWRPB[152].

CPU IDs are determined in an implementation-specific manner. The only
requirement is that they be in the range of zero to the maximum number of
processors the particular platform supports minus one.

Software Note:

OpenVMS AXP supports CPU IDs in the range 0-31 only.

Each per-CPU slot contains information necessary to bootstrap, start, restart or
halt the processor. The format is shown Figure 2-3 and Table 2-4. The hardware
privileged context block (HWPCB) specifies the context in which the loaded system
software will execute.

The console must initialize the per-CPU slot for the primary processor prior to system
bootstrap. The per-CPU slot fields for secondary processors are set by a combination
of the console and system software. The console updates the halt information at
error halts and prior to processor restarts.

Slots corresponding to nonexistent processors are zeroed. There may be more
per-CPU slots than are necessary in any given Alpha AXP system. A system
implementation may reserve HWRPB space for processors that are not present at
system bootstrap.

An Alpha AXP system may support internally different, yet software compatible,
PALcode for different processors in a multiprocessor implementation. Each per-CPU
slot contains a PALcode memory descriptor that locates the PALcode used by that

2-14 Console Interface Architecture (III)

processor. See Section 3.3.1 for information on PALcode loading and initialization on
the primary processor and Section 3.4.3.3 for information on PALcode loading and
initialization on secondary processors.

The starting address of a per-CPU slot is calculated by:

Slot Address = {CPU ID * slot size} + offset + HWRPB base
= {CPU ID * HWRPB[152]} + HWRPB[160] + #HWRPB

The address may be physical or virtual.

Console Interface to Operating System Software (III) 2-15 I

Figure 2-3: Per-CPU Slot in HWRPB

:+288

:+280

:+264

:+272

:+200

:+248

:+240

:+256

:+232

:+216

:+224

:+192

:+160

:+184

:+152

:+168

:+176

:+128

:+136

:+144

Il :SLOT

o

Bootstrap/Restart HWPCB

Processor Software Compatibility Field

63

It- I_nt_e_rp_r_oc_e_s_s_or_c_o_n_s_o_le_B_u_f_fe_r_A_re_a t :+296

PALcode Revisions Available Block :+464

:+592

/~ /v

Per-CPU State Flag Bits

PALcode Memory Length

PALcode Scratch Length

Physical Address of PALcode Memory Space

Physical Address of PALcode Scratch Space

PALcode Revision Required by Processor

Processor Type

Processor Variation

Processor Revision

Processor Serial Number

Physical Address of Logout Area

Logout Area Length

Halt PCBB

Halt PC

Halt PS

Halt Argument List (R25)

Halt Return Address (R26)

Halt Procedure Value (R27)

Reason for Halt

Reserved for Software

/1.1' /./

"YL.. R_e_s_erv_e_d_fo_r_A_r_ch_i_te_c_tu_re_U_s_e -"y :+600

2-16 Console Interface Architecture (III)

Table 2-4: Per-CPU Slot Fields

Offset Description

SLOT

+128

+136

+144

+152

+160

HWPCB3.6

Hardware privileged context block (HWPCB) for this processor. See Table 3-8 for
the contents as set by the console.

STATE FLAGS3.6

Current state of this processor. See Table 2-5 for the interpretation of each bit.

PALCODE MEMORY SPACE LENGTH 1,2,8

Number of bytes required by this processor for PALcode memory. Unsigned field.

PALCODE SCRATCH SPACE LENGTH 1,2,8

Number of bytes required by this processor for PALcode scratch space. Unsigned
field.

PA OF PALCODE MEMORY SPACE 1.6,8

Starting physical address of PALcode memory space for this processor. PALcode
memory space must be page aligned. See Section 3.3.1 or Section 3.4.3.3.

PA OF PALCODE SCRATCH SPACE 1,6,8

Starting physical address of PALcode scratch space for this processor. PALcode
scratch space must be page aligned. See Section 3.3.1 or Section 3.4.3.3.

1Initialized by the console for the primary at cold system bootstrap only. Preserved unchanged by the console at all
other times.
2Initialized by the console for a secondary at cold system bootstrap only. Preserved unchanged by the console at all
other times.
3Initialized by the console for the primary at all system bootstraps (cold or warm) and for a secondary prior to
processor start.
6May by modified by system software for a secondary prior to processor start.
8Support PALcode loading as described in Section 3.3.

Console Interface to Operating System Software (III) 2-17 I

Table 2-4 (Cont.): Per-CPU Slot Fields

Offset Description

+168 PALCODE REVISIONl,2,5,6

PALcode revision level for this processor.

Bits

63-48

47-32

31-24
23-16
15-8
7-0

Interpretation

Maximum number of processors that can share this PALcode
image
PALcode compatibility (0-65535)

o Unknown
1-65535 Compatibility revision
SBZ
PALcode variation (0-255)
PALcode major revision (0-255)
PALcode minor revision (0-255)

This field identifies the PALcode revision required by the console and/or
processor initialization. The major and minor PALcode revisions are set at
console initialization; the remaining fields are set during PALcode loading and
initialization. This field must be updated after PALcode switching to reflect the
new PALcode environment. See Sections 2.1.1 and 3.4.3.3.

+176 PROCESSOR TYPE1,2

Type of this processor.

Bits

63-32
31-0

Interpretation

Minor type
Major type

1Initialized by the console for the primary at cold system bootstrap only. Preserved unchanged by the console at all
other times.
2Initialized by the console for a secondary at cold system bootstrap only. Preserved unchanged by the console at all
other times.
5May be modified by system software for the primary.
6May by modified by system software for a secondary prior to processor start.

2-18 Console Interface Architecture (III)

Table 2-4 (Cont.): Per-CPU Slot Fields

Offset Description

+184 PROCESSOR VARIATION1,2

The following processor variations are defined:

Bit Description

63-3 RESERVED - MBZ
2 PRIMARY ELIGIBLE (PE) - If set, indicates that this processor

is eligible to become a primary processor. The processor has direct
access to the console, a BB_WATCH, and all I/O devices. See
Chapter 3.

1 IEEE-FP - If set, indicates this processor supports IEEE floating
point operations and data types. If clear, this processor has no such
support.

o VAX-FP - If set, indicates this processor supports VAX floating
point operations and data types. If clear, this processor has no such
support.

+192 PROCESSOR REVISION1,2

Full DEC STD 12 revision field for this processor. This quadword field contains
four ASCII characters. See Section 2.1.1.

+200 PROCESSOR SERIAL NUMBER1,2

Full DEC STD serial number for this processor module. This octaword
field contains a 10-character ASCII serial number determined at the time of
manufacture; see DEC STD 12 for format information.

+216 PA OF LOGOUT AREA1,2

Starting physical address of PALcode logout area for this processor. Logout areas
must be at least quadword aligned.

+224 LOGOUT AREA LENGTH1,2

Number of bytes in the PALcode logout area for this processor.

+232 HALT PCBB3,4

Value of the PCBB register when a processor halt condition is encountered by
this processor. Initialized to the address of the hardware privileged context block
(HWPCB) at offset [0] from this per-CPU slot at system bootstraps or secondary
processor starts.

1Initialized by the console for the primary at cold system bootstrap only. Preserved unchanged by the console at all
other times.
2Initialized by the console for a secondary at cold system bootstrap only. Preserved unchanged by the console at all
other times.
3Initialized by the console for the primary at all system bootstraps (cold or warm) and for a secondary prior to
processor start.
4Set by the console at all processor halts.

Console Interface to Operating System Software (III) 2-19 I

Table 2-4 (Cant.): Per-CPU Slot Fields

Offset Description

+240 HALT PC3,4

Value of the PC when a processor halt condition is encountered by this processor.
Zeroed at system bootstraps or secondary processor starts.

+248 HALT pS3,4

Value of the PS when a processor halt condition is encountered by this processor.
Zeroed at system bootstraps or secondary processor starts.

+256 HALT ARGUMENT LIST3,4

Value of R25 (argument list) when a processor halt condition is encountered by
this processor. Zeroed at system bootstraps or secondary processor starts.

+264 HALT RETURN ADDRESS3,4

Value of R26 (return address) when a processor halt condition is encountered by
this processor. Zeroed at system bootstraps or secondary processor starts.

+272 HALT PROCEDURE VALUE3,4

Value of R27 (procedure value) when a processor halt condition is encountered by
this processor. Zeroed at system bootstraps or secondary processor starts.

+280 REASON FOR HALT3,4

Indicates why this processor was halted. Values include:

o
1
2
3
4
5

6
7
8-FFF
Other

Reason

Bootstrap, processor start, or powerfail restart
Console operator requested a system crash
Processor halted due to kernel-stack not-valid halt
Invalid SCBB
Invalid PTBR
Processor executed CALL_PAL HALT instruction in kernel
mode
Double error abort encountered
Machine check while in PALcode environment
Reserved
Implementation-specific

Code is set to "0" at console initialization.

+288 RESERVED FOR SOFTWARE6

Reserved for use by system software. Zeroed at system bootstraps or secondary
processor starts.

3Initialized by the console for the primary at all system bootstraps (cold or warm) and for a secondary prior to
processor start.
4Set by the console at all processor halts.
6May by modified by system software for a secondary prior to processor start.

2-20 Console Interface Architecture (III)

Table 2-4 (Cont.): Per-CPU Slot Fields

Offset Description

+296 RXTX BUFFER AREA

Used for interprocessor console communication. See Section 2.4.

+464 PALCODE AVAILABLEl,2

Block of 16 quadwords that list previously loaded PALcode variations that are
available to the console or operating system for PALcode switching. The first offset
(SLOT[464]) is reserved for an overall firmware revision field for this processor;
the format of this field is platform specific.

The format of each subsequent quadword follows the PALcode revision field
(SLOT[168]). Each quadword is indexed by PALcode variant. If the quadword
is non-zero, the PALcode variant has been loaded and the operating system may
switch to that PALcode variant by passing the variant number to CALL_PAL
SWPPAL.

+592 PROCESSOR SOFTWARE COMPATIBILITY FIELD7

Type of pre-existing processor that is software compatible with existing processor.
Format follows SLOT[176].

Bits

63-32
31-0

Interpretation

Minor type
Major type

+600 RESERVED

Reserved for Digital; SBZ.

1Initialized by the console for the primary at cold system bootstrap only. Preserved unchanged by the console at all
other times.
2Initialized by the console for a secondary at cold system bootstrap only. Preserved unchanged by the console at all
other times.
7Initialized by the console at cold bootstrap and never written by system software or console.

Console Interface to Operating System Software (III) 2-21 I

Table 2-5: Per-CPU State Flags

Bit Description

63:24

23:16

RESERVED; MBZ.

HALT REQUESTED 3,5,6

Indicates the console action requested by system software executing on this
processor. Values include:

o
1
2
3
4
Other

Reason

Default (no specific action)
SAVE_TERM/RESTORE_TERM exit
Cold Bootstrap requested
Warm Bootstrap requested
Remain halted (no restart)
Reserved

Set to "0" at system bootstraps and secondary processor starts. May be set to non
zero by system software prior to processor halt and subsequent processor entry into
console I/O mode. See Sections 3.5.7 and 3.4.5.

15:9 RESERVED; MBZ.

8 PALCODE LOADED (PL) 1,2,6

This bit indicates that this processor's PALcode image has been loaded into the
address given in the processor's slot PALcode memory space address field. See
Sections 3.3.1 and 3.4.3.3.

7 PALCODE MEMORY VALID (PMV) 1,2,6

This bit indicates that this processor's PALcode memory and scratch space addresses
are valid. Set after the necessary memory is allocated and the addresses are written
into the processor's slot. See Sections 3.3.1 and 3.4.3.3.

6 PALCODE VALID (PV)1,2

This bit indicates that this processor's PALcode is valid. Set after PALcode has been
successfully loaded and initialized. See Sections 3.3.1 and 3.4.3.3.

5 CONTEXT VALID (CV)3,6

This bit indicates that the HWPCB in this slot is valid. Set after the console or
system software initializes the HWPCB in this slot. See Sections 3.3.1 and 3.4.3.

1Initialized by the console for primary at cold system bootstrap only. Preserved unchanged by the console at all
other times.
2Initialized by the console for a secondary at cold system bootstrap only. Preserved unchanged by the console at all
other times.
3Initialized by the console for the primary at all system bootstraps (cold or warm) and for a secondary prior to
processor start.
5May be modified by system software for the primary.
6May by modified by system software for a secondary prior to processor start.

2-22 Console Interface Architecture (III)

Table 2-5 (Cont.): Per-CPU State Flags

Bit Description

4 OPERATOR HALTED (OH)3,4

This bit indicates that this processor is in console I/O mode as the result of explicit
operator action. See Section 3.5.8.

3 PROCESSOR PRESENT (pp)l,2

This bit indicates that this processor is physically present in the configuration.

2 PROCESSOR AVAILABLE (PA)l,2

This bit indicates that this processor is available for use by system software. The
PA bit may differ from the PP bit based on self-test or other diagnostics, or as the
result of a console command that explicitly sets this processor unavailable.

1 RESTART CAPABLE (RC)3,4,5,6

Indicates that system software executing on this processor is capable of being
restarted if a detected error halt, powerfail recovery, or other error condition occurs.
Cleared by the console and set by system software. See Sections 3.4.1.3, 3.4.3.6, and
3.5.1.

o BOOTSTRAP IN PROGRESS (BIP) 3,5,6

For the primary, this bit indicates that this processor is undergoing a system
bootstrap. For a secondary, this bit indicates that a CPU start operation is in
progress. Set by the console and cleared by system software. See Sections 3.4.1.3,
3.4.3.6, and 3.5.1.

1Initialized by the console for primary at cold system bootstrap only. Preserved unchanged by the console at all
other times.
2Initialized by the console for a secondary at cold system bootstrap only. Preserved unchanged by the console at all
other times.
3Initialized by the console for the primary at all system bootstraps (cold or warm) and for a secondary prior to
processor start.
4Set by the console at all processor halts.
5May be modified by system software for the primary.
6May by modified by system software for a secondary prior to processor start.

2.1.4 Configuration Data Block

Systems may have a Configuration Data Block (CONFIG). The format of the block
and whether it exists in a system is implementation specific. If present, the block
must be mapped in the bootstrap address space. The CONFIG offset at HWRPB[208]
contains the block offset address; if no CONFIG block exists, the offset is zero. The
first quadword of a CONFIG block must contain the size in bytes of the block. The
second quadword must contain a checksum for the block. The checksum is computed
as a 64-bit sum, ignoring overflows, of all quadwords in the configuration data block
except the checksum quadword.

Console Interface to Operating System Software (III) 2-23 I

2.1.5 Field Replaceable Unit Table

Systems may have a field replaceable unit (FRU) table. The format of the table and
whether it exists in a system is implementation specific. If present, the table must
be mapped in the bootstrap address space. The FRU table offset at HWRPB[216]
contains the table offset address; if no FRU table exists, the offset is zero.

2.2 Environment Variables

The environment variables provide an easily extensible mechanism for managing
complex console state. Such state may be variable length, may change with system
software, may change as a result of console state changes, and may be established
by the console presentation layer. Environment variables may be read, written, or
saved.

An environment variable consists of an identifier (ID) and a byte stream value
maintained by the console. There are three classes of environment variables:

1. Common to all implementations: ID = 0 to 3F16.

These have meaning to both the console and system software. All consoles must
implement all of these environment variables.

2. Specific to a given console implementation: ID = 40 to 7F16.

These have meaning to a given console implementation and system software
implementation. Support for these environment variables is optional.

3. Specific to system software: ID = 80 to FF16.

These have meaning to a given system software application or implementation;
the console simply passes these environment variables between the console
presentation layer and the target application without interpretation. Support
for these environment variables is optional.

If a console supports optional environment variables, they must be described in the
relevant console implementation specification and registered with the Alpha AXP
architecture group.

The value, format, and size of each environment variable is dependent on the
environment variable and the console implementation. The size of an environment
variable value is specified in bytes. The byte stream value of most environment
variables consists of an ASCII string.

The booting environment variables, BOOT_DE~ BOOTDEF_DE~ and BOOTED_
DE~ contain values that can consist of multiple fields and lists. For those variables,
the values are parsed as follows:

1. Each field is delimited by one and only one space II II (2016).

2. Each list element is delimited by one and only one comma "," (2C16).

3. Any numeric quantities are expressed in decimal.

4. All characters are case-blind and may be expressed in uppercase or lowercase.

2-24 Console Interface Architecture (III)

Other examples of environment variables that have list values are BOOT_DEV,
BOOTED_OSFLAGS, and DUMP_DEV.

Programming Note:

For example, BOOT_DEV might consist of "0 4 MSCP,O 1 MOP" and BOOT_
OSFLAGS might consist of "7,2,28".

System software uses the console environment variable routines to access the
environment variables. Each environment variable is identified by an identification
number (ID). If the console resolves the ID, the associated byte stream value is
returned. The console environment variable routines present system software with
a consistent interface to environment variables regardless of the presentation layer
and internal console representation. The console operator interacts with the console
presentation layer to access environment variables. See Section 1.3 for details.

In a multiprocessor system, the console must ensure that the dynamic state created
by the environment variables is common to all processors. It must not be possible
for a value observed on a secondary to differ from that observed on the primary
or another secondary. This is necessary to support bootstrapping, restarting a
processor, and switching the primary.

Some environment variables contain critical state that must be maintained across
console initializations and system power transitions. Other environment variables
contain dynamic state that must be initialized at console initialization and retained
across warm bootstraps. Still others contain dynamic state that is initialized at each
system bootstrap.

Environment variable values that must be maintained across console initializations
must be retained in some sort of nonvolatile storage. Default values for these
environment variables must be set prior to system shipment. Thus, there are three
possible values: the dynamic value, the default value retained in nonvolatile storage,
and the initial default value set in nonvolatile storage prior to system shipment.
The console need not preserve the initial default value. If console implementation
preserves the initial default value, that value is accessible only to the console
presentation layer; system software accesses only the dynamic and default (last
written) values. The dynamic and default values may differ at any time after console
initialization as the result of changes by system software or the console operator.

The internal representation and implementation mechanisms of environment
variables is at the complete discretion of the console and is unknown to both
system software and the console presentation layer. The realization of the required
nonvolatile storage is also implementation specific.

Table 2-6 lists the environment variables maintained by the console. Each
environment ID is also assigned a symbolic name that is used to reference
the environment variable elsewhere in this specification. Tables 2-7 and 2-8,
respectively, list supported languages and character sets.

Console Interface to Operating System Software (III) 2-25 I

Table 2-6: Required Environment Variables
Environment Var
ID16 Symbol Description

00

01

02

03

04

05

AUTO_ACTION1,2

BOOT_FILE1,2

Reserved

Console action following an error halt or powerup. Defined
values and the action invoked are:

"BOOT" (544F 4F4216) bootstrap

"HALT" (544C 414816) halt

"RESTART" (54 5241 5453 455216) restart

Any other value causes a halt; The default value when the
system is shipped is "HALT". See Section 3.1.1.

Device list used by the last (or currently in progress)
bootstrap attempt. The console modifies BOOT_DEV at
console initialization and when a bootstrap attempt is
initiated by a BOOT command. The value ofBOOT_DEV is
set from the device list specified with the BOOT command
or, if no device list is specified, BOOTDEF_DEV: The
console uses BOOT_DEV without change on all bootstrap
attempts that are not initiated by a BOOT command. See
Section 3.4.1.4. The format is independent of the console
presentation layer.

Device list from which bootstrapping is to be attempted
when no path is specified by a BOOT command. See
Section 3.4.1.4. The format follows BOOT_DEV. The
default value when the system is shipped indicates a valid
implementation-specific device or NULL (0016).

Device used by the last (or currently in progress) bootstrap
attempt. Value is one of the devices in the BOOT_DEV
list. See Section 3.4.1.4. The format is independent of the
console presentation layer.

File name to be used when a bootstrap requires a file
name and when the bootstrap is not the result of a
BOOT command or when no file name is specified on a
BOOT command. The console passes the value between
the console presentation layer and system software
without interpretation; the value is preserved across warm
bootstraps. The default value when the system is shipped
is NULL (0016).

1Nonvolatile. The last value saved by system software or set by console commands is preserved across system
initializations, cold bootstraps, and long power outages.
2Warm nonvolatile. The last value set by system software is preserved across warm bootstraps and restarts.
4Read-only. The variable cannot be modified by system system software or console commands.

2-26 Console Interface Architecture (III)

Table 2-6 (Cont.): Required Environment Variables

Environment Var

06

07

08

09

OA

Symbol

BOOTED_FILE4

BOOT_OSFLAGS1,2

BOOTED_OSFLAGS4

BOOT_RESET1,2

Description

File name used by the last (or currently in progress)
bootstrap attempt. The value is derived from BOOT_FILE
or the current BOOT command. The console passes the
value between the console presentation layer and system
software without interpretation.

Additional parameters to be passed to system software
when the bootstrap is not the result of a BOOT command or
when none is specified on a BOOT command. The console
preserves the value across warm bootstraps and passes the
value between the console presentation layer and system
software without interpretation. The default value when
the system is shipped is NULL (0016).

Additional parameters passed to system software during
the last (or currently in progress) bootstrap attempt. The
value is derived from BOOT_OSFLAGS or the current
BOOT command. The console passes the value between
the console presentation layer and system software without
interpretation.

Indicates whether a full system reset is performed in
response to an error halt or BOOT command. Defined
values and the action invoked are:

"OFF" (46 464F16) warm bootstrap, no full system reset
is performed.

"ON" (4E4F16) cold bootstrap, a full systeln reset is
performed.

See Sections 3.4.1 and 3.4.2. The default value when the
system is shipped is implementation specific.

Device used to write operating system crash dumps. The
format follows BOOTED_DEV and is independent of the
console presentation layer. The value is preserved across
warm bootstraps. The default value when the system
is shipped indicates an implementation-specific device or
NULL (0016).

1Nonvolatile. The last value saved by system software or set by console commands is preserved across system
initializations, cold bootstraps, and long power outages.
2Warm nonvolatile. The last value set by system software is preserved across warm bootstraps and restarts.
4 Read-only. The variable cannot be modified by system system software or console commands.

Console Interface to Operating System Software (III) 2-27 I

Table 2-6 (Cant.): Required Environment Variables

Environment Var
ID16 Symbol Description

Indicates whether audit trail messages are to be generated
during bootstrap. Defined values and the action invoked
are:

OC

OD

OE

OF

10-3F

40-7F

80-FF

LICENSE1,4

LANGUAGE1,2

TTY_DEV 1,2,4

"OFF" (46 464FI6). Audit trail messages suppressed.

"ON" (4E4FI6). Audit trail messages generated.

The default value when the system is shipped is "ON."

Software license in effect. The value is derived
in a~ implementation-specific manner during console
initialization.

Current console terminal character set encoding. Defined
values are given in Table 2-8. The default value when the
system is shipped is determined by the manufacturing site.

Current console terminal language. Defined values are
given in Table 2-7. The default value when the system
is shipped is determined by the manufacturing site.

Current console terminal unit. Indicates which entry of the
CTB table corresponds to the actual console terminal. The
value is preserved across warm bootstraps. The default
value is "0" (3016).

Reserved for Digital.

Reserved for console implementation use.

Reserved for system software use.

1Nonvolatile. The last value saved by system software or set by console commands is preserved across system
initializations, cold bootstraps, and long power outages.
2Warm nonvolatile. The last value set by system software is preserved across warm bootstraps and restarts.
4Read-only. The variable cannot be modified by system system software or console commands.

Table 2-7: Supported Languages

GETC
LANGUAGE16 Language Character Set Bytes

0 None (cryptic) ISO Latin-l 1

30 Dansk ISO Latin-l 1

32 Deutsch ISO Latin-l 1

34 Deutsch (Schweiz) ISO Latin-l 1

36 English (American) ISO Latin-l 1

38 English (British/Irish) ISO Latin-l 1

2-28 Console Interface Architecture (III)

Table 2-7 (Cont.): Supported Languages

GETC
LANGUAGE16 Language Character Set Bytes

3A Espanol ISO Latin-l 1

3C Francais ISO Latin-l 1

3E Francais (Canadian) ISO Latin-l 1

40 Francais (Suisse Romande) ISO Latin-l 1

42 Italiano ISO Latin-l 1

44 Nederlands ISO Latin-l 1

46 Norsk ISO Latin-l 1

48 Portugues ISO Latin-l 1

4A Suomi ISO Latin-l 1

4C Svenska ISO Latin-l 1

4E Vlaams ISO Latin-l 1

Other Reserved

Table 2-8: Supported Character Sets

CHAR_SET16 Character Set

o
Other

ISO Latin-l

Reserved.

2.3 Console Callback Routines

System software can access certain system hardware components through a set
of callback routines provided by the Alpha AXP console. These routines give
system software an architecturally consistent and relatively simple interface to those
components.

All of the console callback routines may be used by system software when the
operating system has only restricted functionality, such as during bootstrap or crash.
When invoked in this context, the console may assume full control of system platform
hardware. Some of the console callback routines may be used by system software
when the operating system is fully functional. Such usage imposes constraints on
the console implementation.

All routines must be called by system software executing in kernel mode. All routines
require that the HWRPB and the per-CPU, CTB, and CRB offset blocks are virtually
mapped and kernel read/write accessible. If these conditions are not met, the results
are UNDEFINED. If conditions from within user mode are not met, the results are

Console Interface to Operating System Software (III) 2-29 I

UNPREDICTABLE. Some of the routines execute correctly only at or above certain
IPLs.

The routines must never modify any processor registers except those explicitly
indicated by the routine descriptions.

2.3.1 System Software Use of Console Callback Routines

The console callback routines present an environment to the operating system in
which the following behavior must be implemented. These routines must:

• Not alter the current IPL

• Not alter the current execution mode

• Not disable or mask interrupts

• Not alter any registers except as explicitly defined by the routine interface

• Not alter the existing memory management policy

• Not usurp any existing interrupt mechanisms

• Be interruptable

• Ensure timely completion

Once the operating system is bootstrapped, the console must not reclaim resources
transferred to that operating system. This includes both the issuing and servicing
of I/O device interrupts, interprocessor interrupts, and exceptions.

It is the responsibility of the console implementation to ensure that these console
callback routines may be invoked at multiple IPLs, may be interrupted, and may be
invoked by multiple system software threads. The operation of these routines must
appear to be atomic to the calling system software even if that software thread is
interrupted.

In a multiprocessor system, some console routines may be invoked only on the
primary processor. A secondary processor may invoke only a subset of these routines
and then only under a limited set ofconditions. These conditions are explicitly stated
in the routine descriptions; if violated, the results are UNDEFINED.

2.3.2 System Software Invocation of Console Callback Routines

With the exception of the FIXUP routine, all of the routines are accessed uniformly
through a common DISPATCH procedure. The target routine is identified by a
function code. All console callback routines are invoked using the Alpha AXP
standard calling conventions.

Any memory management exceptions generated by incorrect mapping or
inaccessibility of console callback routine parameters produces UNDEFINED
results. This occurs naturally for those console callback routines that are intended
for use while the operating system is fully functional; these routines execute in the
unmodified context of that operating system.

2-30 Console Interface Architecture (III)

For those routines intended for use only while the operating system has restricted
functionality, the DISPATCH routine must ensure that any conflicts in mapping or
accessibility are resolved prior to permitting the console to gain control of the system
platform hardware.

2.3.3 Console Callback Routine Summary

The console callback routines fall into four functional groups:

1. Console terminal interaction

2. Generic I/O device access

3. Environment variable manipulation

4. Miscellaneous

The hexadecimal function code, name, and function for each routine are summarized
in Table 2-9.

Table 2-9: Console Callback Routines

Code16 Name Function Invoked

Console Terminal Routines

01

02

03

04

05

06

07-F

GETC

PUTS

RESET_TERM

SET_TERM_INT

SET_TERM_CTL

PROCESS_KEYCODE

Get character from console terminal

Put byte stream to console terminal

Reset console terminal to default

Set console terminal interrupts

Set console terminal controls

Process and translate keycode

Reserved

Console Generic 110 Device Routines

10

11

12

13

14

15-1F

OPEN

CLOSE

IOCTL

READ

WRITE

Open I/O device for access

Close I/O device for access

Perform I/O device-specific operations

Read I/O device

Write I/O device

Reserved

Console Interface to Operating System Software (III) 2-31 •

Table 2-9 (Cont.): Console Callback Routines

Code16 Name Function Invoked

Console Environment Variable Routines

20

21

22

23

SET_ENV

RESET_ENV

GET_ENV

SAVE_ENV

Set (write) an environment variable

Reset (default) an environment variable

Get (read) an environment variable

Save current environment variables

Console Miscellaneous Routines

30

(None)

(None)

Other

PSWITCH

FIXUP

DISPATCH

Switch primary processor

Remap console callback routines

Access console callback routine

Reserved

All Alpha AXP consoles must implement:"

• All console terminal routines except PROCESS_KEYCODE.

• All console generic 110 device routines.

• All environment variable routines except SAVE_ENV.

• The FIXUP and DISPATCH miscellaneous routines.

The PSWITCH routine is required for all Alpha AXP multiprocessor systems that
support dynamic primary switching. See Section 3.5.6.

2.3.4 Console Terminal Routines

Alpha AXP consoles provide system software with a consistent interface to the
console terminal, regardless of the physical realization of that terminal. This
interface consists of the console terminal block (CTB) table and a number of console
terminal routines. Each CTB contains the characteristics of a terminal device that
can be accessed through the console terminal routines; see Section 2.3.8.2.

There is only one console terminal. The CTB Table may contain multiple CTBs and
the console terminal routines may be used to access multiple terminal devices. Each
terminal device is identified by a "unit number" that is the index of its CTB within the
CTB table. The TTY_DEV environment variable indicates the unit, hence the CTB,
of the console terminal. The console terminal unit is determined at system bootstrap
and cannot be altered by system software. Console terminal device interrupts are
delivered at the console terminal device IPL to the primary processor; interrupts can
be redirected to a secondary only when switching the primary processor.

The console terminal routines permit system software to access the console terminal
in a device-independent way. These routines may be invoked while the operating

2-32 Console Interface Architecture (III)

system is fully functional as well as during operating system bootstrap or crash. All
console terminal routines are subject to the constraints given in Section 2.3.1. These
routines must:

• Not alter the current IPL or current mode.

These routines must be invoked in kernel mode at or above the console terminal
device IPL.

• Not alter the existing memory management policy.

All internal pointers must have been remapped by FIXUP.

• Not block interrupts.

The operating system must be capable of continuing to receive hardware
interrupts at higher IPLs.

• Be interruptible and re-entrant.

These routines may be invoked at multiple IPLs and their execution may be
interrupted. However, console terminal callback operations are not necessarily
atomic. In the event of re-entrant invocations, it is UNPREDICTABLE whether
or not the interrupted operation will fail and characters may be transmitted or
received out of order.

The time required for console terminal routines to complete is UNPREDICTABLE;
however, a console implementation will attempt to minimize the time whenever
possible.

Software Note:

Implementations must limit the execution time to significantly less than the
interval clock interrupt period. A return after partial operation completion is
preferable to long latency.

When invoking these routines, system software must:

• Be executing in kernel mode at or above the console terminal device IPL.

If these routines are invoked in other modes, their execution causes
UNPREDICTABLE operation. If invoked at lower IPLs, their execution causes
UNDEFINED operation.

• Be executing on the primary processor in a multiprocessor configuration.

If these routines are invoked on secondary processors in kernel mode, their
execution causes UNDEFINED operation.

• Be prepared to service any resulting console terminal interrupts, if enabled.

System software must provide valid interrupt service routines for the console
terminal transmit and receive interrupts. The operating system interrupt service
routines must be established prior to enabling interrupts; otherwise the operation
of the system is UNDEFINED.

Console Interface to Operating System Software (III) 2-33 I

Programming Note:
Any console terminal interrupt service routines established by the console
prior to transferring control to operating system software are not transferred
to the operating system nor are they remapped by FIXUP. Any console
terminal interrupts will be delivered only after the operating system lowers
IPL from the console terminal device IPL.

Implementation Note:
The implementation of console terminal 110 interrupts is specific to system
hardware platform. An example of implementation-specific characteristics is
console terminal SCB vectors.

2-34 Console Interface Architecture (III)

2.3.4.1 GETC - Get Character from Console Terminal

Format:

char DISPATCH (GETC,unit)

Inputs:

GETC

unit

retadr

= R16; GETC function code - 0116

=R17; Terminal device unit number

=R26; Return address

Outputs:

'111'

Success, character received
Success, character received, more
to be read
Failure, character not yet ready
for reception
Failure, character received with
error
Failure, character received with
error, more to be read

Device-specific error status
SBZ
Terminal device unit number returning
character
Character read from console terminal

'110'

'100'

'000'
'001'

RO<31:0>

RO<60:48>
RO<47:40>
RO<39:32>

Returned character and status:

RO<63:61>

= RO;char

GETC attempts to read one character from a console terminal device and, if
successful, returns that character in RO<31:0>. The character is not echoed on the
terminal device. The size of the returned character is from one to four bytes and is
a function of the current character set encoding and language (see Table 2-7). The
routine performs any necessary keycode mapping.

For implementations that support multiple directly addressable terminal devices,
R17 contains the unit number from which to read the character. If the
implementation does not support multiple terminal devices or if the devices are not
directly addressable, R17 should be zero. The unit number from which the character
was read is returned in RO<39:32>. If the implementation does not support multiple
terminal devices, RO<39:32> is returned as zero.

GETC returns character reception status in RO<63:61>. If received characters are
buffered by the console terminal, RO<61> is set to '1' whenever additional characters
are available. If GETC returns a character without error, RO<63:62> is set to '00'.

Console Interface to Operating System Software (III) 2-35 •

If no character is yet ready, RO<63:62> is set to '10'. If an error is encountered
obtaining a character, RO<63:62> is set to '11'; examples of errors during character
reception include data overrun or loss of carrier.

When an error is returned by GETC, the contents ofRO<31:0> and RO<60:48> depend
on the capabilities of the underlying hardware. Implementations in which the
hardware returns the character in error must provide that character in RO<31:0>.
Additional device-specific error status may be contained in RO<60:48>.

When appropriate, GETC performs special keyboard operations such as turning
keyboard LEDs on or off. Such action is based on the incoming stream of keycodes
delivered by the console terminal.

The return address indicated by R26 should be mapped and kernel executable.

2-36 Console Interface Architecture (III)

2.3.4.2 PROCESS_KEYCODE - Process and Translates Keycode

Format:

PROCESS_KEYCODE =R16;

unit =R17;

keycode = R18;

again =R19;

char

Inputs:

retadr

DISPATCH (PROCESS_KEYCODE,unit, keycode, again)

PROCESS_KEYCODE function code - 0616

Terminal device unit number

Keycode to be processed

'1' if calling again for same keycode
'0' otherwise

=R26; Return address

Outputs:

char = RO; Translated character and status:

RO<63:61> '000' Success, character returned
'101' Failure, more time needed

to process keycode
'110' Failure, device not sup-

ported by routine or rou-
tine not supported

'111' Failure, no character; more
keycodes needed or ille-
gal sequence encountered

RO<60> '0' Success in correcting
severe error

'1' Failure in correcting se-
vere error

RO<59:32> SBZ
RO<31:0> Translated character

PROCESS_KEYCODE attempts to translate the keycode contained in R18 and,
if successful, returns the character in RO<31:0>. The translation is based on
the current character set encoding, language, and console terminal device state
contained in the appropriate CTB. The translated character may be from one to four
bytes. For implementations that support multiple terminal devices, R17 contains
the unit number of the keyboard; R17 should be zero otherwise.

Implementation Note:

For ISO Latin-l character set encoding, PROCESS_KEYCODE returns a one
byte character.)

Console Interface to Operating System Software (III) 2-37 •

PROCESS_KEYCODE returns keycode translation status in RO<63:61>. The
processing falls into one of several cases:

1. The keycode, along with previous keycodes if any, translates into a character
from the currently selected character set. In this case, RO<63:61> set to '000'.

2. The keycode, along with previously entered keycodes if any, does not translate
into a character from the currently selected character set. This is because either:

• There are not yet enough keycodes entered to produce a character in the
currently selected character set.

• The keycodes entered to this point indicate a severe keyboard error status.

• The keycodes entered to this point form an illegal or unsupported keycode
sequence.

In this case, RO<63:61> set to 'Ill'.

3. The console terminal device for which keycode translation is being performed
is not supported by the PROCESS_KEYCODE implementation or the console
implementation does not support PROCESS_KEYCODE. In this case, RO<63:61>
set to '110'.

4. The keycode cannot be processed in a reasonable amount of time; multiple
invocations of PROCESS_KEYCODE are necessary. In this case, the routine
returns with RO<63:61> set to '101'. The subsequent call(s) should be made with
the same keycode in RIB and R19 set to '1'.

Implementation Note:
It may not be possible for an implementation to perform all the actions
associated with special keycodes (such as turning on LEDs) in a timely
manner. The PROCESS_KEYCODE routine must return after partial
completion of an operation if necessary. It is the responsibility of the
console to ensure that subsequent calls make forward progress. The delay
between successive operating system calls is UNPREDICTABLE, although
the operating system should attempt to complete the operation in a timely
fashion. See Section 2.3.4.)

In all but the first case, the contents of RO<31:0> are UNPREDICTABLE.

When certain severe keyboard errors are encountered, PROCESS_KEYCODE
attempts to correct them by performing special keyboard operations. Those severe
errors that may be corrected are device specific and contained in the terminal device
CTB. If an error is encountered and the attempt to correct the error is unsuccessful,
RO<60> set to '1'; otherwise RO<60> set to '0'.

The keyboard state recorded in the CTB is updated appropriately as the input stream
of keycodes is processed. If appropriate, PROCESS_KEYBOARD may buffer some
of the keycodes in the CTB keycode buffer. The supported keyboard state changes
are device specific and are listed in the device CTB.

The return address indicated by R26 should be mapped and kernel executable.

2-38 Console Interface Architecture (III)

2.3.4.3 PUTS - Put Stream to Console Terminal

Format:

wcount DISPATCH (PUTS,unit,address,length)

Inputs:

PUTS

unit

address

length

retadr

= R16;

= R17;

= R18;

= R19;

=R26;

PUTS function code - 02 16

Terminal device unit number

Virtual address of byte stream to be written

Count of bytes to be written

Return address

Outputs:

= RO;wcount Count of bytes written and status:

RO<63:61> '000' Success, all bytes written
'001' Success, some bytes written
'100' Failure, no bytes written

terminal not ready
'110' Failure, no bytes written

terminal error encountered
'111' Failure, some bytes written

terminal error encountered
RO<60:48> Device-specific error status
RO<47:32> SBZ
RO<31:0> Count of bytes written (unsigned)

PUTS attempts to write a number of bytes to a console terminal device. R18 contains
the base virtual address of the memory-resident byte stream; R19 contains its 32-bit
size in bytes. The byte stream is written in order with no interpretation or special
handling. The count of the bytes transmitted is returned in RO<31:0>.

Programming Note:

For multiple-byte character set encodings, the returned byte count may indicate
a partial character transmission.

For implementations that support multiple terminal devices, R17 contains the unit
number to which the byte stream is to be written; R17 should be zero otherwise.

PUTS returns byte stream transmission status in RO<63:61>. If only a portion of the
byte stream was written, RO<61> is set to '1'. Ifno error is encountered, RO<63:62> is
set to '00'. If no bytes were written because the terminal was not ready, RO<63:62>

Console Interface to Operating System Software (III) 2-39 •

is set to '10'. If an error is encountered writing a byte, RO<63:62> is set to '11';
examples of errors during byte transmission include data overrun or loss of carrier.

When an error is returned by PUTS, additional device-specific error status may be
contained in RO<60:4B>.

Multiple invocations of PUTS may be necessary because the console terminal may
accept only a very few bytes in a reasonable period of time.

The output byte stream located by RIB should be mapped and kernel read accessible;
the return address indicated by R26 should be mapped and kernel executable.

2-40 Console Interface Architecture (III)

2.3.4.4 RESET_TERM - Reset Console Terminal to default parameters

Format:

status

Inputs:

DISPATCH (RESET_TERM,unit)

RESET_TERM= R16; RESET_TERM function code - 0316

unit = R17; Terminal device unit number

retadr = R26; Return address

Outputs:

Status:

RO<63>

status =RO;

'0'
'1'

RO<62:0> SBZ

Success, terminal reset
Failure, terminal not fully reset

RESET_TERM resets a console terminal device and its CTB to their initial, default
state. All errors in the CTB are cleared. For implementations that support multiple
terminal devices, R17 contains the unit number to be reset; R17 should be zero
otherwise.

The CTB describes the capabilities of the terminal device and its initial, default state.
Depending on the terminal device type and particular console implementation, other
terminal devices may be affected by the routine.

Programming Note:

For example, if multiple terminal units share a common interrupt, that interrupt
may be disabled or enabled for all.

If the console terminal is successfully reset, RESET_TERM returns with RO<63> set
to '0'. If errors are encountered, the routine attempts to return the console terminal
to a usable state and then returns with RO<63> set to '1'.

The return address indicated by R26 should be mapped and kernel executable.

Console Interface to Operating System Software (III) 2-41 I

2.3.4.5 SET_TERM_CTL - Set Console Terminal Controls

Format:

status

Inputs:

DISPATCH (SET_TERM_CTL,unit,ctb)

SET_TERM_CTL= R16;

unit = R17;

ctb = RIB;

retadr = R26;

Outputs:

SET_TERM_CTL function code - 0516

Terminal device unit number

Virtual address of CTB

Return address

Status:

RO<63>

status = RO;

'0' Success, requested change com
pleted

'1' Failure, change not completed
RO<62:32> SBZ
RO<31:0> Offset to offending CTB field (unsigned)

SET_TERM_CTL, if successful, changes the characteristics of a console terminal
device and updates its CTB. The changes are specified by fields contained in a CTB
located by RIB. The characteristics that can be changed, hence the active CTB
fields, depend on the console terminal device type. For implementations that support
multiple terminal devices, R17 contains the unit number to be reset; R17 should be
zero otherwise.

If the console terminal characteristics are successfully changed, SET_TERM_CTL
returns with RO<63> set to '0'. If errors are encountered or if the terminal device
does not support the requested settings, the routine attempts to return the device
to the previous usable state and then returns with RO<63> set to '1' and RO<31:0>
set to the offset of an offending or unsupported field in the CTB located by RIB.
Regardless of success or failure, the device CTB table entry always contains the
current device characteristics upon routine return. SET_TERM_CTL returns the
CTB located by RIB without modification.

The CTB located by RIB should be mapped and kernel read accessible; the return
address indicated by R26 should be mapped and kernel executable.

2-42 Console Interface Architecture (III)

2.3.4.6 SET_TERM_INT - Set Console Terminal Interrupts

Format:

status

Inputs:

DISPATCH (SET_TERM_INT,unit,mask)

SET_TERM_INT = R16;

unit = R17;

mask = R18;

SET_TERM_INT function code - 0416

Terminal device unit number

Bit encoded mask:

=R26; Return addressretadr

Outputs:

RI8<63:10>
RI8<9:8>

R18<7:2>
R18<1:0>

SBZ
'01'
'00'
'lX'
SBZ
'01'
'00'
'IX'

No change to receive interrupts
Disable receive interrupts
Enable receive interrupts

No change to transmit interrupts
Disable transmit interrupts
Enable transmit interrupts

status = RO; Status:

RO<63> '0'
'1'

Success
Failure, operation not supported

RO<62:2> SBZ
RO<O> '1' Transmit interrupts enabled

'0' Transmit interrupts disabled
RO<I> '1' Receive interrupts enabled

'0' Receive interrupts disabled

SET_TERM_INT reads, enables, and disables transmit and receive interrupts from
a console terminal device and updates its CTB. For implementations that support
multiple terminal devices, R17 contains the unit number to be reset; R17 should be
zero otherwise.

If the interrupt settings are successfully changed, the routine returns with RO<63>
set to '0'. If the terminal device does not support the requested setting, the routine
returns with RO<63> set to '1'.

Console Interface to Operating System Software (III) 2-43 •

Programming Note:

For example, a device that has a unified transmit/receive interrupt would not
support a request to enable transmit interrupts while leaving receive interrupts
disabled.

Regardless of success or failure, the routine always returns with the previous
settings in RO<I:0>. The current state of the interrupt settings can be read without
change by invoking SET_TERM_INT with RI8<1:0> and RI8<9:8> set to '01'.

The return address indicated by R26 should be mapped and kernel executable.

2-44 Console Interface Architecture (III)

2.3.5 Console Generic I/O Device Routines
The Alpha AXP console provides primitive generic I/O device routines for system
software use during the bootstrap or crash process. These routines serve in place of
the more sophisticated system software I/O drivers until such time as these drivers
can be established. These routines may also be used to access console-private devices
that are not directly accessible by the processor.

During the bootstrap process, these routines can be used to acquire a secondary
bootstrap program from a system bootstrap device or write messages to a terminal
other than the logical console terminal. When the operating system is about to crash,
these routines can be used to write dump files.

These routines are not intended for use while the operating system is fully functional.
These routines may:

• Alter the current IPL.

The console may raise the current IPL. It may lower the current IPL only insofar
as the state presented to the operating system remains consistent, as though
the IPL had not been lowered. The console must ensure that interrupts that
would not have been delivered at the caller's IPL are pended and delivered to
the operating system at the conclusion of the callback.

• Block interrupts.

These routines may cause any and all interrupts to be blocked or delivered to
and serviced by the console for the duration of the routine execution.

• Block exceptions.

These routines may cause any and all exceptions to be blocked or delivered to
and serviced by the console for the duration of the routine execution.

• Alter the existing memory management policy.

The console may substitute a console-private (or bootstrap address) mapping for
the duration of the routine execution.

Programming Note:
The console must resolve any virtually addressed arguments prior to altering
the existing memory management policy.

• Take any length of time for completion.

The operating system has no timeliness guarantee when invoking these
routines. Any operating system timer may have expired before their return.
The time necessary for completion is UNPREDICTABLE; however, a console
implementation will attempt to minimize the time whenever possible.

Prior to returning to the invoking system software, these routines must restore any
altered processor state. These routines must return to the calling system software
at the IPL and in the memory management policy of that software.

Console Interface to Operating System Software (III) 2-45 •

System software invokes these routines synchronously. When invoking these
routines, system software must:

• Be executing in kernel mode.

If these routines are invoked in other modes, their execution causes
UNPREDICTABLE operation.

• Be executing on the primary processor in a multiprocessor configuration.

If these routines are invoked on other processors, their execution causes
UNDEFINED operation.

2-46 Console Interface Architecture (III)

2.3.5.1 CLOSE - Close Generic I/O Device for Access

Format:

status

Inputs:

DISPATCH (CLOSE,channel)

CLOSE

channel

retadr

Outputs:

=R16;

= R17;

=R26;

CLOSE function code - 1116

Channel to close

Return address

status =RO; Status:

RO<63> '0'
'1'

Success
Failure

RO<62:60> SBZ
RO<59:32> Device-specific error status
RO<31:0> SBZ

CLOSE deassigns the channel number from a previously opened block storage 110
device. The channel number is free to be reassigned. The 110 device must be
reopened prior to any subsequent accesses.

CLOSE returns status in RO<63>. If the channel was open and the close is successful,
RO<63> is set to '0'; otherwise RO<63> is set to '1' and additional device-specific status
is recorded in RO<62:32>.

For magnetic tape devices, CLOSE does not affect the current tape position, nor is
any rewind of the tape performed.

The return address indicated by R26 should be mapped and kernel executable.

Console Interface to Operating System Software (III) 2-47 •

2.3.5.2 IOCTL - Perform Device-specific Operations

Format:

count

Inputs:

DISPATCH (IOCTL,channel,R18,R19,R20,R21)

IOCTL

channel

retadr

= R16;

=R17;

= R26;

IOCTL function code - 1216

Channel number of device to be accessed

Return address

For Magnetic Tape Devices Only:

operate

count

Outputs:

=R1B;

= R19;

=R20
R21

Tape positioning operation:

'01' For skip to next/previous interrecord gap
'02' For skip over tape mark
'03' For rewind
'04' For write tape mark

Number of skips to perform (signed)

Reserved for future use as inputs

For Magnetic Tape Devices Only:

count = RO; Number of skips performed and status:

RO<63:62> '00' success
'10' Failure, position not found
'11' Hardware failure

RO<61:60> SBZ
RO<59:32> Device-specific error status
RO<31:0> Number of skips actually performed (signed)

IOCTL performs special device-specific operations on I/O devices. The operation
performed and the interpretation of any additional arguments passed in R18-R21
are functions of the device type as designated by the channel number passed in R17.

For magnetic tape devices, the following operations are defined:

1. '01' - IOCTL relocates the current tape position by skipping over a number of
interrecord gaps. The direction of the skip and the number of gaps skipped
is given by the signed 32-bit count in R19. Skipping with a count of '0' does

2-48 Console Interface Architecture (III)

not change the current tape position. The number of gaps actually skipped is
returned in RO<31:0>.

2. '02' - IOCTL relocates the current tape position by skipping over a number of tape
marks. The direction of the skip and the number of marks skipped is given by
the signed 32-bit count in R19. Skipping with a count of '0' does not change the
current tape position. The number of tape marks actually skipped is returned in
RO<31:0>.

3. '03' - IOCTL rewinds the tape to the position just after the Beginning-of-Tape
(BOT) marker. RO<31:0> is returned as SBZ.

4. '04' - IOCTL writes a tape mark starting at the current position. RO<31:0> is
returned as SBZ.

IOCTL returns magnetic tape operation status in RO<63:62>. If the operation was
successful, RO<63:62> is set to '00'. If the tape positioning was not successful, the
tape is left at the position where the error occurred and RO<63:62> is set to '10'.
Tape positioning may fail due to encountering a BOT marker (RIB '01' or '02'),
encountering a tape mark (RIB '01'), or running off the end of the tape. If a hardware
device error is encountered, the final position of the tape is UNPREDICTABLE and
RO<63:62> is set to '11'. In the event of an error, additional device-specific status is
recorded in RO<61:32>.

The return address indicated by R26 should be mapped and kernel executable.

Console Interface to Operating System Software (III) 2-49 •

2.3.5.3 OPEN - Open Generic 1/0 Device for Access

Format:

channel

Inputs:

DISPATCH (OPEN,devstr,length)

OPEN

devstr

length

retadr

Outputs:

channel

=R16;

= R17;

=RIB;

=R26;

=RO;

OPEN function code - 1016

Starting virtual address of byte string that contains the
device specification

Length of byte buffer

Return address

Assigned channel number and status:

RO<63:62> '00' Success
'10' Failure, device does not exist
'11' Failure, error, device cannot be

accessed or prepared
RO<61:60> SBZ
RO<59:32> Device-specific error status
RO<31:0> Assigned channel number of device

OPEN prepares a generic 110 device for use by the READ and WRITE routines.
R17 contains the base virtual address of a byte string that specifies the complete
device specification of the 110 device. The length of the string is given in RIS. The
format and contents of the device specification string follow that of the BOOTED_
DEV environment variable.

The routine assigns a unique channel number to the device. The channel number is
returned in RO and must be used to reference the device in subsequent calls to the
READ, WRITE, and CLOSE routines.

OPEN returns status in RO<63:62>. If the I/O device exists and can be prepared for
subsequent accesses, RO<63:62> is set to '00'. If the device does not exist, RO<63:62>
is set to '10'. If the device exists, but errors are encountered in preparing the
device, RO<63:62> is set to '11' and additional device-specific status is recorded in
RO<61:32>. In the latter two failure cases, the channel number returned in RO<31:0>
is UNPREDICTABLE.

All console implementations must support at least two concurrently opened generic
110 devices. Additional generic 110 devices may be supported.

For magnetic tape devices, OPEN does not affect the current tape position, nor is
any rewind of the tape performed.

2-50 Console Interface Architecture (III)

Multiple channels cannot be assigned to the same device; the second and any
subsequent calls to OPEN fail with RO<63:62> set to '11' and RO<31:0> as
UNPREDICTABLE. The status of the first opened channel is unaffected.

The input string located by R17 should be mapped and kernel read accessible; the
return address indicated by R26 should be mapped and kernel executable.

Console Interface to Operating System Software (III) 2-51 •

2.3.5.4 READ - Read Generic I/O Device

Format:

rcount DISPATCH (READ, channel, count, address ,block)

Inputs:

READ = R16;

channel = R17;

count = RIB;

address = R19;

block = R20;

retadr = R26;

Outputs:

READ function code - 1316

Channel number of device to be accessed

Number of bytes to be read (should be multiple of the
device's record length) (unsigned)

Virtual address of buffer to read data into

Logical block number of data to read (used only by disk
devices)

Return address

rcount =RO; Number of bytes read and status:

RO<63> '0' Success
'1' Failure

RO<62> '1' EOT or Logical End of Device condi
tion encountered

'0' Otherwise
RO<61> '1' Illegal record length specified

'0' Otherwise
RO<60> '1' Run off end of tape

'0' Otherwise
RO<59:32> Device-specific error status
RO<31:0> Number of bytes actually read (unsigned)

READ causes data to be read from the generic 110 device designated by the channel
number in R17 and written to a memory buffer pointed to by R19. The 32-bit
transfer byte count, hence length of the buffer, is contained in RIB. The buffer must
be quadword aligned, virtually mapped, and resident in physical memory.

READ returns transfer status in RO<63:60> and the number of bytes actually read,
if any, in RO<31:0>. If the routine is successful, RO<63> is set to '0'. If an error is
encountered in accessing the device, RO<63> is set to '1'. Additional device-specific
status may be returned in RO<59:32>.

The transfer byte count should be a multiple of the record length of the device. If the
specified byte count is not a multiple of the record length, RO<61> is set to '1'. If the
count exceeds the record length, the count is rounded down to the nearest multiple

2-52 Console Interface Architecture (III)

of the record length and READ attempts to read that number of bytes. If the record
length exceeds the count, it is UNPREDICTABLE whether READ attempts to access
the device. If no read attempt is made, RO<63> is set to '1'.

For magnetic tape devices, READ does not interpret the tape format or differentiate
between ANSI formatted and unformatted tapes. The routine simply reads the
requested transfer byte count starting at the current tape position. READ terminates
when one of the following occurs:

1. The specified number of bytes have been read. In this case, RO<63:60> is set to
'0000'.

2. An interrecord gap is encountered. In this case, the tape is positioned to the next
position after the gap and RO<63:60> is set to '0000'.

3. A tape mark is encountered. In this case, tape is positioned to the next position
after the tape mark and RO<63:60> is set to '0100'. (After calling READ and
finding a tape mark, the caller can determine if the logical End-of-Volume or an
empty file section has been found by calling READ again. The condition exists if
the second READ returns with zero bytes read and a tape mark found.)

4. The routine runs off the end of tape. In this case, RO<63:60> is set to '1001'.

READ ignores End-of-Tape (EaT) markers.

For disk devices, READ does not understand the file structure of the device. The
routine simply reads the requested transfer byte count starting at the logical block
number specified by R20. The transfer continues until either the specified number
of bytes has been read or the last logical block on the device has been read. If the
logical end of the device is encountered, then RO<63:62> is set to '01'.

For network devices, READ interprets and removes any device-specific or protocol
specific packet headers. If a packet has been received, the remainder of the packet is
copied into the specified buffer. If a packet has not been received, the routine returns
with RO<31:0> set to '0'. Only those network packets that are specifically addressed
to this system and are of the specified protocol type are returned; broadcast packets
are not returned. The actual packet size is dependent on the device and protocol;
the characteristics of the network device and protocol are specified at the time of the
channel OPEN.

The buffer pointed to by R19 should be mapped and kernel write accessible; the
return address indicated by R26 should be mapped and kernel executable.

Console Interface to Operating System Software (III) 2-53 •

2.3.5.5 WRITE - Write Generic I/O Device

Format:

wcount DISPATCH (WRITE,channel,count,address,block)

Inputs:

WRITE =R16;

channel =R17;

count =R18;

address =R19;

block =R20;

retadr =R26;

Outputs:

WRITE function code - 1416

Channel number of device to be accessed

Number of bytes to be written (should be multiple of the
device's record length) (unsigned)

Virtual address of buffer to read data from

Logical block number of data to be written (used only by
disk devices)

Return address

wcount = RO; Number of bytes written and status:

RO<63> '0' Success
'1' Failure

RO<62> '1' EOT or Logical End of Device condi
tion encountered

'0' Otherwise
RO<61> '1' Illegal record length specified

'0' Otherwise
RO<60> '1' If run off end of tape

'0' Otherwise
RO<59:32> Device-specific error status
RO<31:0> Number of bytes actually written (unsigned)

WRITE causes data to be written to the generic I/O device designated by the channel
number in R17 and read from a memory buffer pointed to by R19. The 32-bit transfer
byte count, hence length of the buffer, is contained in R18. The buffer must be
quadword aligned, virtually mapped, and resident in physical memory.

WRITE returns transfer status in RO<63:60> and the number of bytes actually
written, if any, in RO<31:0>. If the routine is successful, RO<63> is set to '0'. If
an error is encountered in accessing the device, RO<63> is set to '1'. Additional
device-specific status may be returned in RO<59:32>.

The transfer byte count should be a multiple of the record length of the device. If the
specified byte count is not a multiple of the record length, RO<61> is set to '1'. If the
count exceeds the record length, the count is rounded down to the nearest multiple

2-54 Console Interface Architecture (III)

of the record length and WRITE attempts to write that number of bytes. If the
record length exceeds the count, it is UNPREDICTABLE whether WRITE attempts
to access the device. If no write attempt is made, RO<63> is set to '1'.

For magnetic tape devices, WRITE does not interpret the tape format or differentiate
between ANSI formatted and unformatted tapes. The routine simply writes the
requested transfer byte count starting at the current tape position. WRITE
terminates when any of the following occur:

1. The specified number of bytes has been written without detecting an End-of-Tape
(EOT) marker. In this case, RO<63:60> is set to '0000'.

2. The specified number ofbytes has been written and an End-of-Tape (EaT) marker
was detected. In this case, RO<63:60> is set to '0100'.

3. The routine runs off the end of tape. In this case, RO<63:60> is set to '1001'.

For disk devices, WRITE does not understand the file structure of the device. The
routine simply writes the requested transfer byte count starting at the logical block
number specified by R20. The transfer continues until either the specified number
of bytes has been written or the last logical block on the device has been written. If
the logical end of the device is encountered, then RO<63:62> is set to '01'.

For network devices, WRITE appends any device-specific or protocol-specific headers.
The routine transmits the specified requested transfer bytes with the proper network
protocol over the appropriate network. The actual packet size is dependent on
the device and protocol; the characteristics of the network device and protocol are
specified at the time of the channel OPEN.

The buffer pointed to by R19 should be mapped and kernel write accessible; and the
return address indicated by R26 should be mapped and kernel executable.

Console Interface to Operating System Software (III) 2-55 •

2.3.6 Console Environment Variable Routines

System software accesses the environment variables indirectly through console
callback routines. These routines may be invoked while the operating system is
fully functional as well as during operating system bootstrap or crash. The GET_
E~ SET_ENV, and RESET_ENV routines are subject to the constraints given in
Section 2.3.1. These routines must:

• Not alter the current IPL or current mode.

These routines must be invoked in kernel mode.

• Not alter the existing memory management policy.

All internal pointers must be remapped by FIXUP.

• Not block interrupts.

The operating system must be capable of continuing to receive hardware and
software interrupts.

The constraints on SAVE_ENV differ; see Section 2.3.6.3.

The time necessary for these routines to complete is UNPREDICTABLE; however,
a console implementation will attempt to minimize the time whenever possible.

Software Note:

Implementations must limit the execution time of these routines to significantly
less than the interval clock interrupt period.

The console implementation must ensure that any access to an environment variable
is atomic. The console implementation must resolve multiple competing accesses by
system software as well as competing accesses by system software and the console
presentation layer.

When invoking these routines, system software must be executing in kernel
mode. If these routines are invoked in other modes, their execution causes
UNPREDICTABLE operation.

These routines may be invoked on both the primary and secondary processors in
a multiprocessor configuration. It is recommended that system software serialize
competing accesses to a given environment variable; a stale value may be returned
if GET_ENV is invoked simultaneously with SET_ENV or RESET_ENV

2-56 Console Interface Architecture (III)

2.3.6.1 GET_ENV • Get an Environment Variable

Format:

status DISPATCH (GET_ENV,ID,value,length)

Inputs:

GET_ENV = R16;

ID = R17;

value =RIB;

length

retadr

= R19;

= R26;

GET_ENV function code - 2216

ID of environment variable

Starting virtual address of buffer to contain returned
value

Number of bytes in buffer (unsigned)

Return address

Outputs:

=RO;status Status:

RO<63:6I> '000' Success
'001' Success, byte stream truncated
'110' Failure, variable not recognized

RO<60:32> SBZ
RO<31:0> Count of bytes returned (unsigned)

GET_ENV causes the value of the environment variable specified by the ID in R17
to be returned in the byte stream specified by the virtual address in R18. The size
in bytes of the input buffer is contained in R19.

GET_ENV returns status in RO<63:61>. If the environment variable is recognized,
RO<63:62> is set to '00', its current value is copied into the byte stream, and RO<31:0>
is set to the number of bytes copied. If the value must be truncated, RO<61> is set
to '1'. If the variable is not recognized, RO<63:61> is set to '110' and RO<31:0> is set
to '0'.

The byte stream indicated by RIB should be mapped and kernel write accessible;
the return address indicated by R26 should be mapped and kernel executable.

Console Interface to Operating System Software (III) 2-57 •

2.3.6.2 RESET_ENV - Reset an Environment Variable

Format:

status DISPATCH (RESET_ENV,ID,value,length)

Inputs:

RESET_ENV = R16;

ID =R17;

value = RIB;

length

retadr

=R19;

=R26;

RESET_ENV function code - 2116

ID of environment variable

Starting virtual address of byte stream to contain
returned value

Number of bytes in buffer (unsigned)

Return address

Outputs:

Success
Success, byte stream truncated
Failure, variable read-only
Failure, variable read-only, byte
stream truncated
Failure, variable not recognized

Status:

RO<63:61> '000'
'001'
'100'
'101'

=RO;status

'110'
RO<60:32> SBZ
RO<31:0> Count of bytes returned (unsigned)

RESET_ENV causes the environment variable specified by the ID in R17 to be reset
to the system default value and that default value to be returned in the byte stream
specified by the virtual address in RIB. The size in bytes of the input buffer is
contained in R19.

RESET_ENV returns status in RO<63:61>. If the environment variable is
successfully reset to the default value, RO<63:62> is set to '00'. If the variable
is recognized but read-only, the value is unchanged and RO<63:62> is set to '10'. In
both cases, the default value is copied into the byte stream and RO<31:0> is set to
the number of bytes copied; if the value must be truncated, RO<61> is set to '1'. If
the variable is not recognized, RO<63:61> is set to '110' and RO<31:0> is set to '0'.

The byte stream indicated by RIB should be mapped and kernel write accessible;
the return address indicated by R26 should be mapped and kernel executable.

2-58 Console Interface Architecture (III)

2.3.6.3 SAVE_ENV - Save Current Environment Variables

Format:

status

Inputs:

DISPATCH (SAVE_ENV

SAVE_ENV = R16;

retadr = R26;

Outputs:

SAVE_ENV function code - 2316

Return address

status = RO; Status:

RO<63:61> '000'
'001'

'110'
'111'

RO<60:0> SBZ

Success, all values saved
Success, some bytes saved, addi
tional values to be saved
Failure, routine unsupported
Failure, error encountered saving
values

SAVE_ENV attempts to update the nonvolatile storage of those environment
variables that must be retained across console initializations and system power
transitions. These environment variables are identified as "NV" in Table 2-6.

Programming Note:

For example, SAVE_ENV may cause an EEPROM to be updated. That update
may write all "NV" environment variable values to the EEPROM, or may only
write those variables that have been modified since the last update or console
initialization.

This routine is not subject to the constraints given in Section 2.3.6. The console may
usurp operating system control of the system platform hardware, but must restore
any such control or altered state prior to return. The console must not service any
interrupts or exceptions that are otherwise intended for the operating system.

The nonvolatile storage update may take significant time and multiple invocations
of SAVE_ENV may be necessary. The time necessary for this routine to complete
is UNPREDICTABLE. A console implementation will attempt to minimize the time
whenever possible and must return in a timely fashion. The routine must return
after partial operation completion if necessary. It is the responsibility of the console
to ensure that subsequent calls make forward progress. The operating system may
delay for extended periods between subsequent calls; the console must not rely on
timely invocations of SAVE_E~

Console Interface to Operating System Software (III) 2-59 •

Implementation Note:

Implementations must limit the execution time of these routines to significantly
less than the interval clock interrupt period. A return after partial operation
completion is preferable to long latency.

SAVE_ENV returns status on the update in RO<63:61>. When the update has
successfully completed and all relevant variables have been saved, the routine
returns with RO<63:61> set to '000'. If SAVE_ENV returns after only a partial
update to ensure timely response, RO<63:61> set to '001'. If an unrecoverable error
is encountered, the routine returns with RO<63:61> set to '111'. The contents of the
nonvolatile storage are UNDEFINED.

Implementation of SAVE_ENV is optional. If the console does not support SAVE_
ENV, the routine returns with RO<63:61> set to '110'.

On a multiprocessor system with an embedded console, the routine must be invoked
on each processor in the configuration.

It is recommended that system software ensure that calls to SET_ENV or RESET_
ENV are not issued while an update operation is in progress on any processor. It is
UNPREDICTABLE whether the updated environment value is saved.

The return address indicated by R26 should be mapped and kernel executable. This
routine does not affect the current value of any environment variable maintained by
the console.

2-60 Console Interface Architecture (III)

2.3.6.4 SET_ENV - Set an Environment Variable

Format:

status

Inputs:

DISPATCH (SET_ENV,ID,value,length)

SET_ENV = R16;

ID = R17;

value =R18;

length = R19;

retadr =R26;

Outputs:

SET_ENV function code - 2016

ID of environment variable

Starting virtual address of byte stream containing value

Number of bytes in buffer (unsigned)

Return address

status =RO; Status:

RO<63:6l> '000'
'100'
'110'
'Ill'

Success
Failure, variable read-only
Failure, variable not recognized
Failure, byte stream exceeds value
length

RO<60:3l> SBZ
RO<3l:0> Maximum value length (unsigned)

SET_ENV causes the environment variable specified by the ID in R17 to have the
value specified by the byte stream value pointed to by the virtual address in R18.
The size in bytes of the input buffer is contained in R19.

SET_ENV returns status in RO<63:6l>. If the environment variable is successfully
set to the new value, RO<63:6l> is set to '000'. If the variable is not recognized,
RO<63:6l> is set to '110'. If the variable is read-only, the value is unchanged and
RO<63:6l> is set to '100'. If the input buffer exceeds the maximum value length, the
value is unchanged and RO<63:61> is set to 'Ill'. In all cases, the maximum value
length is returned in RO<31:0>.

The byte stream indicated by R18 should be mapped and kernel read accessible; the
return address indicated by R26 should be mapped and kernel executable.

Console Interface to Operating System Software (III) 2-61 I

2.3.7 Miscellaneous Routines
2.3.7.1 FIXUp· Fixup Virtual Addresses in Console Routines

Format:

status

Inputs:

NEW_BASE_VA= R16; New starting virtual address of the console callback
routines

Status:

RO<63>

HWRPB_VA

retadr

Outputs:

status

= R17;

= R26;

= RO;

New starting virtual address of the HWRPB

Return address

'0' Success
'1' Failure

RO<62:0> SBZ

FIXUP adjusts virtual address references in all other console callback routines using
the new starting virtual address in R16, the new starting virtual address of the
HWRPB in R17, and the current contents of the CRB. See Section 2.3.8.1.2 for a full
description of FIXUP usage and functionality.

If FIXUP is successful, it returns with RO<63> set to '0'. If FIXUP is not successful,
console internal state has been compromised. The console attempts a cold bootstrap
if the state transition in Figure 3-1 indicates a bootstrap and the BOOT_RESET
environment variable is set to "ON" (4E4F16). Otherwise, the system remains in
console I/O mode.

This routine must be called in kernel mode and in the context of the existing memory
mapping; otherwise its execution causes UNPREDICTABLE or UNDEFINED
operation.

Software Note:

FIXUP must be called while the original address space mapping is in effect.

The return address indicated by R26 should be mapped and kernel executable.

2-62 Console Interface Architecture (III)

2.3.7.2 PSWITCH - Switch Primary Processors

Format:

status

Inputs:

DISPATCH (PSWITCH,action)

PSWITCH = R16;

action = R17;

= R18;

= R26;

Outputs:

PSWITCH function code - 3016

Action requests:

R17<63:2> SBZ
R17<1:0> '01' Transition from primary

'10' Transition to primary
'11' Switch primary

New primary CPU ID

Return address

status = RO; Status:

RO<63> '0' Success
'1' Failure, operation not supported

RO<62:0> Implementation-specific error status

PSWITCH attempts to perform any implementation-specific functions necessary to
support primary switching. R17 indicates the requested primary transition action.
R18 contains the CPU ID (WHAMI IPR) of the new primary.

PSWITCH is invoked by the old primary, the secondary that is to become the
new primary, or both. See Section 3.5.6 for a full description of PSWITCH usage,
functionality, and error returns.

If PSWITCH is successful, it returns with RO<63> set to '0'. If PSWITCH is
unsuccessful for any reason, it returns with RO<63> set to '1' and implementation
specific status in RO<62:0>.

PSWITCH is invoked at the highest IPL level or it produces UNDEFINED results.
The return address indicated by R26 should be mapped and kernel executable.

Console Interface to Operating System Software (III) 2-63 •

2.3.8 Console Callback Routine Data Structures

The console and system software share two data structures that are necessary for
the console callback routines: the Console Routine Block (CRB) and the Console
Terminal Block (CTB) table. Both are located by offset fields in the HWRPB as
shown in Figure 2-4.

The CRB locates all addresses necessary for console callback routine function. The
base physical address of the CRB is obtained by adding the CRB OFFSET field at
HWRPB[192] to the base physical address of the HWRPB. The CRB format is shown
in Figure 2-5 and described in Table 2-10.

The CTB table contains information necessary to describe the console terminal
devices. The base physical address of the CTB table is obtained by adding the CTB
TABLE OFFSET field at HWRPB[184] to the base physical address of the HWRPB.
The CTB format is shown in Figure 2-6 and described in Table 2-11.

Figure 2-4: Console Data Structure Linkage

[: :HWRPB 1:CTB]

[Offset to CTB] : -------------------------

[]

[Offset to CAB] :].. I [VA of DISPATCH Procedure Value] :CRB
[PA of DISPATCH Procedure Value]

[VA of FIXUP Procedure Value]
[Procedure Descriptor 1st Quadword] [PA of FIXUP Procedure Value]

[VA of DISPATCH Entry]~ [Number of Entries in Map]
[Number of Pages in Map]
[Virtual/Physical Map]

[DISPATCH Procedure]

2.3.8.1 Console Routine Block

Prior to transferring control to system software, the console ensures that the console
callback routines, console-private data structures, and associated local I/O space
locations are mapped into region 0 of initial bootstrap address space. All necessary
pages are located by the console routine block (CRB).

2-64 Console Interface Architecture (III)

Figure 2-5: Console Routine Block

63

+16

CAB

+24

+32

+72

+56

+48

+40

+08

Virtual Address of DISPATCH Procedure Descriptor :

Physical Address of DISPATCH Procedure Descriptor :

Virtual Address of FIXUP Procedure Descriptor :

Physical Address of FIXUP Procedure Descriptor :

Number of Entries in the Virtual-Physical Map :

Number of Pages To Be Mapped :

Virtual Address for Entry 1 :

Physical Address for Entry 1 :

Page Count for Entry 1 :

/./ I'll
1"./ 1"./

Virtual Address for Entry Last

Physical Address for Entry Last

Page Count for Entry Last

Table 2-10: CRB Fields

Offset Description

CRB DISPATCH VA - The virtual address of the OpenVMS procedure descriptor for
the DISPATCH procedure.

+08 DISPATCH PA - The physical address of the OpenVMS procedure descriptor for
the DISPATCH procedure.

+16 FIXUP VA - The virtual address of the OpenVMS procedure descriptor for the
FIXUP procedure.

+24 FIXUP PA - The physical address of the OpenVMS procedure descriptor for the
FIXUP procedure.

+32 ENTRIES - The number of entries in the virtual-physical map. Unsigned
integer.

+40 PAGES - The total number of physical pages to be mapped. Unsigned integer.

Console Interface to Operating System Software (III) 2-65 I

Table 2-10 (Cont.): CRB Fields

Offset Description

+48 ENTRY - Each entry identifies a collection of physically contiguous pages to be
mapped. Each map entry consists of three quadwords:

Offset

+00
+08
+16

Name

ENTRY_VA
ENTRY_PA
ENTRY_PAGES

Description

Base virtual address for entry
Base physical address for entry
Number of contiguous physical pages to be
mapped. Unsigned integer.

The CRB must be quadword aligned. The DISPATCH and FIXUP addresses must
be quadword aligned; all unused bits should be zero. The ENTRY addresses must
be page aligned and all unused bits should be zero.

The DISPATCH and FIXUP procedure descriptors located by DISPATCH_PA,
DISPATCH_VA, FIXUP_PA and FIXUP_VA must be contained within the pages
located by the first virtual-physical map entry.

2.3.8.1.1 Console Routine Block Initialization

Prior to transferring control to system software, the console initializes all fields of
the CRB. The console fills in all physical and virtual address fields, the number
of entries in the virtual-physical map (ENTRIES), the total number of pages to be
mapped (PAGES), and the virtual addresses contained in the OpenVMS procedure
descriptors for the DISPATCH and FIXUP procedures!. PAGES is the sum of the
contents of all ENTRY_PAGES fields.

All addresses are initially mapped within region 0 of the initial bootstrap address
space. These addresses include the contents of the CRB and all addresses contained
within the DISPATCH and FIXUP procedure descriptors. The mapping must permit
kernel access with appropriate read/write/execute access. The KRE, KWE, and FOx
PTE fields are never subsequently altered by system software. The initial mapping
need not be virtually contiguous.

2.3.8.1.2 Console Routine Remapping

When the console transfers control to the system software, the console callback
routines may be invoked by the system software without additional setup. All
necessary virtual mappings into initial bootstrap address space must be performed
by the console prior to transferring control.

The system software may virtually remap the console callback routines. This
remapping permits the system software to relocate the routines to virtual addresses

1 Recall from the OpenVMS AXP calling standard that the second quadword of a procedure descriptor contains the entry
address (virtual) of the procedure itself.

2-66 Console Interface Architecture (III)

other than those assigned in initial bootstrap address space. This relocation requires
that the console adjust (or fix up) various internal virtual address references.

The system software invokes the FIXUP routine to enable the console to perform
the necessary internal relocations. The FIXUP routine virtually relocates all console
routines and adjusts any console-private virtual address pointers such as those used
to locate a local 110 device or HWRPB data structure. If system software virtually
remaps the HWRPB, FIXUP must be invoked prior to calling any other console
callback routine; it is recommended that system software remap both the HWRPB
and the console routines together. Calling the console callback routines after the
HWRPB has been remapped from its original bootstrap address location results in
UNDEFINED operation of the system.

To remap the console callback routines, the system software and the console
cooperate as follows:

1. System software must be executing on the primary processor in a multiprocessor
system.

2. System software determines the new base virtual address of the HWRPB; this
remapping is optional. System software does not perform any remapping of the
HWRPB at this step.

System software need not remap the memory data descriptor table located by
HWRPB[200]. See Section 2.1 for a description of the HWRPB and its size.

3. System software determines the new base virtual address of the console callback
routines. The CRB entries will be mapped into a set of virtually contiguous
pages. The CRB PAGES field (CRB[40]) is used to determine the number of
pages that must be mapped. System software does not perform any remapping
of the console callback routines at this step.

4. System software passes control to the console by calling FIXUP (NEW_BASE_
VA, NEW_HWRPB_VA), initiating the remapping. NEW_BASE_VA is the new
base virtual address as established in step 3. HWRPB_VA is the new starting
virtual address of the HWRPB as established in step 2. The remapping process
is only initiated at this step; do not attempt to access the HWRPB or CRB using
the new VMs.

5. The console first locates the HWRPB, then locates the CRB using the CRB
OFFSET field. The console then locates all internal pointers and adjusts them.
All linkage sections and other console-internal pointers must be modified. These
data structures can be located during FIXUP because the initial bootstrap
address space mapping is in effect; any console-internal pointers are valid until
modified.

System software need not remap the optional CONFIG block or FRU table located
by HWRPB OFFSET fields. If these blocks will be subsequently used by the
console, they must be located by console-internal pointers and those pointers
must be modified during FIXUP.

Console Interface to Operating System Software (III) 2-67 I

DISPATCH and FIXUP are not uniquely remapped by the system software. The
FIXUP must update the DISPATCH and FIXUP procedure descriptors located by
CRB[8] and CRB[24]. The physical pages containing the procedure descriptors
and the routines themselves must be included in the virtual-physical map.

The relative virtual address offsets of the pages located by the entry map are
not guaranteed to be retained across the FIXUP. The initial bootstrap address
mapping of the physical pages located by the entry map is not required to be
virtually contiguous. The system software remapping is required to be virtually
contiguous. Any offsets that cross physical pages may have to be modified by
FIXUP.

6. The console returns from FIXUP. If the FIXUP was not successful, console
internal state has been compromised. The console attempts a cold bootstrap
if the state transition in Figure 3-1 indicates a bootstrap and the BOOT_RESET
environment variable is set to "ON" (4E4F16). Otherwise, the system remains in
console I/O mode.

7. System software updates each virtual-physical map entry of the CRB:

1. The PTE and TB entries that correspond to the range of old virtual address
are invalidated using the old ENTRY_VA and ENTRY_PAGES values.

2. The new starting virtual address is written into the ENTRY_VA. This virtual
address is computed by adding the NEW_BASE_VA to the sum of the PAGE_
COUNTs of each preceding entry.

3. New PTEs are constructed for each physical page. The new PTE FOx and
protection fields are copied from the original bootstrap address PTE.

Programming Note:
It is the responsibility of the console to judiciously set both the protection
and FOx bits in the bootstrap address PTE. In particular, if the console
sets the FOE bit, there is no architectural guarantee that the console
exception handler will gain control as a result, nor is there any obvious
appropriate response for the operating system handler.

8. System software updates the DISPATCH and FIXUP VXs. The first virtual
physical map entry locates the physical page that contains the DISPATCH and
FIXUP procedure descriptors.

9. System software updates all PTEs and invalidates all appropriate TB entries
associated with the remapped HWRPB and any remapped OFFSET blocks.

At the completion of this process, the console callback routines are remapped and
may again be used by system software. Since FIXUP itself is relocated, system
software may remap the routines more than once.

2-68 Console Interface Architecture (III)

2.3.8.2 Console Terminal Block Table

The Console Terminal Block (CTB) table indicates the current identity and
characteristics of each console terminal device. The CTB table is the only data
structure shared by the console and system software that describes the terminal
devices accessible by console callback routines.

The CTB table contains an array ofCTBs. Each CTB is a quadword-aligned structure
with format as shown in Figure 2-6 and described in Table 2-11. The index of the
CTB in the CTB table is the unit number of the terminal device. The CTB format
consists of two parts: a header and a device-specific segment. The format of the
header is common to all CTBs; the format of the device-specific segment is dependent
on the unique device type.

There is only one console terminal. The console terminal unit is selected by
the console presentation layer prior to bootstrapping the operating system. See
Section 1.3. Once the operating system is bootstrapped, the console terminal unit
should not be changed by the console presentation layer. Any attempt to do so results
in UNDEFINED operation of the console. Specifically, if the console presentation
layer halts the operating system, alters the console terminal unit, then restarts or
continues operating system execution, the operation of the console is UNDEFINED.
The console terminal unit is identified by the TTY_DEV environment variable.

During console initialization, the console:

1. Locates all console terminal devices.

2. Selects the console terminal.

3. Builds a CTB for each.

4. Initializes the CTB OFFSET field of the HWRPB.

5. Initializes each console terminal device.

6. Records the default state of each console terminal device in its CTB.

7. Records the unit number of the console terminal in the TTY_DEV environment
variable.

Whenever the console changes the state of a console terminal device, the console
must update its CTB to reflect the change. The console may record extended status
on character transfers (GETC/PUTS) in the CTB.

System software uses the CTB to determine console terminal device characteristics.
System software never directly modifies the contents of a CTB; such modifications
can result in UNDEFINED operation of the console terminal device either as the
result of a subsequent call to a console terminal routine or as the result of a console
internal need to access a console terminal device (for example, as the result of a
halt). System software calls the SET_TERM_CTL console terminal routine to change
console terminal device characteristics.

Console Interface to Operating System Software (III) 2-69 I

Figure 2-6: Console Terminal Block

63 31

+32

+24

+08

+16

eTBDevice Type :

Device ID :

Reserved :

Length of Device-Specific Data in Bytes :

I'V .. I'llDevice-Specific Data Segment

T J

Table 2-11: eTB Fields

Offset Description

CTB DEVICE TYPE - Console terminal device type and format of the device-specific
segment. Defined device types are:

Type Description

o
1
2
3
4
Other

No console present
Detached service processor
Serial line DART
Graphics display with LK keyboard connected to serial line DART
Multipurpose
Reserved

+08 DEVICE ID - The physical device and channel that sends and receives the
console terminal stream. This field is necessary for configurations that include
multiple-channel devices or multiple single-channel devices. The field has two
subfields:

Bits Description

<63:32>
<31:0>

Device index
Channel index

For implementations that support only a single directly connected console terminal
device, this field is set to zero. The device ID is not necessarily related to the
console terminal device unit number.

2-70 Console Interface Architecture (III)

Table 2-11 (Cont.): CTB Fields

Offset Description

+16 RESERVED - This field is reserved for future expansion and may not be used
by the console or system software.

+24 DSD LENGTH - This field specifies the number of bytes in the device-specific
data field, DSD.

+32 DSD - This field contains device-specific data associated with the unique console
terminal type. Device-specific data may include such parameters as baud rate,
flow eentrol enable, and the current state of the CAPS LOCK key. The DSD field
should contain only those items that must be shared between the console and
system software.

2.4 Interprocessor Console Communications

Only those communications between a running processor and a console processor are
considered here. Communications paths between running processors are external to
the console. Communications paths between console processors are internal to the
console.

Commands are transmitted from a running primary to a console secondary; messages
(and requests) are transmitted from a console secondary to a running primary.
Commands and messages are passed via receive (RX) and transmit (TX) buffers
contained in each per-CPU slot of the HWRPB. The use of these buffers is controlled
by the Receive Buffer Ready (RXRDY) and Transmit Buffer Ready (TXRDY) flags.

The transmit and receive buffers are named from the point of view of the console
secondary. The console secondary receives commands in the RX buffer and transmits
messages in the TX buffer.

2.4.1 Interprocessor Console Communications Flags

The Receive Buffer Ready (RXRDY) and Transmit Buffer Ready (TXRDY) flags are
used to control the interprocessor console communications. The RXRDY and TXRDY
flags are gathered into bitmasks in the HWRPB at HWRPB[296] and HWRPB[304]
respectively. The TXRDY bitmask allows a running primary to quickly determine
which, if any, of the console secondaries are trying to send messages.

The running primary sets the appropriate RXRDY flag to indicate to the receiving
console secondary that a command is contained in the secondary's RX buffer. The
secondary is assumed to be polling its RXRDY flag. The RXRDY flag is cleared by
the secondary after the command has been read from the RX buffer and prior to
executing the command.

A console secondary sets its TXRDY flag to indicate to the running primary that
a message is contained in the secondary's TX buffer. The console generates an
interprocessor interrupt to the primary to notify it that a message is ready. System
software clears the TXRDY flag after the message has been read from the TX buffer
and prior to processing the message.

Console Interface to Operating System Software (III) 2-71 I

Implementation Note:

The TXRDY bitmask minimizes interprocessor interrupt service overhead by
reducing the number of required memory lookups.

2.4.2 Interprocessor Console Communications Buffer Area

Each per-CPU slot of the HWRPB includes an RXTX Buffer Area that provides
the communications path between processors. The buffer area is controlled by the
RXRDY and TXRDY flags. The format is shown in Figure 2-7 and described in
Table 2-12.

Figure 2-7: Inter-Console Communications Buffer

-------------------'''--------------------1:SLOT+296

________________________________I:sLOT+304

________________________________J:SLOT+384

:SLOT+464

63 3231

I TXLEN I RXLEN

Rx Buffer

I
8010 Bytes

Tx Buffer

T
8010 Bytes

Table 2-12: Inter-Console Communications Buffer Fields

Offset Description

SLOT+296 RXLEN - If the bit corresponding to this processor is set in the RXRDY
bitmask at HWRPB[296], the RXLEN field contains the length in bytes of the
command in the RX buffer.

+300 TXLEN - If the bit corresponding to this processor is set in the TXRDY
bitmask at HWRPB[304], the TXLEN field contains the length in bytes of the
message in the TX buffer.

+304 RX BUFFER - Buffer used by this console secondary to receive a command
from the running primary. Only command data is passed through this buffer;
a console secondary does not receive messages from the running primary.
Commands must end with "<CR><LF>" (OAOD16).

+384 TX BUFFER - Buffer used by this console secondary to transmit a message
to the running primary. Only message data is passed through this buffer; a
console secondary does not send commands to the running primary. Messages
must end with with the console secondary's prompt, "<CR><LF>Pnn»>"
(3E3E 3Enn nn50 OAOD16).

2-72 Console Interface Architecture (III)

2.4.3 Sending a Command to a Secondary
The running primary manipulates the secondary's RXRDY flag and RX buffer in the
following manner to send a command to a console secondary. In the sequence, the
console secondary is assumed to have CPU ID =n.

Programming Note:

The RXRDY flag is a software lock variable; the primary and the secondary must
use LD~UST~Cinstructions to set and clear bit n. See Common Architecture,
Chapter 5.

1. The primary examines bit n of the RXRDY bitmask. If the bit is clear, proceed
to step 3.

2. The primary polls bit n of the RXRDY bitmask until clear or until some timeout
is reached. If a timeout occurs, system software reports an error and takes
appropriate action.

3. The primary moves the text of the desired console command into the RX buffer
in the secondary's HWRPB slot (the nth per-CPU slot).

4. The primary sets the length of the command into the RXLEN field in the
secondary's HWRPB slot (the nth per-CPU slot).

5. The primary sets bit n of the RXRDY bitmask to indicate there is a command
waiting.

6. The secondary is assumed to be polling bit n of the RXRDY bitmask.

7. When the secondary notices that bit n of the RXRDY bitmask is set, it removes
the command from its RX buffer.

8. The secondary clears bit n of the RXRDY bitmask, indicating that its RX buffer
is again available.

9. The secondary attempts to process the command.

2.4.3.1 Sending a Message to the Primary

The console secondary manipulates its TXRDY flag and TX buffer in the following
manner to return a message to the running primary. Again, the console secondary
is assumed to have CPU ID = n.

Programming Note:

The TXRDY flag is a software lock variable; the primary and the secondary must
use LDQ_USTQ_C instructions to set and clear bit n. See Common Architecture,
Chapter 5.

1. The secondary examines bit n of the TXRDY bitmask. If the bit is clear, proceed
to step 3.

2. The secondary polls this bit until it clears or until a long timeout occurs. (See
step 7.)

Console Interface to Operating System Software (III) 2-73 I

3. The secondary moves the text of its response message into the TX buffer in the
secondary's HWRPB slot (the nth per-CPU slot).

4. The secondary sets the length of the message into the TXLEN field in the
secondary's HWRPB slot (the nth per-CPU slot).

5. The secondary sets bit n of the TXRDY bitmask to indicate there is a message
waiting.

6. The secondary issues an interprocessor interrupt to the primary. This is always
done; the primary need not poll for bits in the TXRDY bitmask.

7. The secondary polls the TXRDY bitmask until bit n clears or until a long timeout
expires. This prevents the secondary from performing any action that might
cause the message to be lost before the primary can process it.

Programming Note:
The secondary may be restarted once it has transmitted the error halt
message to the primary. However, it must wait for the primary to have
a reasonable chance to respond to the interprocessor interrupt and process
the message before the restart proceeds, because that message is important
visible evidence of the error halt condition. On the other hand, the secondary
should not wait too long for the primary to respond because the primary may
be affected by the same condition that caused the secondary to error halt.
Hence, the need for a timeout that is of reasonable length.

8. As a result of the interprocessor interrupt, the primary eventually checks for
console messages by examining the TXRDY bitmask. The primary notices that
bit n of the TXRDY bitmask is set.

9. The primary removes the message from the TX buffer.

10. The primary clears bit n of the TXRDY bitmask, indicating that the TX buffer is
again available.

11. The primary attempts to process the message.

2-74 Console Interface Architecture (III)

Chapter 3

System Bootstrapping (III)

This chapter describes the net effects of the action of the console to control the
system platform hardware. The major system state transitions and the role of the
console in controlling those transitions are described in Section 3.1.1. When power
is applied to an Alpha AXP system, the console initializes the system as explained
in Section 3.2. The console actions necessary to bootstrap system software include
processor initialization (Section 3.4.1.5), memory sizing and testing (Section 3.4.1.1),
building an initial virtual address space (Section 3.4.1.2), and loading the bootstrap
(Section 3.6). The console actions to restart system software are described in
Section 3.5.

3.1 Processor States and Modes

3.1.1 States and State Transitions

An Alpha AXP processor can be in one of five major states:

1. Powered off - no system power supplied to the processor

2. Halted - operating system software execution suspended

3. Bootstrapping - attempting to load and start the operating system software

4. Restarting - attempting to restart the operating system software

5. Running - operating system software functioning

As shown in Figure 3-1, the transitions between the major states are determined
by the current state and by a number of variables and events, including:

• Whether power is available to the system

• The console AUTO_ACTION environment variable, which specifies a "Halt
action" (see CALL_PAL HALT)

• The console lock setting

• The Bootstrap-in-Progress (BIP) flags

• The Restart-Capable (RC) flags

• Processor error halts

• The CALL_PAL HALT instruction

• Console commands

System Bootstrapping (III) 3-1 I

Key to Figure 3-1

A Console is unlocked and AUTO_ACTION is "HALT".

B Console is unlocked and AUTO_ACTION is "BOOT".

C Console is unlocked and AUTO_ACTION is "RESTART" or console is locked.

D Console is unlocked, the processor is forced into console I/O mode.

Figure 3-1: Major State Transitions

Action Causing Initial State
Transition to
Final State Off Halted Booting Restart Running

Powerfail Off Off Off Off Off

A and Power Restored Halted
B and Power Restored Booting
C and Power Restored Restart

BOOT and Console Is Locked Booting
START or CONTINUE (and) Running

Console Is Unlocked

Bootstrap Fails or 0 Halted
Bootstrap Succeeds Running

0 Halted
Restart Fails Booting

Restart Succeeds Running

A and Processor Halts or 0 Halted
B and Processor Halts Booting
C and Processor Halts Restart

Final
State

3-2 Console Interface Architecture (III)

To effect major state transitions, the console obeys these rules:

• If the console is unlocked when power is restored or when the processor halts,
enter the state selected by the console AUTO_ACTION environment variable.

• If the console is locked when power is restored or when the processor halts,
attempt a processor restart.

• When processor restart fails, attempt a bootstrap of that processor. One cause of
a failed restart is the processor's RC flag being clear when the console attempts
the restart.

• When system bootstrap fails, halt. One cause of a failed bootstrap is the
processor's BIP flag being set prior to the console attempting the bootstrap. Only
the processor that failed bootstrap will halt.

• When system bootstrap or processor restart succeeds, the processor starts
running.

• When the primary processor is halted and the console is unlocked, the console
BOOT command causes a system bootstrap.

• When a secondary processor is halted and the console is unlocked, the console
START -CPU command causes the console to attempt to start that processor
running.

• When a processor is halted and the console is unlocked, the console CONTINUE
command causes the processor to continue running as though no halt was
incurred.

• If the console is unlocked and a specified processor is running or booting or
restarting, that processor is halted by a console HALT -CPU command.

Implementation Note:
In an embedded console implementation, the primary processor must be
forced into the console 110 mode prior to issuing the HALT -CPU command.

3.1.2 Major Modes

In addition to the major states, the console and processor are described as being in
one of three modes:

1. Program 110 mode

The processor is running. The processor interprets instructions, services
interrupts and exceptions, and initiates 110 operations under the control of the
operating system.

2. Console 110 mode

The processor is halted or bootstrapping or restarting. The console provides
control over the system; the operating system has either relinquished control
or has yet to gain control. The operating system does not service interrupts or
exceptions or initiate 110 operations. The actions of the console are determined
by internal console state and commands from the console operator.

System Bootstrapping (III) 3-3 I

3. Console Initialization mode

The console has yet to acquire control of the processor. The console itself may
also require initialization, such as when power is first applied to the system.

A given processor may be in one of four modes:

1. Primary processor in program 110 mode or "running primary"

2. Primary processor in console 110 mode or "console primary"

3. Secondary processor in program 110 mode or "running secondary"

4. Secondary processor in console 110 mode or "console secondary"

As noted in Section 1.1, implementations must include a mechanism to force a
processor executing in program 110 mode into console 110 mode.

3.2 System Initialization

An Alpha AXP system must be initialized when power is restored. System
initialization also occurs as the result of a system bootstrap when the BOOT_RESET
environment variable is set to "ON", or as the result of the console INITIALIZE
command. Initialization involves all implementation-specific, system-wide actions
necessary to allow the system to boot system software on the primary processor.
Table 3-1 summarizes the effects of initialization as seen by system software.

Initialization may include initialization of the console itself. During console
initialization, the console must build the HWRPB and all associated data structures
necessary to permit the console to accept console commands and boot system
software.

System initialization may also include any necessary system bus, processor, or 110
device initialization. The initialization of a processor performed as part of system
initialization is not necessarily that performed just prior to transfer of control to
the operating system bootstrap. See Section 3.4.1.5 for a description of processor
initialization as seen by system software.

Table 3-1: Effects of Power-Up Initialization

Processor State Initialized State:

BIP and RC flags

Reason for halt code

Integer and floating-point registers

System memory

Environment variables

3-4 Console Interface Architecture (III)

Cleared

'0' (bootstrap)

UNPREDICTABLE

Unaffected if preserved by battery backup;
otherwise, UNPREDICTABLE

Unaffected if nonvolatile; otherwise, set to
default

Unaffected

Table 3-1 (Cant.): Effects of Power-Up Initialization

Processor State Initialized State:

I/O device registers UNPREDICTABLE

3.3 PALcode Loading and Switching

3.3.1 PALcode Loading

The console loads PALcode into good memory within a memory cluster that is not
available to system software. If PALcode scratch space is required, the console
allocates good memory within a memory cluster that is not available to system
software. PALcode memory and scratch space are at least page aligned. The console
records the starting physical address and length of PALcode memory and scratch
space and then sets the PALcode Memory Valid (PMV) flag in the per-CPU slot of
the primary processor. The PMV flag indicates that the PALcode descriptors are
valid.

Mer PALcode loading and initialization, the console sets the PALcode Loaded (PL)
and PALcode Valid (PV) flags in the primary's per-CPU slot. The PL flag indicates
that PALcode has been loaded; the PV flag indicates that any necessary PALcode
initialization has been performed.

PALcode loading and initialization are implementation specific. The PALcode source
may be a special console device, ROM, a system device, a communications line, or
any other implementation-specific source. The state of the console and system must
be such that the source is accessible. The console determines the PALcode variant
in an implementation-specific fashion; console implementations that are dependent
on a given variant load that variant. Console and platform implementations may
select any PALcode variant and may load multiple PALcode variants.

Note:

DEC OSF/l supports PALcode switching but does not support PALcode loading.
Any platform that supports DEC OSF/l must either use the DEC OSF/l variant
as the default or must load (but need not switch to) the DEC OSF/l variant prior
to system bootstrap.

The means by which any PALcode internal state is initialized is implementation
specific.

3.3.2 PALcode Switching

PALcode switching is accomplished when one ("current") PALcode transfers control
to another ("new") PALcode. PALcode switching can be initiated by the console or
the operating system software.

System Bootstrapping (III) 3-5 I

Note:

OpenVMS AXP does not support PALcode switching. Any platform that supports
OpenVMS AXP must either use the OpenVMS AXP variant as the default or must
switch to the OpenVMS AXP variant prior to system bootstrap.

PALcode switching is performed by PALcode without intervention from the console
or operating system software. The current PALcode must be able to locate the new
PALcode image. The new PALcode may perform minimal sanity checks.

To support PALcode switching, all PALcode images must implement a PALcode
switching entry point at the image base (offset 0). During PALcode switching, the
new PALcode image receives control from the current PALcode image at this offset.

For the purposes of switching, a PALcode image is identified by one of the following:

• PALcode variant

PALcode variants are in the range 0 < variant < 256 and permit switching
between cooperating, previously loaded PALcode images. PALcode variants
are interpreted by the current PALcode without assistance from the console or
operating system.

• The physical address of the switching entry point.

Entry point addresses are used whenever the operating system or console
must load a PALcode image. Entry point addresses must meet the alignment
requirements of the processor implementation and may occupy the lowest
memory page.

System software initiates PALcode switching during system bootstrap whenever the
variant required is not identical to that supplied by the console. Once a new variant
has been established by system software, the console must restore that variant across
all subsequent transitions from console 110 mode to program 110 mode. The console
must ensure that the system software PALcode variant appears unchanged when:

1. A processor is restarted.

2. A secondary processor is started.

3. The operator forces a processor into console 110 mode, then continues program
execution (HALT followed by CONTINUE).

4. System software invokes a callback routine that requires transition to console
110 mode.

System software is never required to restore a PALcode variant. The console
may switch PALcode at entries to console 110 mode, but must restore the variant
established by system software at subsequent re-entry to program I/O mode.

3-6 Console Interface Architecture (III)

3.3.2.1 PALcode Switching Procedure

PALcode switching proceeds as follows:

1. The current PALcode is entered by the CALL_PAL SWPPAL instruction. The
PALcode image identifier (variant or switching entry point address) is contained
in R16. Registers R17 through R2I contain parameters that are passed without
change to the new PALcode image. The interpretation of RI7 through R21 is
specific to the new PALcode image.

2. If the current PALcode is not supplied by Digital and does not support PALcode
switching, the current PALcode sets RO = 1 and returns from the CALL_PAL
SWPPAL.

3. The current PALcode determines if RI6 contains a PALcode variant or switching
entry point address. If the latter, execution continues at step 7.

4. The current PALcode validates the PALcode variant. If unsuccessful, the
operation fails, the current PALcode sets RO =1 and returns from the CALL_PAL
SWPPAL instruction.

5. The current PALcode determines if the PALcode associated with the PALcode
token has been loaded. If not, the operation fails, the current PALcode sets RO
=2 and returns from the CALL_PAL SWPPAL instruction.

6. The current PALcode determines the base physical address associated with the
PALcode token.

7. The current PALcode branches to the new PALcode image at the switching entry
point (physical) address determined in step 3 or 6.

8. The new PALcode performs any necessary implementation-specific PALcode
initialization.

9. The new PALcode invalidates all TB entries and establishes the new memory
management algorithm. (For example, OSF/I PALcode loads the VPTB with a
value supplied to the CALL_PAL SWPPAL instruction.)

10. The new PALcode performs any implementation-specific actions using the entry
parameters contained in RI7..R2I. The resulting changes in processor state are
summarized for each PALcode variant in Section 3.3.2.3.

11. The new PALcode clears RO and passes control to the code thread determined by
the entry parameters. Control is always passed in kernel mode with interrupts
disabled or blocked.

In the event of any hardware failure in accessing any of the addresses specified by
the calling arguments or other dependent locations, a hardware reset and system
initialization are performed.

Implemention Note:

A common implementation is that the switching entry point is identical to the
hardware reset entry. PALcode must distinguish the two causes. In the case
of hardware reset, PALcode must perform any necessary hardware initialization

System Bootstrapping (III) 3-7 I

and pass control to the console. In the case of switching, PALcode must pass
control to the code thread determined by the entry parameters.

Notes:

• System software must update the PALcode reVISIon field (SLOT[168]) after
PALcode switching. The console uses that field to determine if PALcode must
be switched (to the system software-specific image) prior to passing control on
system restarts.

Similarly, system software may need to update the PALcode revision field in
the per-CPU slot (SLOT[168]) of each secondary processor prior to starting the
secondary. There is only one system restart routine. The console uses the
PALcode revision field to determine if PALcode must be switched (to the system
software-specific image) prior to passing control on secondary processor starts.

• PALcode switching is initiated by invoking the CALL_PAL SWPPAL instruction.
Prior to invoking SWPPAL, the caller should ensure that the system is quiescent.
It is recommended that SWPPAL be invoked with interrupts either disabled or
blocked. Mter a successful PALcode switch, the operating system may need to
update the VPTB field in the HWRPB or restart HWPCB in each per-CPU slot.

• PALcode switching does not implicitly load PALcode. During system bootstrap,
the operating system must ensure that the desired PALcode variant is loaded.
If loading is required, the operating system must allocate sufficient physically
contiguous physical memory for the new PALcode image and any additional
PALcode scratch space, then load the PALcode image in an implementation
specific manner.

• After a PALcode switch, the operating system may need to invoke the FIXUP
console callback routine. FIXUP must be invoked after any operation that affects
virtual address translation and before subsequent invocations of other callback
routines. See Section 2.3.7.1.

3.3.2.2 Specific PALcode Switching Implementation Information

OpenVMS AXP does not currently support PALcode switching. DEC OSF/1 supports
PALcode switching as shown in Table 3-2.

Table 3-2: DEC OSF/1 PALcode Variation 2

Register

R17 (al)

RIB (a2)

R19 (a3)

CALL_PAL swppal Parameter Usage

New PC

New PCBB

NewVPTB

3-8 Console Interface Architecture (III)

3.3.2.3 Processor State at Exit for DEC OSF/1 from PALcode Switching Instruction

Table 3-3: Processor State for DEC OSF/1 at Exit from swppal

Processor State At exit from swppal:

ASN Address space number

FEN Floating enable

IPL Interrupt priority level

MCES Machine check error summary

PCBB Privileged context block

PC Program counter

PS Processor status

PTBR Page table base register

Unique Processor unique value

WHAMI Who-Am-I

Sysvalue System value

KSP Kernel stack pointer

Other IPRs

RO

Integer and floating-point registers

3.4 System Bootstrapping

ASN in PCB passed to swppal

FEN in PCB passed to swppal

7

Zero

Address of PCB passed to swppal

PC passed to swppal

IPL=7, CM=K

PTBR in PCB passed to swppal

unique in PCB passed to swppal

Unchanged

Unchanged

KSP in PCB passed to swppal

UNPREDICTABLE

Zero

UNPREDICTABLE, except SP and RO

This section describes the operations performed by the Alpha AXP console to locate,
load, and transfer control to a primary bootstrap. The responsibilities of the console
and the initial state seen by system software are presented for multiprocessor
and uniprocessor environments. The actions of the console for cold bootstrap (full
hardware initialization) and warm bootstrap (partial hardware initialization) are
described.

A system bootstrap can occur as the result of a powerfail recovery, a processor halt,
or an INITIALIZE or BOOT console command. See Section 3.1.1 for a complete
description of these state transitions.

3.4.1 Cold Bootstrapping in a Uniprocessor Environment

This section describes a cold bootstrap in a uniprocessor environment. A system
bootstrap is a cold bootstrap when any of the following occur:

• Power is first applied to the system.

• Requested by system software.

System Bootstrapping (III) 3-9 I

• A console INITIALIZE command is issued and the AUTO_ACTION environment
variable is set to "BOOT".

• The BOOT_RESET environment variable is set to "ON".

The console must perform the following steps in the cold bootstrap sequence.

1. Perform a system initialization

2. Size memory

3. Test sufficient memory for bootstrapping

4. Load PALcode

5. Build a valid Hardware Restart Parameter Block (HWRPB)

6. Build a valid Memory Data Descriptor table in the HWRPB

7. Initialize bootstrap page tables and map initial regions

8. Locate and load the system software primary bootstrap image

9. Initialize processor state on all processors

10. Transfer control to the system software primary bootstrap image

The steps leading up to the transfer of control to system software may be
performed in any order. The final state seen by system software is defined, but
the implementation-specific sequence of these steps is not. Prior to beginning a
bootstrap, the console must clear any internally pended restarts to any processor.

3.4.1.1 Memory Sizing and Testing

Memory sizing is the responsibility of the console. The console must also test
sufficient memory to permit control to be passed to the primary bootstrap image.
The results of console memory sizing and testing are passed to system software in
the Memory Data Descriptor (MEMDSC) table located by HWRPB[200].

The MEMDSC table contains one or more memory cluster descriptors. Each memory
cluster descriptor describes a physically contiguous extent of physical memory that
contains no holes. Cluster descriptors are ordered by increasing physical address;
the range ofPFNs described by cluster N is of lower address than the range ofPFNs
described by cluster N+l.

The MEMDSC table must be quadword aligned and both physically and virtually
contiguous. The MEMDSC table format is shown in Figure 3-2; the memory cluster
descriptor format is shown in Figure 3-3. The size of the MEMDSC table can be
determined by the number of clusters contained in MEMDSC[16]. The size of the
table and the offset to the last quadword of the table are given by:

MEMDSC_SIZE = ((7 * MEMDSC[1016]) + 3) * 8
MEMDSC_END = MEMDSC_SIZE -8

The memory within a cluster is either available to system software or reserved
for console use. Usage within a cluster cannot be mixed; if the cluster contains a
page reserved for console use, system software cannot allocate any page within the

3-10 Console Interface Architecture (III)

cluster. The memory cluster descriptor contains a cluster usage field that indicates
the cluster availability to system software. The primary bootstrap image must reside
in clusters available to system software.

The memory within each cluster may be fully tested, partially tested, or untested
by the console. If the memory is untested, no cluster memory bitmap is built. The
console must test enough memory to allow the primary bootstrap image to be loaded
and control to be passed to that image. This memory includes:

• PALcode memory and scratch areas

• CPU logout areas

• Memory bitmaps

• HWRPB and all offset blocks

• Console CRB map entries

• Bootstrap address space page tables

• Primary bootstrap image

• One page for the initial bootstrap stack

Any additional memory testing by the console is implementation specific. It is the
responsibility of system software to test any memory untested by the console.

A cluster bitmap is built if the cluster is available to system software and the console
tests any memory within the cluster. Each page in the cluster is represented by a
bit in the bitmask. A '1' in the bitmap means that the corresponding page is "good";
the page was tested without error. A '0' in the bitmap means that the corresponding
page is "bad"; the page is either untested or was tested but encountered correctable
(Corrected Read Data) errors or hard (Read Data Substitute) errors.

Cluster bitmaps must be at least quadword aligned and must be an integral number
of quadwords; any unused bits in the highest addressed quadword MBZ.

Implementation Notes:

Every implementation cannot be required to test all of memory before booting
the operating system. Partial memory testing is recommended whenever testing
is time-consuming and would significantly delay the bootstrapping process; the
choice is implementation specific. The high-water mark mechanism allows
implementations to completely size memory without testing all of it and indicate
to the operating system where testing ended.

Clusters reserved for the use of the console and PALcode do not have associated
bitmaps. If such a cluster would contain a large number (three or more) of
contiguous pages that encounter soft read errors or are otherwise unsuitable for
console and PALcode, the console should consider breaking the bad pages into
a separate cluster. This cluster should be made available for use by system
software, which can possibly reclaim the pages for use.

System Bootstrapping (III) 3-11 I

The console does not alter the Memory Data Descriptor table or any bitmaps
across warm bootstraps. This permits system software to propagate information
on system software memory testing and intermittent errors across operating
system bootstraps. For example, system software could set the "bad" bit of a
page that incurred repeated CRD errors.

Figure 3-2: Memory Cluster Descriptor Table

63

+08

Checksum :

PA of Optional Implementation-Specific Information :

Number of Clusters :

Memory Cluster Descriptor 1 :

.I'Ll .l'V

MEMDSC

+16

+24

Memory Cluster Descriptor Last

Table 3-4: Memory Cluster Descriptor Table Fields
Offset Description

MEMDSC CHECKSUM - Checksum of all the quadwords from offset MEMDSC+8
through MEMDSC_END. Computed as a 64-bit sum, ignoring overflows.
The checksum does not include any of the cluster bitmaps or any optional
implementation-specific data.

+08 IMP_DATA_PA - Physical address of additional implementation-specific
information (if any). Ifno additional implementation-specific information exists,
the field must contain a zero.

+16 CLUSTERS - Number of clusters in the Memory Cluster Descriptor table.
Unsigned integer.

+24 CLUSTER - Each Memory Cluster Descriptor describes an extent ofphysical
memory. See Figure 3-3.

3-12 Console Interface Architecture (III)

Figure 3-3: Memory Cluster Descriptor

63

Starting PFN of Cluster

Count of Pages in Cluster

Count of Tested Pages in Cluster Bitmap

VA of Cluster Bitmap or Zero

PA of Cluster Bitmap or Zero

Checksum of Cluster Bitmap

Usage of Cluster

:MEMC

:+08

:+16

:+24

:+32

:+40

:+48

:+56

Table 3-5: Memory Cluster Descriptor Fields

Offset Description

MEMC PFN - Starting PFN of the memory cluster.

+08 PAGES - Number of pages in the memory cluster. Unsigned integer.

+16 TESTED_PAGES - Number of tested memory pages in the cluster. If only a
limited extent of the cluster memory was tested, a bitmap is built, and this field
indicates the number of pages that were tested.

+24 BITMAP_VA - Starting virtual address of the cluster memory testing bitmap
in the bootstrap address space. If the memory is untested, no bitmap is built and
this field is set to zero.

+32 BITMAP_PA - Starting physical address of the cluster memory testing bitmap.
If the memory is untested, no bitmap is built and this field is set to zero.

+40 BITMAP_CHECKSUM - Checksum of the cluster memory testing bitmap.
Computed as a 64-bit sum, ignoring overflows, over the PAGES active bits only.

+48 USAGE - Indicates whether the cluster is available for use by system software.

If USAGE<O> is '0', system software may allocate and use the cluster.

If USAGE<O> is '0' and USAGE<1> is '1', the cluster is available for use by the
system software, but is in nonvolatile memory.

IfUSAGE<O> is '1', the cluster is reserved for console use and must not be allocated
by system software.

USAGE<63:2> should be zero.

System Bootstrapping (III) 3-13 I

3.4.1.2 Bootstrap Address Space

All system software, including the primary bootstrap image, runs in a virtual
memory environment. The console creates the initial page tables that define the
initial bootstrap address space for the primary bootstrap. System software may
replace this bootstrap address space at any time after the console passes control to
the primary bootstrap image.

The bootstrap address space consists of four regions. All regions must be located in
good memory within clusters that are available to system software. The regions are:

Region 0
This region maps all console or PALcode data structures that must be shared with
system software. These structures include the HWRPB in its entirety, all blocks
located by HWRPB offsets, the console callback routines, and all memory bitmaps.
Region 0 begins at address 256MB, virtual address 0000 0000 1000 000016. The
starting address of the HWRPB is the base of Region o.

Region 1
The primary bootstrap image is loaded into this region. The region must be at least
large enough to load system software plus three pages. The three additional pages
are used as an initial bootstrap stack and stack guard pages. The stack guard pages
are virtually adjacent to the bootstrap stack page and marked no-access. All other
pages in the region are mapped and valid. Region 1 begins at address 512MB, virtual
address 0000 0000 2000 000016.

Software Note:

This region must be set to the size of the primary bootstrap image plus 3 pages
for OpenVMS AXP and at least 256K bytes for DEC OSF/1.

Region 2
This region, or "page table space," contains the bootstrap address space page tables.
Region 2 begins at address 1GB, virtual address 0000 0000 4000 000016. The range
depends on the page size:

Page Size

8KB

16KB

32KB

64KB

Page Table Space
Address Range

1GB to 1GB+8MB

1GB to 1GB+16MB

1GB to 1GB+32MB

1GB to IGB+64MB

This region includes the Level 2 and Level 3 page tables used to map all three regions
comprising bootstrap address space. The Level 2 page table maps itself as a Level
3 page table. The address of the Level 2 page table page and the PTE within the
page that is used for self-mapping also depend on the page size:

3-14 Console Interface Architecture (III)

Page Size

8KB

16KB

32KB

64KB

Virtual Address of
Level 2 Page Table

1GB+1MB

IGB+512KB

1GB+256KB

IGB+128KB

L2PTE Number Used
for Self-Mapping

128

32

8

2

Implemention Note:

Region 2 allows the primary bootstrap code to start with 32-bit pointers that
execute in a 32-bit context. Thus, Region 2 allows primary bootstrap software to
be written with 32-bit-oriented language complilers.

The initial page tables that map the virtual address regions are shown in Figure 3-4
and illustrated in Figure 3-5.

Region 3
This region maps the entire page table structure, including all levels of page table,
that would be required to map the entire virtual address space supported by this
implementation. The Level 1 page table is self-mapped by the second PTE in the
page. Region 3 exists to support virtual page table lookup for Translation Buffer
misses. Region 3 exists at a virtual address that is inaccessible to code that is
compiled to support only a 32-bit virtual address space. As such, Region 3 is not the
primary page table space that is presented to bootstrap software.

Programming Note:

Due to the self-mapping, Region 3 maps all page table pages. The Level 2 and
Level 3 page table pages are in both Region 2 and Region 3.

Page Size

8KB

16KB

32KB

64KB

Virtual Address of Page Table Space (VPTB)

8GB

64GB

512GB

4TB

All valid pages allow read/write access from kernel mode and deny all access from
other modes. All fault bits (FOR, FOW, FOE) are clear, as well as Address Space
Match (ASM) and Granularity Hint (GH).

System Bootstrapping (III) 3-15 I

Figure 3-4: Initial Virtual Memory Regions

Region 0

IHWRPB Pages (Includes1 :VA=1000 0000 (hex)
/f/ Memory Data Descriptor h/

Table and CRB)

Console Service
Routines

Region 3

:VPTB

Memory Bitmaps rv
y

Region 1 L1PT

/v /./

1 1

:SP

/./ Y o W /f/

No-Access

1 Page Stack

No-Access

A/ ~
Loaded S stem S ft are :VA=2000 0000 (hex)

Region 2
AI Unused

/t,
:VA=4000 0000 (hex)

I Level 3 Page Table I
1 Map Region 0 IUnused

I Level 3 Page Table I
I Map Region 1 IUnused/f/ /f/

Level 2, 3 Page Table
(Maps Itself and Region 2)

The self-mapping of the Level 2 page table excludes the Levell page table page from
Region 2. The Level 1 page table has two active PTEs. The first LlPTE points to
the PFN of the Level 2 page table page, which maps page table space (Region 2).
The second LlPTE contains the PFN of the Level 1 page table itself, thus defining
Region 3. Only these two entries within the Level 1 page table are valid; all other
Level 1 PTEs are zeros.

The self-mapping of the Level 2 page table also causes the addresses of the Level
2 and Level 3 PTEs for a given virtual address to be functions of that address.
For every virtual address within the bootstrap address space, there is exactly one
location within page table space for the Level 2 PTE that maps that virtual address,
and exactly one location for the Level 3 PTE that maps that virtual address.

Thus, the Level 2 and Level 3 PTE virtual addresses for a given virtual address (VA)
within bootstrap address space can be calculated given the page size. The following
bit range definitions provide convenient notation for referring to the constituent

3-16 Console Interface Architecture (III)

Figure 3-5: Initial Page Tables

Level 1 PT

PTBR: PTE 0

1 rLast PTE

Level 2 PT

Level 3 PT H Maps VA=256 MBI1 First
Region 0r Page Table T

Maps VA=512 MB

Level 3 PT

Region 1 Maps VA=1 GB

r Page Table ,.- y

The level 2 PT maps Region 2 (page table
space) at 1 GB. The level 2 PT maps itself
as its own level 3 PT.

The level 1 PT is not mapped.

parts of a virtual address. For example, ''VA<L2>'' is equivalent to ''VA<32:23>'' for
8K byte sized pages.

VA: 1 L_1 ---&- L_2 ~ L_3 ~__B_Y_te_i_n_p_a_ge__

Page Size Ll L2 L3

8KB 42:33 32:23 22:13

16KB 46:36 35:25 24:14

32KB 50:39 38:27 26:15

64KB 54:42 41:29 28:16

The base of page table space is a constant value:

1. PT_Base = 1GB

The virtual address of the Level 3 PTE (L3PTE_VA) of any virtual address (VA)
is given by:

2. L3PTE_VA(VA) = PT_Base + (page_size * VA<L2» + (8 * VA<L3»

Thus, the virtual address of the Level 3 PTE that maps the lowest address of
page table space is given by:

System Bootstrapping (III) 3-17 I

Since the Level 2 page table is self-mapped, the above is also the base virtual
address of the Level 2 page table. Thus:

Finally, the virtual address of the Level 2 PTE (L2PTE_VA) ofany virtual address
(VA) is given by:

L2PTE_VA(VA) = L2PT_Base + (8 * VA<L2»

4. L2PTE_VA(VA) = PT_Base + (page_size * PT_Base<L2» + (8 * VA<L2»

3.4.1.3 Bootstrap Flags

The Bootstrap-in-Progress (BIP) and Restart-Capable (RC) processor state flags in
the primary processor's per-CPU slot are used to detect failed bootstraps. If the
primary re-enters console 110 mode while the BIP flag is set and the RC flag is
clear, the bootstrap attempt fails, and the subsequent console action is determined
by Figure 3-1.

The console sets the BIP flag and clears the RC flag prior to transferring control to
system software. System software sets the RC flag to indicate that sufficient context
has been established to handle a restart attempt. System software clears the BIP
flag to indicate that the bootstrap operation has been completed. The RC flag should
be set prior to clearing the BIP flag.

Table 3-6: Console Interpretation of BIP and RC flags

BIP RC Interpretation at Entry to Console VO Mode

set clear Failed bootstrap

set set Halt condition encountered during bootstrap, restart processor

clear clear Failed restart

clear set Halt condition encountered, restart processor

3.4.1.4 Loading of System Software

The console is responsible for loading system software at the base of Region 1
beginning at virtual address 512MB. This software is expected to be a primary
bootstrap program that is responsible for loading other system software, but may
be diagnostic or other special-purpose software. Section 3.6 contains descriptions of
the format of each supported bootstrap medium.

The console uses the BOOT_DEV environment variable to determine the bootstrap
device and the path to that device. These environment variables contain lists of
bootstrap devices and paths; each list element specifies the complete path to a given
bootstrap device. If multiple elements are specified, the console attempts to load a
bootstrap image from each in turn.

3-18 Console Interface Architecture (III)

The console uses the BOOTDEF_DEV, BOOT_DEV, and BOOTED_DEV environ
ment variables as follows:

1. At console initialization, the console sets the BOOTDEF_DEV and BOOT_DEV
environment variables to be equivalent. The format of these environment
variables is a function of the console implementation and independent of the
console presentation layer; the value may be interpreted and modified by system
software.

2. When a bootstrap results from a BOOT command that specifies a bootstrap device
list, the console uses the list specified with the command. The console modifies
BOOT_DEV to contain the specified device list.

Note:
This may require conversion from the presentation layer format to the
registered format.

3. When a bootstrap is the result of a BOOT command that does not specify a
bootstrap device list, the console uses the bootstrap device list contained in
the BOOTDEF_DEV environment variable. The console copies the value of
BOOTDEF_DEVtoBOOT_DE~

4. When a bootstrap is not the result of a BOOT command, the console uses the
bootstrap device list contained in the BOOT_DEV environment variable. The
console does not modify the contents of BOOT_DE~

5. The console attempts to load a bootstrap image from each element of the
bootstrap device list. If the list is exhausted prior to successfully transferring
control to system software, the bootstrap attempt fails and the subsequent
console action is determined by Figure 3-1.

6. The console indicates the actual bootstrap path and device used in the BOOTED_
DEV environment variable. The console sets BOOTED_DEV after loading the
primary bootstrap image and prior to transferring control to system software.
The BOOTED_DEV format follows that of a BOOT_DEV list element.

7. If the bootstrap device list is empty, BOOTDEF_DEVor BOOT_DEV are NULL
(0016), and the action is implementation specific. The console may remain in
console 110 mode or attempt to locate a bootstrap device in an implementation
specific manner.

The BOOT_FILE and BOOT_OSFLAGS environment variables are used as default
values for the bootstrap file name and option flags. The console indicates the actual
bootstrap image file name (if any) and option flags for the current bootstrap attempt
in the BOOTED_FILE and BOOTED_OSFLAGS and environment variables. The
BOOT_FILE default bootstrap image file name is used whenever the bootstrap
requires a file name and either none was specified on the BOOT command or the
bootstrap was initiated by the console as the result of a major state transition. The
console never interprets the bootstrap option flags, but simply passes them between
the console presentation layer and system software.

System Bootstrapping (III) 3-19 I

3.4.1.5 Processor Initialization

Before control is transferred to system software, certain IPRs and other processor
state must be initialized as shown in Table 3-7 and Section 3.3.2.3 for each PALcode
variant. Processor initialization is performed by the console prior to booting a
processor, prior to restarting a processor, or as the result of the INITIALIZE -CPU
console command.

The Context Valid (CV) flag in the processor's per-CPU slot must be valid for
processor initialization to be successful. Ifthe CV flag is clear, the HWPCB contained
in the per-CPU slot is not valid, and the console must not transfer control to system
software. If this or any error occurs in initializing the processor, the console retains
control of the system and generates the binary error message ERROR_PROC_INIT.

Table 3-7: Processor Initialization

Processor State Initialized State

Other IPRs

Cache, instruction buffer, or write buffer

Translation buffer

Main memory

Integer and floating-point registers

Reason for Halt code

BIP and RC flags

Environment variables

ASN

ASTENI

ASTSR1

FEN

IPL

MCES

PCBB

PS

PTBR

SISR1

WHAMI

SCCI

SP

Address Space Number

AST Enable

AST Summary

Floating Enable

Interrupt Priority Level

Machine Check Error Summary

Privileged Context Block

Processor Status

Page Table Base Register

Software Interrupt Summary

Who-Am-I

System Cycle Counter

Kernel Stack Pointer

Zero

ASTEN in processor's HWPCB

ASTSR in processor's HWPCB

FEN in processor's HWPCB

highest

8 (bit 3=1)

Address of processor's HWPCB

IPL=highest, VMM=O, CM=K, SW=O

PFN value in processor's HWPCB

Zero

CPU identifier

Zero

KSP in processor's HWPCB

UNPREDICTABLE

Empty or valid

Invalidated

Unaffected

Unaffected, except SP

Unaffected

Unaffected

Unaffected

lOpenVMS AXP only.

3-20 Console Interface Architecture (III)

3.4.1.6 Transfer of Control to System Software

Prior to transferring control to system software, the console must define valid
hardware privileged context for that software. The console builds that context in
the hardware privileged context block (HWPCB) in the primary processor's per
CPU slot. The initialized context is summarized in Table 3-8 and Section 3.3.2.3 for
each PALcode variant.

The initial KSP points to the lowest addressed quadword in the higher addressed
stack guard page (top-of-stack) ofRegion 1 of the bootstrap address space. The PTBR
points to the Level 1 page table page. All other scalar and floating-point register
contents are UNPREDICTABLE.

Mter building the HWPCB for the primary, the console sets the Context Valid (CV)
flag in the primary's per-CPU slot. All other bootstrap information is passed from
the console to system software via environment variables. See Section 2.2 for more
details.

Table 3-8: Initial HWPCB contents

HWPCB Field Initialized State

KSP

ESP1

SSp1

USP

PTBR
ASN

ASTSR1

ASTEN1

FEN

PCC

Unique value

PALcode scratch

Top-of-stack (contents of SP)

UNPREDICTABLE

UNPREDICTABLE

UNPREDICTABLE

PFN of Level 1 page table

Zero

Zero

Zero (all disabled)

Zero (disabled)

Zero

Zero

Implementation specific

lOpenVMS AXP systems only.

Control is transferred to system software in kernel mode at the highest IPL
with virtual memory management enabled. Control is transferred to the first
longword of the system software image loaded into Region 1, virtual address
0000 0000 2000 000016. Prior to transferring control, the console ensures that the
SP contains the KSP value in the HWPCB. System software should assume that the
stack is initially empty.

The transfer of control transitions the primary processor from the halted state into
the running state and from console I/O mode into program I/O mode. The rest of the
uniprocessor bootstrap process is the responsibility of system software.

System Bootstrapping (III) 3-21 •

3.4.2 Warm Bootstrapping in a Uniprocessor Environment

The actions of the console on a warm bootstrap are a subset of those for a cold
bootstrap. A system bootstrap will be a warm bootstrap whenever the BOOT_RESET
environment variable is set to "OFF", and console internal state permits.

The console performs the following steps in the warm bootstrap sequence.

1. Locate and validate the Hardware Restart Parameter Block (HWRPB)

2. Locate and load the system software primary bootstrap image

3. Initialize processor state on all processors

4. Initialize bootstrap page tables and map initial regions

5. Transfer control to the system software primary bootstrap image

At warm bootstrap, the console does not load PALcode, does not modify the Memory
Data Descriptor table, and does not reinitialize any environment variables. If the
console cannot locate and validate the previously initialized HWRPB, the console
must initiate a cold bootstrap. Prior to beginning a bootstrap, the console must
clear any internally pended restarts to any processor.

Programming Note:

Warm bootstrap permits system software to preserve limited context across
bootstraps.

3.4.2.1 HWRPB Location and Validation

After console initialization, the console must preserve the location of the HWRPB in
an implementation-specific manner. On warm bootstraps and restarts, the console
locates the HWRPB and verifies it by ensuring that:

1. The first quadword of the table contains the physical address of the table.

2. The second quadword of the table contains "HWRPB" (0000 0042 5052 574816).

3. The quadword at offset HWRPB[288] contains the 64-bit sum, ignoring overflows
of the quadwords from offset HWRPB[OO] to HWRPB[280], inclusive, relative to
the beginning of the potential HWRPB.

4. The quadword at offset [0] of the MEMDSC block contains the 64-bit sum,
ignoring overflows, of the quadwords from MEMDSC+8 through MEMDSC_
END of that block. The MEMDSC block is located by the MEMDSC offset at
HWRPB[200]. See Figure 3-2.

5. As described in Section 2.1.4, if a CONFIG table exists, it is located by the
CONFIG offset at HWRPB[208]. The quadword at offset [8] of the optional
CONFIG table contains the 64-bit sum, ignoring overflows, of the quadwords
from CONFIG+16 through CONFIG_END of that table.

If one or more of the above conditions is not true, the HWRPB is not valid. The
warm bootstrap (or restart) fails. The subsequent console action is determined by
Figure 3-1. If a bootstrap is indicated, a cold bootstrap will be performed.

3-22 Console Interface Architecture (III)

The console must not search memory for a HWRPB; searching memory constitutes
a security hole.

3.4.3 Multiprocessor Bootstrapping
Multiprocessor bootstrapping differs from uniprocessor bootstrapping primarily in
areas relating to synchronization between processors. In a shared memory system,
processors cannot independently load and start system software; bootstrapping is
controlled by the primary processor.

3.4.3.1 Selection of Primary Processor

The primary processor is selected by the console during system initialization prior
to any access to main memory by any processor. Selection of the primary processor
may be done in any fashion that guarantees choosing exactly one primary processor.

Once a primary processor has been selected, the secondary processors take no further
action until appropriately notified by the primary processor. In particular, secondary
processors must not access main memory.

3.4.3.2 Actions of Console

Mter selection, the console proceeds to bootstrap the primary processor, after the
normal uniprocessor bootstrap as described in Section 3.4.1.

The console must correctly initialize all HWRPB fields used for synchronization or
communication between the processors. The console must initialize the PRIMARY
CPU ID field at HWRPB[32] , zero the TXRDY and RXRDY bitmasks at HWRPB[296]
and HWRPB[304], and recompute the HWRPB checksum at HWRPB[288].

The console must also initialize each per-CPU slot for the secondary processors. The
console must:

1. Clear the BIP, RC, OH, and CV flags

2. Clear the Halt Request code field

3. Set the PP flag if the processor is present

4. Set the PA flag ifthe processor is present and available for use by system software

5. Set the PMV and PL flags if the console has loaded PALcode on this processor

6. Set the PV flag if the console has initialized PALcode on this processor

7. Set the PE processor variation flag if the processor is eligible to become a primary

Mter initializing each processor's per-CPU slot, the console must notify each console
secondary processor of the existence and location of the valid HWRPB.

3.4.3.3 PALcode Loading on Secondary Processors

Most console implementations load PALcode on all secondary processors prior to
bootstrapping the primary processor. Console implementations may delay the
loading or initialization of PALcode on a secondary. If delayed, PALcode loading and

System Bootstrapping (III) 3-23 •

initialization require the cooperation of system software executing on the running
primary and the console executing on behalf of the secondary.

The console secondary must have performed any necessary initialization as described
in Section 3.4.3.5. All interprocessor console communications follow the mechanisms
described in Section 2.4.

The following procedure applies only to initial PALcode loading on a console
secondary. The PALcode variant to be loaded must be identical to that of the
running primary processor prior to any PALcode switching by system software. This
procedure cannot be used to load operating system-specific PALcode variants:

1. The console secondary initializes the PALcode memory and scratch space length
fields in its per-CPU slot.

2. The console secondary sets the PALcode major revision, minor revision, and
compatibility subfields in the PALcode revision field in its per-CPU slot.

3. The console secondary notifies the primary that PALcode loading is requested by
transmitting a message to the running primary as described in Section 2.4.

4. The console secondary polls the PALcode Memory Valid (PMV) flag in its per-CPU
slot.

5. The running primary detects the console secondary request.

6. The running primary verifies that the Processor Available (PA) flag is set in the
secondary's per-CPU slot. If the flag is not set, the operation fails.

7. The running primary compares the major and minor revision subfields of the
PALcode revision field in its per-CPU slot to that in the secondary's per-CPU
slot. If the revisions levels do not match, the running primary proceeds to step
12.

8. The running primary compares the number of processors currently sharing its
PALcode image to the maximum contained in the subfield of the PALcode revision
field of its per-CPU slot. If the current number is the maximum, no additional
console secondary can share the PALcode image. The running primary proceeds
to step 12.

Programming Note:
The running primary can determine the number of processors currently
sharing a given PALcode image by counting the number of per-CPU slots
with the same valid PALcode memory space descriptors. A PALcode memory
space descriptor is valid if the PALcode Loaded (PL) flag is set in the per-CPU
slot.

9. The running primary copies the PALcode memory and scratch space descriptors
from its per-CPU slot into the secondary's per-CPU slot.

10. The running primary copies the PALcode variation, compatibility, and maximum
number of processors subfields of the PALcode revision field from its per-CPU
slot into the secondary's per-CPU slot.

3-24 Console Interface Architecture (III)

11. The running primary sets the PALcode Loaded (PL) flag in the secondary's per
CPU slot, then proceeds to step 13.

12. The running primary allocates physical memory for PALcode memory and scratch
areas and records the addresses in the secondary's per-CPU slot.

13. The running primary sets the PALcode Memory Valid (PMV) flag in the
secondary's per-CPU slot.

14. The console secondary observes that the PMV flag is set in its per-CPU slot.

15. If the PL flag in its per-CPU slot is not set, the console secondary loads PALcode
into the allocated PALcode memory and scratch space. In this case, the console
secondary sets the PALcode Loaded (PL) flag in its per-CPU slot.

16. The console secondary ensures that any required implementation-specific
PALcode initialization is performed.

17. The console secondary sets the PALcode Valid (PV) flag in the secondary's per-
CPU slot.

The PALcode memory and scratch space must be page aligned. Ifnot allocated by the
console prior to system bootstrap, the allocation management of PALcode memory
for secondary processors is the responsibility of system software.

It is the responsibility of console and system software to ensure that the initially
loaded PALcode variation and revision levels of all processors are compatible.
This may be performed by the primary prior to starting the secondary, by the
starting secondary, or any combination thereof. PALcode images of the same
PALcode variation but different revision levels are compatible if the PALcode revision
compatibility subfields match.

3.4.3.4 Actions of the Running Primary

System software executing on the primary processor must initialize the HWPCB for
each secondary processor. The HWPCB contains the necessary privileged context
for the execution of system software and successful restarts. The HWPCB must
be initialized prior to requesting that the console secondary perform any START
command. After initializing the HWPCB, system software sets the Context Valid
(CV) flag.

Once the PALcode is valid on a console secondary, the secondary waits for a START
(or other) command from the running primary. System software issues the necessary
console commands that instruct the secondary to begin executing software. The
exchange of commands and messages between the running primary and a secondary
is described in Section 2.4.

System software may start secondary processors at any time. In particular,
secondary processors may be started before or after switching PALcode on the
running primary. If system software switches to an operating system-specific
PALcode prior to starting a secondary processor, system software must update the
PALcode revision field in the per-CPU slot (SLOT[168]) of each secondary prior to
starting the secondary. See Section 3.3.1.

System Bootstrapping (III) 3-25 •

Programming Note:

All commands sent to a console secondary are implicitly targeted to the secondary.

3.4.3.5 Actions of a Console Secondary

After failing to become the primary, a console secondary uses an implementation
specific mechanism to determine when a valid HWRPB has been constructed in main
memory. The console secondary then locates the HWRPB in an implementation
specific manner.

Once the HWRPB is located, the secondary locates its per-CPU slot using its CPU
ID as an index. The secondary verifies that its slot exists by comparing its CPU ID
to the number of per-CPU slots at HWRPB[144]. If its CPU ID exceeds the number
of per-CPU slots, the secondary must not leave console mode or continue to access
main memory. If PALcode loading is necessary, the console secondary follows the
procedure given in Section 3.4.3.3.

Once PALcode is valid, the console secondary waits for a START (or other) command
from the running primary by polling the appropriate flag in the RXRDY bitmask.
The exchange of commands and messages between the running primary and a
secondary is described in Section 2.4.

In response to a START command, the console secondary:

1. Verifies that the Context Valid (CV) flag is set in its per-CPU slot.

2. Sets the Bootstrap-in-Progress (BIP) flag in its per-CPU slot.

3. Clears the Restart-Capable (RC) flag in its per-CPU slot.

4. Initializes the processor.

5. If necessary, switches to the system software specific PALcode variant identified
in the PALcode revision field in the per-CPU slot.

6. Loads the privileged context specified by the HWPCB in its per-CPU slot.

7. Loads the procedure value at HWRPB[264] into R27.

8. Clears R26 and R25.

9. Loads the virtual page table base (VPTB) register with the value stored in
HWRPB[120].

10. Transfers control to the CPU Restart routine, whose virtual address is stored in
HWRPB[256].

The CV flag indicates that the HWPCB in the slot contains valid hardware privileged
state for system software. If the CV flag is not set, the processor remains in console
110 mode.

The console uses the PALcode revision field in the per-CPU slot to determine if
system software has switched PALcode to a system software-specific variant. The
console must restore that variant prior to passing control to the CPU restart routine.

3-26 Console Interface ArChitecture (III)

3.4.3.6 Bootstrap Flags

The Bootstrap-in-Progress (BIP) and Restart-Capable (RC) processor state flags in
the console secondary processor's per-CPU slot are used to control error recovery
during secondary starts. If the secondary re-enters console I/O mode while the BIP
flag is set and the RC flag is clear, the start attempt fails. Failed starts are equivalent
to failed bootstraps, and the subsequent console action is determined by Figure 3-1.
See Section 3.4.1.3 and Table 3-6.

3.4.4 Addition of a Processor to a Running System

A processor may be added to a running system at any time if a slot has been provided
for it in the HWRPB. The new console secondary processor follows the secondary
start procedure given in Sections 3.4.3.3 and 3.4.3.5, with one minor difference. Ifno
PALcode loading is necessary, the console secondary sends a ?STARTREQ? message
to the running primary. This message notifies the primary that a new processor
has been added to the configuration. After sending the ?STARTREQ? message, the
console secondary waits for a START (or other) command from the running primary.
See Section 2.4 for a description of interprocessor console communication.

3.4.5 System Software Requested Bootstraps

System software can request that the console perform a system bootstrap. This
request can be made on any processor in a multiprocessor system and overrides the
setting of the AUTO_ACTION and BOOT_RESET environment variables.

To request a bootstrap, system software sets one of the bootstrap requested codes
in the Halt Request field of its per-CPU slot, then executes a CALL_PAL HALT
instruction. If a cold bootstrap is requested, the "Cold Bootstrap Requested" code ('2')
is set; the "Warm Bootstrap Requested" ('3') code is set to request a warm bootstrap.

Rather than the normal error halt processing described in Section 3.5.4, the console
initiates the appropriate system bootstrap as described in Sections 3.4.1 and 3.4.2.
The bootstrap attempt is unconditional; the AUTO_ACTION or the BOOT_RESET
environment variables do not affect the bootstrap attempt.

3..5 System Restarts

The console is responsible for restarting a processor halted by powerfail or by error
halt. The console follows the same sequence for a primary or secondary processor.

3.5.1 Actions of Console

The console begins the restart sequence by locating and then validating the HWRPB,
using the procedure given in Section 3.4.2.1. If the HWRPB is not valid, the restart
attempt fails. See Section 3.1.1 for console actions at major state transitions.

If the HWRPB is valid, the console uses the processor CPU ID as an index to calculate
the address of that processor's HWRPB slot. The console:

1. Verifies that the processor's PALcode Valid (PV) flag is set. If the PV flag is clear,
PALcode is not valid, and the restart attempt fails.

System Bootstrapping (III) 3-27 •

2. Verifies that the processor's Context Valid (CV) flag is set. If the CV flag is
clear, the HWPCB does not contain valid software context for the restart, and
the restart attempt fails.

3. If the Reason for Halt is anything other that "powerfail restart", the console
examines the processor's Restart-Capable (RC) flag. If set, the console proceeds
with the restart at step 5. If clear, system software is not capable of attempting
the restart, the restart attempt fails.

Ignoring the RC flag for powerfail restart avoids unnecessary bootstraps that are
caused by repeated power failures that in turn, are caused by a bouncing power
supply that prevents software from having sufficient time to set the RC flag.

4. Examines the Bootstrap-in-Progress (BIP) flag. If clear, and the AUTO_ACTION
environment variable is "BOOT", a system bootstrap is attempted. Otherwise,
the processor remains in console 110 mode. See Figure 3-1.

5. Examines the PALcode revision field in its per-CPU slot. If the revision field does
not match the PALcode revision in use by the console, the console must switch
PALcode prior to passing control to the CPU Restart routine.

6. Loads the privileged context specified by the HWPCB in its per-CPU slot.

7. Loads the procedure value at HWRPB[264] into R27.

8. Clears R26 (return address) and R25 (argument information).

9. Loads the virtual page table base (VPTB) register with the value stored in
HWRPB[120].

10. Transfers control to the CPU Restart routine, whose virtual address is stored in
HWRPB[256].

On all restart attempt failures the console initiates the action indicated by
Figure 3-1. The PVand CV flags should never be clear for the primary processor;
if either flag is clear, then the restart fails. Also, no PALcode or system software is
loaded during a restart.

It is the responsibility of system software to complete the restart operation and to
set the RC flag at the point where a subsequent restart can be handled correctly.

3.5.2 Powerfail and Recovery - Uniprocessor
An Alpha AXP system requires power to operate. The system power supply
conditions external power and transforms it for use by the processor, memory, and
110 subsystems. Backup options are available on some systems to supply power
after external power fails. The backup option may supply power to all of the system
platform hardware, or only a subset.

The effect of an external power failure depends on the backup option.

1. If no backup option exists, the processor cannot be restarted after restoration of
power. The processor must be bootstrapped or left halted in console I/O mode.

3-28 Console Interface Architecture (III)

2. If the backup option maintains power to all of the system platform hardware,
execution of system software is unaffected by the power failure. It must be
possible for system software to determine that a transition to backup power has
occurred.

3. If the backup option maintains only the contents of memory and keeps system
time with the BB_WATCH, the power supply must request a powerfail interrupt.
After requesting the interrupt, the power supply must continue to supply power
to the processor for an implementation-specific period to allow system software
to save state.

Powerfail recovery is possible only if adequate system state is preserved during
an interruption of power to the processor. System software must save all volatile
state and perform any operating system-specific actions necessary to ensure later
successful recovery.

Software Note:
As explained in OpenVMS AXP Software II-A, Chapter 6 and DEC OSF / 1
Software II-B, Chapter 5, a powerfail interrupt is delivered at an appropriate
IPL to the interrupt service routine located at SCB offset 64016 for that
operating system.

When power is restored, the console determines that the HWRPB is still valid, then
examines the console lock and AUTO_ACTION environment variable. If the console
is locked, and AUTO_ACTION environment variable is "RESTART", the console
attempts an operating system restart. See Section 3.1.1.

The processor may lose state when power is lost. For example, if a processor is
halted when power fails, the action on power-up is still determined by the console
switches and environment variables. The system does not necessarily stay halted.

3.5.3 Powerfail and Recovery - Multiprocessor
There are two basic approaches to powerfail recovery on multiprocessor systems:

• United - all available processors effectively experience the powerfail event
identically.

• Split - each available processor effectively experiences independent powerfail
events.

A processor is "available" if the Processor Available (PA) flag is set in the processor's
per-CPU slot. The powerfail system variation flag at HWRPB[88] indicates the type
of powerfail and restart action.

A multiprocessor Alpha AXP system that supports powerfail recovery must
implement the united powerfail mode. The split mode may be implemented
optionally as an alternative, selected at system bootstrap.

System Bootstrapping (III) 3-29 •

Software Note:

OpenVMS AXP supports only the united powerfail and recovery mode at this
time. Powerfail recovery is possible only when the primary is restarted; all
secondaries should remain in console I/O mode.

3.5.3.1 United Powerfail and Recovery

In united powerfail and recovery mode, all available processors experience powerfail
interrupts, halts, and restorations uniformly. If one available processor experiences
a powerfail event, all other available processors experience that event. Therefore, if
one processor powerfails and recovers, all processors must do so. Even if a separately
powered processor does not actually lose power, that processor will still receive the
powerfail interrupt and must be restarted as if power had been lost.

When power is restored and a restart is to be attempted, the console must determine
whether to restart all available processors or only the primary processor. The console
determines the appropriate action by the Powerfail Restart (PR) flag in the system
variation field ofthe HWRPB[88]. If the PR flag is set, the console attempts to restart
all available processors; if clear, the console attempts to restart only the primary
processor. In both cases, it is the responsibility of system software to coordinate and
synchronize further powerfail recovery.

3.5.3.2 Split Powerfail and Recovery

In split powerfail and recovery mode, only the available processors that actually
experience a loss of power will see a powerfail interrupt and subsequent recovery.
Available processors that are separately powered and do not lose power do not see
a powerfail interrupt.

When power is restored and a restart is to be attempted, the console must determine
whether to restart any available processor or only the primary processor. As in
the united mode, the console determines the appropriate action by the Powerfail
Restart (PR) flag in the system variation field of the HWRPB[88]. If the PR flag
is set, the console attempts to restart any available processor. If clear, the console
attempts to restart only the primary processor; on a secondary, the console sends
the ?STARTREQ? message and waits for a START (or other command) from the
running primary as discussed in Section 3.4.3.5. Again, system software has the
responsibility for further coordination and synchronization of powerfail recovery.

3.5.4 Error Halt and Recovery

There are a number of serious error conditions that prevent a processor from
executing the current thread of software. Such error conditions are detected by
PALcode and halt the processor.

When a halt is encountered, the console must ensure that the processor hardware
state is visible to the console operator and to system software after a subsequent
restart attempt. This state includes the current values in PS, PC, SP, PCBB,
HWPCB, all integer registers, all floating-point registers, and the name of the halt
condition. The console must:

3-30 Console Interface Architecture (III)

1. Ensure that the contents of the integer and floating-point registers appear
unaffected.

2. Write the current hardware context to the HWPCB located by the current PCBB.

3. Write the current PS, PC, PCBB register contents into the processor's per-CPU
slot.

4. Write the current R25, R26, and R27 register contents into the processor's per
CPU slot.

5. Set the appropriate code into the Reason for Halt field of the processor's per-CPU
slot.

The values of R25, R26, and R27, must be explicitly saved in the per-CPU slot to
permit the console to invoke the CPU restart routine.

Section 3.1.1 and Table 2-4 list the defined halt conditions that transition an Alpha
AXP processor from the running state to a halted state and that may lead to an
attempt to restart the processor. Each condition is passed to the operating system
in the Reason for Halt quadword of the processor's HWRPB slot.

When an error halt occurs, the console examines the console lock setting. If the
console is locked, the console attempts a restart. If unlocked, the console action
is determined by the setting of the AUTO_ACTION environment variable (see
Figure 3-1). See Section 3.5.1 for a description of the restart attempt process.

The processor must be initialized after an error halt. If the processor starts running
after an error halt without an intervening processor initialization, the operation of
the processor is UNDEFINED. The effects ofprocessor initialization are summarized
in Table 3-7.

An error halt directly affects only the processor that incurred it, although multiple
processors may simultaneously and coincidentally incur their own error halt
conditions. If restarts are enabled, each halted processor must be independently
restarted by the console. The restarts of individual processors may occur in a
different order than the error halts occurred, but if the console restarts any halted
processor, it must restart all halted processors in a timely fashion unless a bootstrap
is requested in the meantime. A bootstrap nullifies any pending restarts in the
multiprocessor.

3.5.5 Operator Requested Crash

When the operating system does not respond to normal program requests, the console
operator may request that the console request an operating system crash. A console
requested crash differs from a console halt of a processor in that system software
can write a crash dump.

The console operator interacts with the console presentation layer and requests the
crash with a HALT -CRASH command. The console converts this command to an
error halt restart of system software. After gaining control of the processor, the
console preserves the hardware state (see Section 3.5.4). The console passes the
crash request to system software by using the "Console Operator requests system

System Bootstrapping (III) 3-31 •

crash" code in the Reason for Halt field in the primary's per-CPU slot. It is the
responsibility of the system software restart routine to initiate the crash in an
implementation-specific fashion.

3.5.6 Primary Switching

System software may find it necessary to replace the primary processor with one of
the running secondary processors without bootstrapping the system. This "switch"
of the running primary may be caused by an error encountered by the primary or
by a program request. Switching a running primary must be initiated by system
software; the console cannot force a switch to occur.

Support for primary switching is optional to system software, console
implementations, and system platforms. The system platform hardware must permit
the selected secondary to assume the functions of a primary. The selected secondary
must have direct access to the console, a BB_WATCH, and all I/O devices. Direct
access to the console ensures that the secondary can access console I/O devices and
the console terminal. Direct access to a BB_WATCH ensures that the secondary
can act as the system timekeeper. Direct access to all I/O devices ensures that the
secondary can initiate I/O requests to and receive I/O interrupts from all I/O devices,
and that the secondary can reinitialize all devices as part of powerfail recovery.

If the processor is eligible to become a primary, the console will set the Primary
Eligible (PE) processor variation flag in the processor's per-CPU slot during processor
initialization. See Table 2-4.

Primary switching requires cooperation between system software and the console.
System software is responsible for the selection of the new primary and any
necessary redirection of I/O interrupts. The console is responsible for any necessary
configuration of the console terminal or other console device interface.

Sequence on an Embedded Console
The sequence of events differs depending on the type of console implementation. On
a system with an embedded console, the operation proceeds as follows:

1. System software performs any actions specific to system software synchroniza
tion.

2. System software executing on the old primary ensures that the console terminal
is in a quiescent state. In particular, character reception from the terminal must
be suspended.

3. System software selects the new primary. The selected secondary must be eligible
as indicated by the PE processor variation flag in its per-CPU slot.

4. System software executing on the old primary invokes the PSWITCH console
callback specifying the "transition from primary" action.

5. The console attempts to perform any necessary hardware state changes to
transform the old primary into a secondary.

3-32 Console Interface Architecture (III)

Hardware/Software Coordination Note:
An example of such a hardware state change is disabling a console UART
physically located on the processor board.

6. If the state change is completed, PSWITCH returns success status. System
software may proceed with the primary switch at step 8.

7. If the state change is not effected, PSWITCH returns failure status. System
software must take other appropriate action.

8. System software executing on the old primary notifies system software on the
selected secondary of the successful PSWITCH completion.

9. System software executing on the selected secondary invokes the PSWITCH
console callback specifying the "transition to primary" action.

10. The console verifies that the selected secondary is eligible to become a primary
and attempts to perform any necessary hardware state changes to transform the
old secondary into the new primary.

11. If the state change is completed, PSWITCH returns success status. System
software may proceed with the primary switch at step 13.

12. If the state change is not effected, PSWITCH returns failure status. System
software must select a different potential primary or take other appropriate
action.

13. System software executing on the selected secondary reactivates the console
terminal. In particular, character reception from the terminal is re-enabled.

14. System software performs any additional system reconfiguration, updates the
PRIMARY CPU ID field at HWRPB[32] , recomputes the HWRPB checksum
at HWRPB[288] , and performs any actions specific to system software
synchronization.

Sequence on a Detached Console
On a system with a detached console, the operation is similar, but only one call
to PSWITCH is required. Additional calls to PSWITCH with the "switch primary"
action may result in UNDEFINED operation. The operation proceeds as follows:

1. System software performs any actions specific to system software synchroniza
tion.

2. System software executing on the old primary ensures that that the console
terminal is in a quiescent state. In particular, character reception from the
terminal must be suspended.

3. System software selects the new primary. The selected secondary must be eligible
as indicated by the PE processor variation flag in its per-CPU slot.

4. System software executing on any processor invokes the PSWITCH console
callback specifying the "switch primary" action and the CPU ID of the new
primary.

System Bootstrapping (III) 3-33 •

5. The console verifies that the selected secondary is eligible to become a primary
and attempts to perform any necessary hardware state changes to transform the
old primary into a secondary and to transform the selected secondary into the
primary.

6. If the state change is completed, PSWITCH returns success status. System
software may proceed with the primary switch at step 9.

7. If the state change is not effected and the resulting hardware state permits a
return to system software, PSWITCH returns failure status. System software
must select a different potential primary or take other appropriate action.

8. If the state change is not effected and the resulting hardware state does not
permit a return to system software, the console takes the action associated with
a failed restart.

9. System software executing on the selected secondary reactivates the console
terminal. In particular, character reception from the terminal is re-enabled.

10. System software performs any additional system reconfiguration, updates the
PRIMARY CPU ID field at HWRPB[32], recomputes the HWRPB checksum
at HWRPB[288], and performs any actions specific to system software
synchronization.

3.5.7 Saving and Restoring Console Terminal State During HALT/RESTART

Abrupt transitions from program I/O mode to console I/O mode may occur. Such
transitions may be caused by execution of a CALL_PAL HALT instruction, a
catastrophic error, or a console operator forcing the processor into console I/O mode.
Upon transition to console I/O mode, the console must be able to regain control of
the console terminal, even though system software may have changed the device
characteristics.

The console may seize control of the console terminal without regard to system
software when the transition is such that no return to program I/O mode is possible.
Such transitions are normally associated with a catastrophic error.

If system software execution may be continued, the console must be able to restore
the existing state of the console terminal. The console must regain and subsequently
relinquish control of the console terminal with the cooperation of system software.

Hardware/Software Coordination Note:

This is particularly desirable on workstations when the console operator forces
the processor into console I/O mode.

System software may provide SAVE_TERM and RESTORE_TERM routines that
can be called by the console to save and restore the state of the console terminal.
To provide these optional routines, system software loads the SAVE_TERM and
RESTORE_TERM starting virtual address and procedure descriptor fields in the
HWRPB, and recomputes the HWRPB checksum at HWRPB[288]. At system
bootstraps, the console sets these fields to zero.

3-34 Console Interface Architecture (III)

The console calls SAVE_TERM and RESTORE_TERM in kernel mode at the highest
IPL in the memory management policy established by system software. The console
loads the routine procedure value into R27, clears R25 and R26, and then transfers
control to system software at the starting virtual address. The procedure value and
starting virtual address for SAVE_TERM are contained in HWRPB[224] and [232];
those for RESTORE_TERM are contained in HWRPB[240] and [248]. These routines
are invoked only on the primary processor and only upon an unexpected entry into
console I/O mode. The console must preserve sufficient hardware state to permit the
processor to be restarted prior to invoking these routines. See Section 3.5.4.

Exit from these routines must be accomplished by using the CALL_PAL HALT
instruction to return the processor to console I/O mode; these routines do not use the
RET subroutine return instruction. Prior to exit, these routines must set the "SAVE_
TERMIRESTORE_TERM exit" code ('1') in the Halt Request field of the primary's
per-CPU slot and indicate success ('0') or failure ('1') status in RO<63>. The console
will not attempt to continue system software if a failure status is returned.

SAVE_TERM and RESTORE_TERM may be called when system software has
encountered an unexpected CALL_PAL HALT or other halt condition; system state
may be corrupt. These routines must be written with few or no dependencies on
possibly corrupt system state.

Hardware/Software Coordination Note:

A console terminal on a serial line mayor may not have state that needs to be
saved. A console terminal on a workstation may require the system software to
"roll down" the current screen to expose the "console window" and "roll up" the
"console window" to expose the current screen.

3.5.7.1 SAVE_TERM - Save Console Terminal State

Format:

status

Inputs:

R27 = Procedure value (HWRPB[232])

Success, terminal state saved
Failure, terminal state not saved

'0'
'1'

RO<62:0> SBZ

Outputs:

status = RO; status:

RO<63>

SAVE_TERM is called by the console after an unexpected entry to console mode. The
routine performs any implementation-specific and device-specific actions necessary
to save the state of the console terminal as established by system software. When
the routine exits and console I/O mode is restored, the console is free to modify the
existing console terminal state in any manner.

System Bootstrapping (III) 3-35 •

3.5.7.2 RESTORE_TERM - Restore Console Terminal State

Format:

status

Outputs:

status =RO; Status:

RO<63>

Inputs:

R27 = Procedure value (HWRPB[248])

'0' Success, terminal state restored
'1' Failure, terminal state not restored

RO<62:0> SBZ

RESTORE_TERM is called by the console just prior to continuing system software.
The routine performs any implementation-specific and device-specific actions
necessary to restore the state of the console terminal as established by system
software.

3.5.8 Operator Forced Entry to Console 1/0 Mode

The console operator can force a processor into console I/O mode with a HALT -CPU
command. When a processor enters console 110 mode in this way, the console sets
the Operator Halted (OH) flag in its per-CPU slot. The console does not update the
Reason for Halt or any other processor halt state in its per-CPU slot. The console
sets the OH flag only as the result of an explicit operator action; the OH flag is not set
on transitions to console 110 mode that result from error halt conditions, powerfails,
CALL_PAL HALT instructions in kernel mode, console operator requests of a system
crash, or software-directed processor shutdowns.

The console clears the OH flag prior to returning to program 110 mode as the result of
a CONTINUE or BOOT command. The console may clear OH flag if an error halt or
operator-induced condition is encountered that precludes a subsequent CONTINUE
command. Such a condition is treated as an error halt (see Section 3.5.4).

3.6 Bootstrap Loading and Image Media Format

An Alpha AXP console may load a primary bootstrap image from one or more of
the device classes listed in Table 3-9. Subsequent sections describe how the console
locates, sizes, and loads the bootstrap image for each device class.

Table 3-9: Bootstrap Devices and Image Media
Device Class Data Link Protocol

Local Disk

Local Tape

N/A

N/A

Bootblock

ANSI
Bootblock

3-36 Console Interface Architecture (III)

Table 3-9 (Cont.): Bootstrap Devices and Image Media

Device Class Data Link Protocol

Network

ROM

NI,
FDDI

N/A

MOP
Bootp

ROM Bootblock

As explained in Section 3.4.1.4, the console attempts to load a bootstrap image from
each element of a bootstrap device list until a successful image load is achieved. If
the bootstrap image cannot be located or if the load fails for any reason, the console
retains control of the system, generates the binary error message AUDIT_BSTRAP_
ABORT, and then attempts to load a bootstrap image from the next bootstrap device
list element. After a bootstrap image is successfully located and loaded, the console
transfers control to system software as described in Section 3.4.

As the bootstrap image load proceeds, the console optionally generates an audit trail
of progress messages. The ENABLE_AUDIT environment variable controls audit
trail generation. The audit trail begins with the AUDIT_BOOT_STARTS message.
The audit trail continues with messages that are specific to the bootstrap device.
Each consists ofa binary message code that is interpreted by the console presentation
layer.

3.6.1 Disk Bootstrapping

An Alpha AXP primary bootstrap may be loaded from a directly accessed disk device.
The console loads the "boot block" contained in the first logical block (LBN 0) of the
disk. The boot block contains the starting logical block number (LBN) of the primary
bootstrap program and the count of contiguous LBNs that make up that image.

The first 512 bytes of the boot block are structured as shown in Figure 3-6. The
console loads the primary bootstrap without knowledge of the operating system file
system. The boot block is (previously) initialized by the operating system. The actual
size of a logical block is device-specific and may exceed 512 bytes.

System Bootstrapping (III) 3-37 •

Figure 3-6: Alpha AXP Disk Boot Block
63

Reserved (VAX Compatibility)

Reserved (Expansion)

Reserved

Count (LBNs)

Starting LBN

Flags

Checksum

:BB

:+136

:+472

:+480

:+488

:+496

:+504

:+512

A local disk bootstrap proceeds as follows:

1. The console reads the boot block from LBN 0 of the specified disk device.

2. The console validates the boot block CHECKSUM; if the checksum is not
validated, the bootstrap image load attempt aborts. The console computes the
checksum of the first 63 quadwords in the block as a 64-bit sum, ignoring
overflow. The computation includes both reserved regions. The computed
checksum is compared to the CHECKSUM.

3. The console generates the AUDIT_CHECKSUM_GOOD message ifthe audit trail
is enabled.

4. The console ensures that the FLAG quadword is zero; otherwise the bootstrap
image load attempt aborts.

5. The console ensures that the COUNT is non-zero; otherwise the bootstrap image
load attempt aborts. The count field indicates the number of contiguous logical
blocks that contain the primary bootstrap.

6. The console generates the AUDIT_LOAD_BEGINS message if the audit trail is
enabled.

7. The console reads the primary bootstrap image specified by COUNT and
STARTING LBN into system memory; in any error occurs, the bootstrap image
load attempt aborts.

The transfer begins at the logical block given by the STARTING LBN; a
contiguous COUNT number of logical blocks is read. The image is read into
a virtually contiguous system memory buffer; the starting virtual address is
0000 0000 2000 000016. (See Section 3.4.1.2.)

Errors include device hardware errors, the specified STARTING LBN not being
present on the disk, or unexpectedly encountering the last logical block on the
disk during the read.

8. The console generates the AUDIT_LOAD_DONE message when the load has
completed; the message is generated only if the audit trail is enabled.

3-38 Console Interface Architecture (III)

9. The console prepares to transfer control to the bootstrap program as described
in Section 3.4.1.6.

Implementation Notes:

Unlike the VAX boot block support, no native AXP code is contained in the boot
block; the boot block contains only the LBN descriptor for the Alpha AXP primary
bootstrap image. An Alpha AXP boot block can contain pointers to primary
bootstrap images for both VAX and Alpha AXP simultaneously.

Because the boot block includes an LBN and block count, the console need have
no knowledge of the operating system file system or on-disk structure.

The first 136 bytes of the boot block are currently used by the VAX disk boot block
mechanism. The next 80 bytes are not currently used either by VAX or Alpha
AXP boot blocks. For future expansions, VAX boot blocks should expand towards
higher addresses, and Alpha AXP boot blocks expand towards lower addresses;
each region remains contiguous. These 216 bytes are ignored by the Alpha AXP
console except for the purposes of computing the boot block checksum.

The boot block FLAGS word is reserved for future expansion. Flag<O> is reserved
to indicate a discontiguous bootstrap image; Flag <63:1> are reserved for future
definition. There are no current plans by any Digital operating system to have
a discontiguous primary bootstrap image.

3.6.2 Tape Bootstrapping
An Alpha AXP primary bootstrap may be loaded from a directly accessed tape device.
Prior to loading the primary bootstrap, the console must determine the tape format
and locate the primary bootstrap on the tape. The console:

1. Rewinds the tape on the specified tape device to the beginning of the tape (BOT).

2. Reads the first record.

3. Determines the record length.

• If the record length is 80 bytes, the tape may be an ANSI-formatted tape.
The console proceeds as described in Section 3.6.2.1.

• If the record length is 512 bytes, the tape is "boot blocked." The console
proceeds as described in Section 3.6.2.2.

• If the length is other than 80 or 512 bytes, the bootstrap image load attempt
aborts.

3.6.2.1 Bootstrapping from ANSI-Formatted Tape

Prior to loading the primary bootstrap image from an ANSI-formatted tape, the
console must ensure that the format is valid. To verify that a given record contains
a particular ANSI label, the console checks for the ASCII label name string at the
beginning of the record. For example, a record containing a VOL1 label begins with
the ASCII string ''VOLl.'' All other record bytes are ignored when verifying the
label.

System Bootstrapping (III) 3-39 I

A primary bootstrap image file name may be specified explicitly on a BOOT command
or implicitly by the BOOT_FILE environment variable. If no file name is specified,
the first file located will be used.

A local ANSI-formatted tape bootstrap proceeds as follows:

1. The console verifies that the first record contains a VOL11abel; if the verification
fails, the bootstrap image load attempt aborts.

2. The console generates the AUDIT_TAPE_ANSI message if the audit trail is
enabled.

3. If no file name was specified, the console advances the tape position to the End
of-Tape (EOT) side of the the first tape mark. The console proceeds to step 5.

4. If a file name was specified, the console attempts to locate that file on the tape. If
the file cannot be located, the bootstrap image load attempt aborts. The console
compares the specified file name with the file name present in each HDRI label
on the tape. At the first match, the console proceeds to step 5.

The console searches for the specified file, starting with the second tape record.
The console reads SO-byte records from the tape until it encounters an HDR1
label, then proceeds as follows:

a. The console generates the AUDIT_FILE_FOUND<filename> message, where
<filename> is the value of the HDR1 label. The message is generated only if
the audit trail is enabled.

b. The console compares the specified file name with the 17 character File
Identifier Field found in the HDR1label.

c. If a match occurs, the console advances the tape position to after the next
tape mark and proceeds to step 5. (Any HDR2 or HDR3 labels are ignored.)

d. If no match occurs, the console advances the tape position over the next
three tape marks and reads the next record. If another tape mark is found,
the logical end of volume has been encountered and the bootstrap image load
attempt aborts. Otherwise, the record should be the HDRllabel for the next
file on the tape and the console proceeds at step a.

The console aborts the bootstrap image load attempt whenever an unexpected
tape mark is encountered, the tape runs off the end, or a hardware error occurs.

5. The console generates the AUDIT_LOAD_BEGINS message if the audit trail is
enabled.

6. The console reads the primary bootstrap image from tape into system memory; if
any error occurs or if the tape runs off the end, the bootstrap image load attempt
aborts.

The transfer from tape begins at the current tape position and continues until
a tape mark is encountered. The image is read into a virtually contiguous
system memory buffer; the starting virtual address is 0000 0000 2000 000016 .

(See Section 3.4.1.2.)

3-40 Console Interface Architecture (III)

7. The console checks that the bootstrap file was properly closed by:

a. Reading the record after the tape mark and verifying that the record is an
EOF1 label. If not, the bootstrap image load attempt aborts.

b. Searching for a subsequent tape mark. If a tape mark is not found, the
bootstrap file was improperly closed and the bootstrap image load attempt
aborts. (Any EOF2 and EOF3 labels are ignored.)

8. The console generates the AUDIT_LOAD_DONE message if the audit trail is
enabled.

9. The console prepares to transfer control to the bootstrap as described in
Section 3.4.1.6. The console does not rewind or otherwise change the position
of the tape after reading the bootstrap image.

3.6.2.2 Bootstrapping from Boot-Blocked Tape

Bootstrapping from a boot-blocked tape is similar to the local disk bootstrapping
described in Section 3.6.1. The first tape record must be 512 bytes and must follow
the format given for disk boot blocks as shown in Figure 3-6. The STARTING LBN
and FLAGS fields are MBZ for tape boot boot blocks.

All tape records that comprise the primary bootstrap must be 512 bytes in size. If
the console encounters records of any other size, the bootstrap image load attempt
aborts.

A local tape boot block bootstrap proceeds as follows:

1. The console generates the AUDIT_TAPE_BBLOCK message if the audit trail is
enabled.

2. The console validates the boot block CHECKSUM; if the checksum is not
validated, the bootstrap image load attempt aborts. The console computes the
checksum of the first 63 quadwords in the block as a 64-bit sum, ignoring
overflow. The computation includes both reserved regions and the MBZ fields.
The computed checksum is compared to the CHECKSUM at [BB+504l.

3. The console generates the AUDIT_CHECKSUM_GOOD message if the audit trail
is enabled.

4. The console ensures that the COUNT is non-zero; otherwise the bootstrap image
load attempt aborts. The count field indicates the number of subsequent 512-byte
records that contain the primary bootstrap.

5. The console generates the AUDIT_LOAD_BEGINS message if the audit trail is
enabled.

6. The console reads the COUNT subsequent records from the tape into system
memory. The bootstrap image load attempt aborts if the console encounters any
error, encounters any record size other than 512 bytes, or the tape runs off the
end.

The image is read into a virtually contiguous system memory buffer; the starting
virtual address is 0000 0000 2000 000016 , (See Section 3.4.1.2.)

System Bootstrapping (III) 3-41 I

7. The console generates the AUDIT_LOAD_DONE message if the audit trail is
enabled.

8. The console prepares to transfer control to the bootstrap as described in
Section 3.4.1.6. The console does not rewind or otherwise change the position
of the tape after reading the bootstrap image.

3.6.3 ROM Bootstrapping

An Alpha AXP console may support bootstrapping from read-only memory (ROM).
Bootstrap ROM is assumed to appear in multiple discontiguous regions of the
physical address space. A given ROM region may contain multiple bootstrap images.
A given bootstrap image must not span ROM regions.

Each ROM bootstrap image is page aligned and begins with a boot block as shown
in Figure 3-7. The ROM boot block is similar to the local disk and tape boot block
shown in Figure 3-6.

Figure 3-7: Alpha AXP ROM Boot block

63 3231 8 7 o

Complement Check I Reserved I Ox8D

Image Checksum

Image Offset

Image Length (Bytes)

Bootstrap 10

Checksum

:BB

:+08

:+16

:+24

:+32

:+40

:+48

A ROM bootstrap proceeds as follows:

1. The console locates the specified ordinal ROM bootstrap image; if the bootstrap
image cannot be located, the bootstrap image load attempt aborts.

The console locates the ROM bootstrap image by searching ROM regions
beginning with the ROM region with the lowest physical address and proceeding
upward to the ROM region with the highest physical address.

The search proceeds as follows:

a. The console verifies that the page contains a ROM bootstrap image:

• The low-order byte of the first quadword must be 8016.

• The high-order longword of the first quadword must be the one's
complement of the low-order longword.

3-42 Console Interface Architecture (III)

• The sixth quadword must contain the checksum of the first five
quadwords. The checksum is computed as a 64-bit sum, ignoring
overflow.

b. The console generates the AUDIT_BOOT_TYPE<string> message for each
valid boot block, if the audit trail is enabled. The <string> is the ISO Latin
I string contained in the BOOTSTRAP ID quadword.

c. If the specified ordinal image number has been reached, the console proceeds
to step 2.

d. Otherwise, the console uses the IMAGE LENGTH at [BB+24] to determine
the offset to the next ROM region page to be searched. The console repeats
the process at step a.

2. The console computes the starting physical address of the bootstrap image by
adding the physical address OFFSET at [BB+16] to the starting physical address
of the boot block [BB].

3. The console verifies the accessibility of each page of the bootstrap image. If any
page is inaccessible, the bootstrap image load attempt is aborted.

4. The console generates the AUDIT_BSTRAP_ACCESSIBLE message if the audit
trail is enabled.

5. If requested, the console validates the IMAGE CHECKSUM at [BB+08]; if the
checksum is not validated, the bootstrap image load attempt aborts. The console
computes the checksum of all quadwords in the bootstrap image as a 64-bit
sum, ignoring overflow. The existence and implementation of the mechanism for
requesting this validation is implementation specific.

6. The console generates the AUDIT_BSTRAP_GOOD message if the audit trail is
enabled.

7. If requested, the console copies the bootstrap image from ROM into system
memory (RAM). The image is copied into a virtually contiguous buffer starting
at virtual address 0000 0000 2000 000016. (See Section 3.4.1.2.) The console
generates the AUDIT_LOAD_BEGINS message before beginning the copy and
the AUDIT_LOAD_DONE after the copy completes successfully if the audit trail
is enabled.

8. The console prepares to transfer control to the bootstrap as described in
Section 3.4.1.6.

3.6.4 Network Bootstrapping

An Alpha AXP system may support bootstrapping over one or more network
communication devices and data link protocols. The console actions are dependent
on the network device, data link protocol, and remote server capabilities.

An Alpha AXP system can use the Digital Network Architecture Maintenance
Operations Protocol (MOP), or the BOOTP-UDP/IP network protocol, to bootstrap
an Alpha AXP system. See the MOP or BOOTP-UDP/IP specification for a detailed
description.

System Bootstrapping (III) 3-43 I

A network bootstrap proceeds as follows:

1. The console determines if a bootstrap file name is to be used. The file name is
taken from the BOOT command or the BOOT_FILE environment variable. Ifno
file name is specified on the BOOT command and BOOT_FILE is null, no file
name will be used.

2. The console generates the AUDIT_BOOT_REQ<filename> message if the audit
trail is enabled.

3. The console issues the appropriate (MOP or BOOTP-UDP/IP) bootstrap request
message(s).

4. The console receives an appropriate response (MOP or BOOTP-UDPIIP) from a
remote bootstrap server. If no such response is received, the bootstrap image
load attempt aborts.

5. The console generates the AUDIT_BSERVER_FOUND message if the audit trail
is enabled.

6. The bootstrap load proceeds, using the appropriate network protocol.

7. When the console receives the first portion of the bootstrap image, the console
generates the AUDIT_LOAD_BEGINS message if the audit trail is enabled.

8. The console loads the initial portion of the bootstrap image into a
virtually contiguous system memory buffer; the starting virtual address is
0000 0000 2000 000016. (See Section 3.4.1.2.)

9. When the bootstrap image has been loaded, the console generates the AUDIT_
LOAD_DONE message if the audit trail is enabled.

10. The console prepares to transfer control to the bootstrap program as described
in Section 3.4.1.6.

If any error occurs, the bootstrap image load attempt aborts.

The following list offers important points about BB_WATCH:

1. BB_WATCH is the correct name for this entity. Although incorrect terminology,
TOY, TODR, and watch chip, when used in an Alpha AXP context, are equivalent
in meaning to the BB_WATCH.

2. System software must directly manipulate the BB_WATCH through an
implementation-dependent interface.

3. System software makes the decision where to acquire known time; if a BB_
WATCH is present, it may be used as the provider of known time.

4. Systems are not required to have a BB_WATCH.

3-44 Console Interface Architecture (III)

Software Note:
However, all systems that support OpenVMS AXP or DEC OSF/l on Alpha
AXP must have a BB_WATCH.

5. If a BB_WATCH is present in a system, it meets the following requirements:

• It has an accuracy of at least 50 ppm regardless of whether power is applied
to the system.

• It has a resolution of at least 1 second (that is, it is read and written in units
of a second or better).

• Changing the entirety of the time maintained by the BB_WATCH takes under
1 second.

• It has battery backup to survive a loss of power.

6. A BB_WATCH is always accessible to the primary processor. That is, a processor
must be able to access a BB_WATCH directly (it must not need to go through
another processor to access it) in order to be a candidate for primary processor.

7. The number ofBB_WATCH entities in a system is either one for the entire system
or one per each processor in the system; which ofthe two options a system chooses
is implementation dependent. If the latter option is chosen (one BB_WATCH per
processor), writing one BB_WATCH does not update another.

8. Although writing the BB_WATCH takes less than one second, it may not be a
fast operation. Software should avoid frequently writing the BB_WATCH lest it
negatively impact performance.

9. The processor and its PALcode never changes the value of BB_WATCH except
under the direction of system software. (The console, boot programs, and
remote console clients are not system software.) The console, its PALcode, and
any console application (including a diagnostic supervisor) never changes BB_
WATCH except under the direction of the console operator - even when the CPU
is halted, the processor is being initialized, or the BB_WATCH has an invalid
time.

Programming Note:

The Primary-Eligible (PE) bit in the per-CPU slot of the HWRPB for each
processor indicates, among other things, whether the CPU has access to a BB_
WATCH. See Chapter 2.

The description ofprimary switching details the actions taken in a multiprocessor
system, including the requirement for the primary processor to have access to
the BB_WATCH.

System Bootstrapping (III) 3-45 I

3.8 Implementation Considerations

3.8.1 Embedded Console

In an embedded console implementation, the console executes on the same processor
as the operating system. In such an implementation, the state transitions as
experienced by the processor are more conceptual. For example, the processor acting
as the console will be executing instructions when in the halted state. The processor
may also field console I/O mode exceptions and interrupts.

An embedded console may be implemented as an extension of PALcode or as a
distinct software entity. The console may execute from dedicated RAM or ROM
on the processor or, after console initialization, may execute from main memory.

An embedded console implementation must include a mechanism by which the
primary processor can be forced into console I/O mode from program I/O mode. This
enables the console operator to gain control of the system regardless of the state of
the system software. See Section 1.1 for recommended and required mechanisms.

3.8.1.1 Multiprocessor Considerations

In a multiprocessor system, selection of the primary processor occurs prior to any
access to main memory by any of the processors. At system cold start, each of the
processors will be executing in console I/O mode. The necessary memory for console
execution must be independent of main memory; the console must be executing from
dedicated console RAM or ROM and/or a suitably configured processor cache.

The selection of the console primary requires one or more hardware registers
with state that is shared by all processors. One possible example is a mutex
contained in a single-bit register accessed only with LDQ_USTQ_C instructions.
The primary successfully gains ownership of the mutex. Implementations should
include mechanisms for operator override of the selection process and for recovery if
the selection process fails.

Once a console primary has been selected, the console secondaries take no further
action until appropriately notified by the primary. In particular, console secondaries
must not access main memory. The console primary is responsible for building the
HWRPB and any console-internal data structures (such as environment variables)
for the secondaries. When these structures have been initialized, the console primary
must be able to signal one or more of the secondaries by additional hardware
register(s).

The console primary allocates a HWRPB in main memory, initializes it, and stores
its physical address in an implementation-specific, nonvolatile manner. The console
primary then indicates the presence ofthe HWRPB and its location to all secondaries
by an implementation-specific mechanism.

On system restarts, the console primary identifies itself by comparing its WHAMI
register contents with the Primary CPU ID value stored in the HWRPB.

When executing in console I/O mode, all processors must observe the same values
of all console environment variables. Of particular importance are the values of the
AUTO_ACTION and BOOT_RESET environment variables. After failing to become

3-46 Console Interface Architecture (III)

the console primary processor, a console secondary waits to be notified that a valid
HWRPB exists. Upon such notification by the primary, the console secondaries use
the address provided by the primary to locate the HWRPB. The primary may be in
either program I/O mode or console I/O mode.

On cold bootstrap, a console secondary must not access main memory until notified
by the primary that a valid HWRPB exists. Thus, there must exist a non-main
memory-based mechanism by which the primary may signal each of the secondaries.
On warm bootstrap or restart, a secondary processor must locate its per-CPU slot
in the HWRPB and poll its RXRDY bit.

Console processors must locate the HWRPB without searching memory; such a
search constitutes a security hole. One possible implementation is to use an
environment variable or other shared console data structure. The address of the
HWRPB must be nonvolatile across power failures in systems that support powerfail
recovery.

Console implementations that support SAVE_ENV must be capable of executing
the routine simultaneously on each processor. System software use of SAVE_ENV
requires care. System software must invoke SAVE_ENV on all available processors,
but cannot ensure that the nonvolatile storage is updated on processors that are
not available at the time of update. In the event of mismatch, the console uses the
nonvolatile values preserved by the primary processor.

3.8.2 Detached Console

In a detached console implementation, the console executes on a separate and
distinct hardware platform. A detached console may have cooperating special code
that executes on one of the processors in the system configuration.

Detached console implementations should provide some sort of keep-alive function.
System software should be able to detect failures of the path between the system
platform and the console. The mechanism may be a single dedicated signal or
periodic message exchange. System software should be able to continue to execute
if a keep-alive failure occurs, and restoration of the connection (or console state)
should not cause a system crash or other major state transition. The console should
buffer any messages if a keep-alive failure occurs until reconnection occurs.

Detached consoles may maintain a local console log. The logging device and format
are implementation specific.

System Bootstrapping (III) 3-47 I

Appendixes

The following appendixes are included in the Alpha AXP Architecture Reference Manual:

• Appendix A, Software Considerations

• Appendix B, IEEE Floating-Point Conformance

• Appendix C, Instruction Summary

• Appendix D, Waivers and Implementation-Dependent Functionality

Contents

Appendix A Software Considerations

A.1 Hardware-Software Compact. A-I
A.2 Instruction-Stream Considerations A-2
A.2.1 Instruction Alignment. A-2
A.2.2 Multiple Instruction Issue - Factor of 3 . A-2
A.2.3 Branch Prediction and Minimizing Branch-Taken - Factor of 3 A-3
A.2.4 Improving I-Stream Density - Factor of 3 A-5
A.2.5 Instruction Scheduling - Factor of 3. A-5
A.3 Data-Stream Considerations A-6
A.3.1 Data Alignment - Factor of 10 . A-6
A.3.2 Shared Data in Multiple Processors - Factor of 3 A-7
A.3.3 Avoiding CachetrB Conflicts - Factor of 1 . A-8
A.3.4 Sequential ReadIWrite - Factor of 1 .. A-9
A.3.5 Prefetching - Factor of 3 A-10
A.4 Code Sequences. .. A-II
A.4.1 Aligned BytelWord Memory Accesses. .. A-II
A.4.2 Division. .. A-12
A.4.3 Byte Swap .. A-12
A.4.4 Stylized Code Forms A-13
A.4.4.1 NOP .. A-13
A.4.4.2 Clear a Register. .. A-13
A.4.4.3 Load Literal. .. A-14
A.4.4.4 Register-to-Register Move A-14
A.4.4.5 Negate .. A-14
A.4.4.6 NOT. .. A-15
A.4.4.7 Booleans. .. A-15
A.4.5 Trap Barrier. .. A-15
A.4.6 Pseudo-Operations (Stylized Code Forms) .. A-15
A.5 Timing Considerations: Atomic Sequences. .. A-17

Appendix B IEEE Floating-Point Conformance

B.1 Alpha AXP Choices for IEEE Options . B-1
B.2 Alpha AXP Hardware Support of Software Exception Handlers B-2
B.2.1 Choosing Degrees of IEEE Compliance B-2
B.2.2 IEEE Floating-Point Control (FP_C) Quadword . B-4
B.3 Mapping to IEEE Standard . B-5

iii

Appendix C Instruction Summary

C.1 Common Architecture Instruction Summary. C-1
C.2 IEEE Floating-Point Instructions. C-6
C.3 VAX Floating-Point Instructions C-8
C.4 Opcode Summary. C-9
C.5 Common Architecture Opcodes in Numerical Order. .. C-11
C.6 OpenVMS AXP PALcode Instruction Summary. .. C-15
C.7 DEC OSF/1 PALcode Instruction Summary. .. C-17
C.8 Windows NT AXP Instruction Summary. .. C-18
C.9 PALcode Opcodes in Numerical Order. .. C-20
C.10 Required PALcode Function Codes. .. C-23
C.11 Opcodes Reserved to PALcode C-23
C.12 Opcodes Reserved to Digital. .. C-23
C.13 Unused Function Code Behavior. .. C-23
C.14 ASCII Character Set. .. C-25

Appendix D Waivers and Implementation-Dependent Functionality

D.1 Waivers.. D-1
D.1.1 DECchip 21064, DECchip 21066, and DECchip 21068 IEEE Divide Instruction

Violation. D-1
D.1.2 DECchip 21064, DECchip 21066, and DECchip 21068 Write Buffer Violation. D-2
D.2 Implementation-Specific Functionality. D-2
D.2.1 DECchip 21064/21066/21068 Performance Monitoring. D-2
D.2.1.1 DECchip 21064/21066/21068 Performance Monitor Interrupt Mechanism. D-3
D.2.1.2 Functions and Arguments for the DECchip 21064/21066/21068 D-4
D.2.1.3 DECchip 21064121066/21068 MUX Control Fields in ICCSR Register. D-6
D.2.1.4 Monitoring External Events for the DECchip 21064/21066/21068 D-8
D.2.2 DECchip 21164 Performance Monitoring. D-9
D.2.2.1 DECchip 21164 Performance Monitor Interrupt Mechanism. D-9
D.2.2.2 Functions and Arguments for the DECchip 21164 .. D-10
D.2.2.3 Enable Counters Argument Format. .. D-12
D.2.2.4 Disable Counters Argument Format D-13
D.2.2.5 Select Desired Events (MUX_SELECT) Argument Format D-13
D.2.2.6 Select Special Options Argument Format D-16
D.2.2.7 Select Desired Frequencies Argument Format. .. D-17
D.2.2.8 Read Counters Argument Format .. D-18
D.2.2.9 Write Counters Argument Format. .. D-18

iv

Figures

B-1 IEEE Floating-Point Control (FP_C) Quadword .
B-2 IEEE Trap Handling Behavior .

Tables

A-I Decodable Pseudo-Operations (Stylized Code Forms) .
B-1 Floating-Point Control (FP_C) Quadword Bit Summary .
B-2 IEEE Floating-Point Trap Handling .
B-3 IEEE Standard Charts .
C-1 Instruction Format and Opcode Notation .
C-2 Common Architecture Instructions .
C-3 IEEE Floating-Point Instruction Function Codes .
C-4 VAX Floating-Point Instruction Function Codes .
C-5 Opcode Summary .
C-6 Key to Opcode Summary (Table C-5) .
C-7 Common Architecture Opcodes in Numerical Order .
C-8 OpenVMS AXP Unprivileged PALcode Instructions .
C-9 OpenVMS AXP Privileged PALcode Instructions .
C-10 DEC OSF/1 Unprivileged PALcode Instructions .
C-l1 DEC OSF/1 Privileged PALcode Instructions .
C-12 Windows NT AXP Unprivileged PALcode Instructions .
C-13 Windows NT AXP Privileged PALcode instructions .
C-14 PALcode Opcodes in Numerical Order .
C-15 Required PALcode Function Codes .
C-16 Opcodes Reserved for PALcode .
C-17 Opcodes Reserved for Digital .
C-18 ASCII Character Set .
D-1 DECchip 21064121066/21068 Performance Monitoring Functions .
D-2 DECchip 21064121066/21068 MUX Control Fields in ICCSR Register .
D-3 External Performance Counter Events .
D-4 DECchip 21164 Performance Monitoring Functions .
D-5 Enable Counters Argument Format .
D-6 Disable Counters Argument Format .
D-7 Select Desired Events (MUX_SELECT) Argument Format .
D-8 Select Special Options Argument Format .
D-9 Select Desired Frequencies Argument Format .
D-10 Read Counters Argument Format .
D-11 Write Counters Argument Format .

B-4
B-6

A-16
B-4
B-7

B-12
C-1
C-1
C-6
C-8

C-10
C-10
C-11
C-15
C-16
C-17
C-17
C-18
C-18
C-20
C-23
C-23
C-23
C-25
D-4
D-6
D-8

D-10
D-12
D-13
D-13
D-16
D-17
D-18
D-18

v

Appendix A

Software Considerations

A.1 Hardware-Software Compact

The Alpha AXP architecture, like all RISC architectures, depends on careful
attention to data alignment and instruction scheduling to achieve high performance.

Since there will be various implementations of the Alpha AXP architecture, it is not
obvious how compilers can generate high-performance code for all implementations.
This chapter gives some scheduling guidelines that, if followed by all compilers and
respected by all implementations, will result in good performance. As such, this
section represents a good-faith compact between hardware designers and software
writers. It represents a set of common goals, not a set of architectural requirements.
Thus, an Appendix, not a Chapter.

Many of the performance optimizations discussed below are advantageous only for
frequently executed code. For rarely executed code, they may produce a bigger
program that is not any faster. Some of the branching optimizations also depend on
good prediction of which path from a conditional branch is more frequently executed.
These optimizations are best done by using an execution profile, either an estimate
generated by compiler heuristics, or a real profile of a previous run, such as that
gathered by PC-sampling in PCA.

Each computer architecture has a "natural word size." For the PDP-II, it is 16
bits; for VAX, 32 bits; and for Alpha AXP, 64 bits. Other architectures also have
a natural word size that varies between 16 and 64 bits. Except for very low-end
implementations, ALU data paths, cache access paths, chip pin buses, and main
memory data paths are all usually the natural word size.

As an architecture becomes commercially successful, high-end implementations
inevitably move to double-width data paths that can transfer an aligned (at an
even natural word address) pair of natural words in one cycle. For Alpha AXP, this
means 128-bit wide data paths will eventually be implemented. It is difficult to get
much speed advantage from paired transfers unless the code being executed has
instructions and data appropriately aligned on aligned octaword boundaries. Since
this is difficult to retrofit to old code, the following sections sometimes encourage
"over-aligning" to octaword boundaries in anticipation of high-speed Alpha AXP
implementations.

In some cases, there are performance advantages to aligning instructions or data
to cache-block boundaries, or putting data whose use is correlated into the same
cache block, or trying to avoid cache conflicts by not having data whose use is
correlated placed at addresses that are equal modulo the cache size. Since the Alpha
AXP architecture will have many implementations, an exact cache design cannot be
outlined here. Nonetheless, some expected bounds can be stated.

Software Considerations A-1

1. Small (first-level) cache sizes will likely be in the range 2 KB to 64 KB

2. Small cache block sizes will likely be 16, 32, 64, or 128 bytes

3. Large (second- or third-level) cache sizes will likely be in the range 128 KB to
8MB

4. Large cache block sizes will likely be 32, 64, 128, or 256 bytes

5. TB sizes will likely be in the range 16 to 1024 entries

Thus, if two data items need to go in different cache blocks, it is desirable to make
them at least 128 bytes apart (modulo 2 KB). Doing so creates a high probability
of allowing both items to be in a small cache simultaneously for all Alpha AXP
implementations.

In each case below, the performance implication is given by an order-of-magnitude
number: 1, 3, 10, 30, or 100. A factor of 10 means that the performance difference
being discussed will likely range from 3 to 30 across all Alpha AXP implementations.

A.2 Instruction-Stream Considerations

The following sections describe considerations for the instruction stream.

A.2.1 Instruction Alignment

Code PSECTs should be octaword aligned. Targets of frequently taken branches
should be at least quadword aligned, and octaword aligned for very frequent loops.
Compilers could use execution profiles to identify frequently taken branches.

Most Alpha AXP implementations will fetch aligned quadwords of instruction stream
(two instructions), and many will waste an instruction-issue cycle on a branch
to an odd longword. High-end implementations may eventually fetch aligned
octawords, and waste up to three issue cycles on a branch to an odd longword.
Some implementations may only be able to fetch wide chunks of instructions every
other CPU cycle. Fetching four instructions from an aligned octaword can get at
most one cache miss, while fetching them from an odd longword address can get two
or even three cache misses.

Quadword I-fetch implementors should give first priority to executing aligned
quadwords quickly. Octaword-fetch implementors should give first priority to
executing aligned octawords quickly, and second priority to executing aligned
quadwords quickly. Dual-issue implementations should give first priority to issuing
both halves of an aligned quadword in one cycle, and second priority to buffering
and issuing other combinations.

A.2.2 MUltiple Instruction Issue - Factor of 3

Some Alpha AXP implementations will issue multiple instructions in a single cycle.
To improve the odds of multiple-issue, compilers should choose pairs of instructions
to put in aligned quadwords. Pick one from column A and one from column B (but
only a total of one loadlstorelbranch per pair).

A-2 Appendixes

ColumnA

Integer Operate

Floating Load/Store

Floating Branch

Column B

Floating Operate

Integer Load/Store

Integer Branch

BRlBSRJJSR

Implementors of multiple-issue machines should give first priority to dual-issuing at
least the above pairs, and second priority to multiple-issue of other combinations.

In general, the above rules will give a good hardware-software match, but compilers
may want to implement model-specific switches to generate code tuned more exactly
to a specific implementation.

A.2.3 Branch Prediction and Minimizing Branch-Taken - Factor of 3

In many Alpha AXP implementations, an unexpected change in I-stream address will
result in about 10 lost instruction times. "Unexpected" may mean any branch-taken
or may mean a mispredicted branch. In many implementations, even a correctly
predicted branch to a quadword target address will be slower than straight-line
code.

Compilers should follow these rules to minimize unexpected branches:

1. Implementations will predict all forward conditional branches as not-taken,
and all backward conditional branches as taken. Based on execution profiles,
compilers should physically rearrange code so that it has matching behavior.

2. Make basic blocks as big as possible. A good goal is 20 instructions on average
between branch-taken. This means unrolling loops so that they contain at least
20 instructions, and putting subroutines of less than 20 instructions directly in
line. It also means using execution profiles to rearrange code so that the frequent
case of a conditional branch falls through. For very high-performance loops, it
will be profitable to move instructions across conditional branches to fill otherwise
wasted instruction issue slots, even if the instructions moved will not always do
useful work. Note that the Conditional Move instructions can sometimes be used
to avoid breaking up basic blocks.

3. In an if-then-else construct whose execution profile is skewed even slightly away
from 50%-50% (51-49 is enough), put the infrequent case completely out of line,
so that the frequent case encounters zero branch-takens, and the infrequent case
encounters two branch-takens. If the infrequent case is rare (5%), put it far
enough away that it never comes into the I-cache. If the infrequent case is
extremely rare (error message code), put it on a page of rarely executed code and
expect that page never to be paged in.

4. There are two functionally identical branch-format opcodes, BSR and BR.

Software Considerations A-3

31 2625 2120

BSR Ra Displacement

BR Ra Displacement

Branch Format

Branch Format

Compilers should use the first one for subroutine calls, and the second for GOTOs.
Some implementations may push a stack of predicted return addresses for BSR
and not push the stack for BR. Failure to compile the correct opcode will result
in mispredicted return addresses, and hence make subroutine returns slow.

5. The memory-format JSR instruction has 16 unused bits. These should be used
by the compilers to communicate a hint about expected branch-target behavior
(see Common Architecture, Chapter 4).

31 1615 0I JSR rn--------,IMemOry Format
If the JSR is used for a computed GOTO or a CASE statement, compile bits
<15:14> as 00, and bits <13:0> such that (updated PC+Instr<13:0>*4) <15:0>
equals (likely_target_addr) <15:0>. In other words, pick the low 14 bits so that
a normal PC+displacement*4 calculation will match the low 16 bits of the most
likely target longword address. (Implementations will likely prefetch from the
matching cache block.)

If the JSR is used for a computed subroutine call, compile bits <15:14> as 01,
and bits <13:0> as above. Some implementations will prefetch the call target
using the prediction and also push updated PC on a return-prediction stack.

If the JSR is used as a subroutine return, compile bits <15:14> as 10. Some
implementations will pop an address off a return-prediction stack.

If the JSR is used as a coroutine linkage, compile bits <15:14> as 11. Some
implementations will pop an address off a return-prediction stack and also push
updated PC on the return-prediction stack.

Implementors should give first priority to executing straight-line code with no
branch-takens as quickly as possible, second priority to predicting conditional
branches based on the sign of the displacement field (backward taken, forward not
taken), and third priority to predicting subroutine return addresses by running a
small prediction stack. (VAX traces show a stack of two to four entries correctly
predicts most branches.)

A-4 Appendixes

A.2.4 Improving I-Stream Density - Factor of 3

Compilers should try to use profiles to make sure almost 100% of the bytes brought
into an I-cache are actually executed. This means aligning branch targets and
putting rarely executed code out of line. Doing so would consistently make an 1
cache appear about two times larger, compared to current VAX. practice.

The example below shows the bytes actually brought into a VAX. cache (from part of
an address trace of a DLINPAC). The dots represent bytes brought into the cache
but never executed. They occupy about half of the cache.

Each line shows the use of an aligned 64-byte I-cache block. A portion of DLINPAC
and a portion of OpenVMS AXP 4.x are shown. Uppercase I is the first byte of
an instruction, and lowercase i marks subsequent bytes. Period (.) shows a byte
brought into the cache but never executed.

I-fetch Byte 0 Byte 63

000268CO IiiiliiIiiliiiiiiiiiliii .
00026900 IiiiiIiiiiiiiiii
00026940 IiIiiIiliililililiiililiiliIiiiiiiiliiliii .
00026980 IiiiliiliiliiIiiIiliilii
000269CO I IiiiiliiliiiililiiiiliiillililiililiiiIiIiii .
00026AOO IiliiiiiiiiiiiiiliiliiiIiii .
00026A40 IiiiiiiiiiliiiiiiiiIiliiiIiiIii
00026A80 IiIiiiiIiIiIiiililililiiiiiiiiliiliiiIiii Iiilii
00026ACO Iiiliii .

80004440 IiiiIiliii .
80004680 IiiiiiIiii .
80004900 IiiliiliiliiiiliIiiliiliiliiiIiliiiiliIiiiliiiiI
80004940 Iiiiiliii!ii!i!iii Iiiii!iii .
80004AOO Iiiiiiliiliiiii
80004A40 Iiliiliiiiliiiliiiliiiliii liiiiilliiiiiliiiilii!iiiI
80004A80 Iiiiiliiiliilii!iii Iiiliiliii .
80004F40 Iiiiiiliiiiiiliiiliiiiiiliii .
80004F80 Iiii!iiiiiiilii!iliiiliiiiiiiiiiiiiiliii!
80004FCO IIiiiii!iiililiiiliii Iiiiililiii .
80008A40 Iiiiliii
80008A80 IIiiliiiIiililiiililiIiiililiiliiiiiliiliiliiliiiiiii!iliiiliii.

A.2.5 Instruction Scheduling - Factor of 3

The performance of Alpha AXP programs is sensitive to how carefully the code is
scheduled to minimize instruction-issue delays.

"Result latency" is defined as the number of CPU cycles that must elapse between an
instruction that writes a result register and one that uses that register, if execution
time stalls are to be avoided. Thus, a latency of zero means that the instruction
writes a result register and the instruction that uses that register can be multiple
issued in the same cycle. A latency of2 means that if the writing instruction is issued
at cycle N, the reading instruction can issue no earlier than cycle N+2. Latency is
implementation specific.

Most Alpha AXP instructions have a non-zero result latency. Compilers should
schedule code so that a result is not used too soon, at least in frequently executed

Software Considerations A-5

code (inner loops, as identified by execution profiles). In general, this will require
loop unrolling and short procedure inlining.

Assume that implementations can dual-issue instructions. Assume that Load and
JSR instructions have a latency of 3, shifts and byte manipulation a latency of 2,
integer multiply a latency of 10, and other integer operates a latency of 1. Assume
floating multiply has a latency of 5, floating divide a latency of 10, and other floating
operates a latency of 4. Scheduling to these latencies gives at least reasonable
performance on current implementations.

Compilers should try to schedule code to match the above latency rules and also to
match the multiple-issue rules. If doing both is impractical for a particular sequence
of code, the latency rules are more important (since they apply even in single-issue
implementations).

Implementors should give first priority to minimizing the latency of back-to-back
integer operations, ofaddress calculations immediately followed by load/store, of load
immediately followed by branch, and of compare immediately followed by branch.
Second priority should be given to minimizing latencies in general.

A.3 Data-Stream Considerations

The following sections describe considerations for the data stream.

A.3.1 Data Alignment - Factor of 10

Data PSECTs should be at least octaword aligned, so that aggregates (arrays, some
records, subroutine stack frames) can be allocated on aligned octaword boundaries
to take advantage of any implementations with aligned octaword data paths, and to
decrease the number of cache fills in almost all implementations.

Aggregates (arrays, records, common blocks, and so forth) should be allocated on
at least aligned octaword boundaries whenever language rules allow. In some
implementations, a series of writes that completely fill a cache block may be a factor
of 10 faster than a series of writes that partially fill a cache block, when that cache
block would give a read miss. This is true of write-back caches that read a partially
filled cache block from memory, but optimize away the read for completely filled
blocks.

For such implementations, long strings ofsequential writes will be faster if they start
on a cache-block boundary (a multiple of 128 bytes will do well for most, if not all,
Alpha AXP implementations). This applies to array results that sweep through large
portions of memory, and also to register-save areas for context switching, graphics
frame buffer accesses, and other places where exactly 8, 16, 32, or more quadwords
are stored sequentially. Allocating the targets at multiples of 8, 16, 32, or more
quadwords, respectively, and doing the writes in order of increasing address will
maximize the write speed.

Items within aggregates that are forced to be unaligned (records, common blocks)
should generate compile-time warning messages and inline byte extract/insert code.
Users must be educated that the warning message means that they are taking a
factor of 30 performance hit.

A-6 Appendixes

Compilers should consider supplying a switch that allows the compiler to pad
aggregates to avoid unaligned data.

Compiled code for parameters should assume that the parameters are aligned.
Unaligned actuals will therefore cause run-time alignment traps and very slow
fixups. The fixup routine, if invoked, should generate warning messages to the
user, preferably giving the first few statement numbers that are doing unaligned
parameter access, and at the end of a run the total number of alignment traps (and
perhaps an estimate of the performance improvement if the data were aligned).
Again, users must be educated that the trap routine warning message means they
are taking a factor of 30 performance hit.

Frequently used scalars should reside in registers. Each scalar datum allocated
in memory should normally be allocated an aligned quadword to itself, even if the
datum is only a byte wide. This allows aligned quadword loads and stores and avoids
partial-quadword writes (which may be half as fast as full-quadword writes, due to
such factors as read-modify-write a quadword to do quadword ECC calculation).

Implementors should give first priority to fast reads of aligned octawords and second
priority to fast writes of full cache blocks. Partial-quadword writes need not have a
fast repetition rate.

A.3.2 Shared Data in Multiple Processors - Factor of 3

Software locks are aligned quadwords and should be allocated to large cache blocks
that either contain no other data, or read-mostly data whose usage is correlated with
the lock.

Whenever there is high contention for a lock, one processor will have the lock and
be using the guarded data, while other processors will be in a read-only spin loop on
the lock bit. Under these circumstances, any write to the cache block containing the
lock will likely cause excess bus traffic and cache fills, thus having a performance
impact on all processors that are involved, and the buses between them. In some
decomposed FORTRAN programs, refills of the cache blocks containing one or two
frequently used locks can account for a third of all the bus bandwidth the program
consumes.

Whenever there is almost no contention for a lock, one processor will have the lock
and be using the guarded data. Under these circumstances, it might be desirable to
keep the guarded data in the same cache block as the lock.

For the high-sharing case, compilers should assume that almost all accesses to
shared data result in cache misses all the way back to main memory, for each distinct
cache block used. Such accesses will likely be a factor of 30 slower than cache hits.
It is helpful to pack correlated shared data into a small number of cache blocks. It is
helpful also to segregate blocks written by one processor from blocks read by others.

Therefore, accesses to shared data, including locks, should be minimized. For
example, a four-processor decomposition of some manipulation of a 1000-row array
should avoid accessing lock variables every row, but instead might access a lock
variable every 250 rows.

Software Considerations A-7

Array manipulation should be partitioned across processors so that cache blocks do
not thrash between processors. Having each of four processors work on every fourth
array element severely impairs performance on any implementation with a cache
block of four elements or larger. The processors all contend for copies of the same
cache blocks and use only one quarter of the data in each block. Writes in one
processor severely impair cache performance on all processors.

A better decomposition is to give each processor the largest possible contiguous
chunk of data to work on (N/4 consecutive rows for four processors and row-major
array storage; N/4 columns for column-major storage). With the possible exception
of three cache blocks at the partition boundaries, this decomposition will result in
each processor caching data that is touched by no other processor.

Operating-system scheduling algorithms should attempt to minimize process
migration from one processor to another. Any time migration occurs, there are likely
to be a large number of cache misses on the new processor.

Similarly, operating-system scheduling algorithms should attempt to enforce some
affinity between a given device's interrupts and the processor on which the interrupt
handler runs. 110 control data structures and locks for different devices should be
disjoint. Doing both of these allows higher cache hit rates on the corresponding I/O
control data structures.

Implementors should give first priority to an efficient (low-bandwidth) way of
transferring isolated lock values and other isolated, shared write data between
processors.

Implementors should assume that the amount of shared data will continue to
. increase, so over time the need for efficient sharing implementations will also

increase.

A.3.3 Avoiding CachelTB Conflicts - Factor of 1

Occasionally, programs that run with a direct-mapped cache or TB will thrash,
taking excessive cache or TB misses. With some work, thrashing can be minimized
at compile time.

In a frequently executed loop, compilers could allocate the data items accessed from
memory so that, on each loop iteration, all of the memory addresses accessed are
either in exactly the same aligned 64-byte block, or differ in bits VA<10:6>. For loops
that go through arrays in a common direction with a common stride, this means
allocating the arrays, checking that the first-iteration addresses differ, and if not,
inserting up to 64 bytes ofpadding between the arrays. This rule will avoid thrashing
in small direct-mapped data caches with block sizes up to 64 bytes and total sizes
of 2K bytes or more.

Example:

REAL*4 A(lOOO),B(lOOO)
DO 60 i=l,lOOO

60 A(i) = f(B(i))

A-a Appendixes

BAD allocation (A and B thrash in 8 KB direct-mapped cache):

o 4K 8K 12K 16K

BETTER allocation (A and B offset by 64 mod 2 KB, so 16 elements of A and 16 of
B can be in cache simultaneously):

o 4K 8K+64 12K 16K

BEST allocation (A and B offset by 64 mod 2 KB, so 16 elements of A and 16 of B
can be in cache simultaneously, and both arrays fit entirely in 8 KB or bigger cache):

I,----A_~ B

o 4K-64 8K 12K 16K

In a frequently executed loop, compilers could allocate the data items accessed from
memory so that, on each loop iteration, all of the memory addresses accessed are
either in exactly the same 8 KB page, or differ in bits VA<17:13>. For loops that go
through arrays in a common direction with a common stride, this means allocating
the arrays, checking that the first-iteration addresses differ, and if not, inserting
up to 8K bytes of padding between the arrays. This rule will avoid thrashing in
direct-mapped TBs and in some large direct-mapped data caches, with total sizes of
32 pages (256 KB) or more.

Usually, this padding will mean zero extra bytes in the executable image, just a skip
in virtual address space to the next-higher page boundary.

For large caches, the rule above should be applied to the I-stream, in addition to
all the D-stream references. Some implementations will have combined I-stream
/D-stream large caches.

Both of the rules above can be satisfied simultaneously, thus often eliminating
thrashing in all anticipated direct-mapped cachetrB implementations.

A.3.4 Sequential ReadlWrite - Factor of 1

All other things being equal, sequences of consecutive reads or writes should use
ascending (rather than descending) memory addresses. Where possible, the memory
address for a block of 2**Kbytes should be on a 2**K boundary, since this minimizes

Software Considerations A-9

the number of different cache blocks used and minimizes the number of partially
written cache blocks.

To avoid overrunning memory bandwidth, sequences of more than eight quadword
load or store instructions should be broken up with intervening instructions (if there
is any useful work to be done).

For consecutive reads, implementors should give first priority to prefetching
ascending cache blocks, and second priority to absorbing up to eight consecutive
quadword load instructions (aligned on a 64-byte boundary) without stalling.

For consecutive writes, implementors should give first priority to avoiding read
overhead for fully written aligned cache blocks, and second priority to absorbing
up to eight consecutive quadword store instructions (aligned on a 64-byte boundary)
without stalling.

A.3.5 Prefetching - Factor of 3

To use FETCH and FETCH_M effectively, software should follow this programming
model:

1. Assume that at most two FETCH instructions can be outstanding at once,
and that there are two prefetch address registers, PREa and PREb, to hold
prefetching state. FETCH instructions alternate between loading PREa and
PREb. Each FETCH instruction overwrites any previous prefetching state, thus
terminating any previous prefetch that is still in progress in the register that is
loaded. The order of fetching within a block and the order between PREa and
PREb are UNPREDICTABLE.

Implementation Note:
Implementations are encouraged to alternate at convenient intervals between
PREa and PREb.

2. Assume, for maximum efficiency, that there should be about 64 unrelated memory
access instructions (load or store) between a FETCH and the first actual data
access to the prefetched data.

3. Assume, for instruction-scheduling purposes in a multilevel cache hierarchy, that
FETCH does not prefetch data to the innermost cache level, but rather one level
out. Schedule loads to bury the last level of misses.

4. Assume that FETCH is worthwhile if, on average, at least half the data in a
block will be accessed. Assume that FETCH_M is worthwhile if, on average, at
least half the data in a block will be modified.

5. Treat FETCH as a vector load. If a piece of code could usefully prefetch four
operands, launch the first two prefetches, do about 128 memory references
worth of work, then launch the next two prefetches, do about 128 more memory
references worth of work, then start using the four sets of prefetched data.

6. Treat FETCH as having the same effect on a cache as a series of 64 quadword
loads. If the loads would displace useful data, so will FETCH. If two sets of loads

A-10 Appendixes

from specific addresses will thrash in a direct-mapped cache, so will two FETCH
instructions using the same pair of addresses.

Implementation Note:

Hardware implementations are expected to provide either no support for
FETCHx or support that closely matches this model.

A.4 Code Sequences

The following section describes code sequences.

A.4.1 Aligned BytelWord Memory Accesses

The instruction sequences given in Common Architecture, Chapter 4, for byte and
word accesses are worst-case code. In the common case of accessing a byte or aligned
word field at a known offset from a pointer that is expected to be at least longword
aligned, the common-case code is much shorter.

"Expected" means that the code should run fast for a longword-aligned pointer and
trap for unaligned. The trap handler may at its option fix up the unaligned reference.

For access at a known offset D from a longword-aligned pointer Rx, let D.lw be D
rounded down to a multiple of 4 «D div 4)*4), and let D.mod be D mod 4.

In the common case, the intended sequence for loading and zero-extending an aligned
word is:

LDL Rl,D.lw(Rx)
EXTWL Rl,#D.mod,Rl

! Traps if unaligned
! picks up word at byte 0 or byte 2

In the common case, the intended sequence for loading and sign-extending an aligned
word is:

LDL
SLL
SRA

Rl,D.lw(Rx)
Rl,#48-8*D.mod,Rl
Rl,#48,Rl

Traps if unaligned
Aligns word at high end of Rl
SEXT to low end of Rl

Note:

The shifts often can be combined with shifts that might surround subsequent
arithmetic operations (for example, to produce word overflow from the high end
of a register).

In the common case, the intended sequence for loading and zero-extending a byte is:

LDL Rl,D.lw(Rx)
EXTBL Rl,#D.mod,Rl

. In the common case, the intended sequence for loading and sign-extending a byte is:

LDL Rl,D.lw(Rx)
SLL Rl,#56-8*D.mod,Rl!
SRA Rl,#56,Rl !

In the common case, the intended sequence for storing an aligned word R5 is:

Software Considerations A-11

LDL
INSWL
MSKWL
BIS
STL

Rl,D.lw(Rx)
RS,#D.mod,R3
Rl,#D.mod,Rl
R3,Rl,Rl
Rl,D.lw(Rx)

In the common case, the intended sequence for storing a byte R5 is:

LDL
INSBL
MSKBL
BIS
STL

Rl,D.lw(Rx)
RS,#D.mod,R3
Rl,#D.mod,Rl
R3,Rl,Rl
Rl,D.lw(Rx)

A.4.2 Division

In all implementations, floating-point division is likely to have a substantially longer
result latency than floating-point multiply; in addition, in many implementations
multiplies will be pipelined and divides will not.

Thus, any division by a constant power of two should be compiled as a multiply
by the exact reciprocal, if it is representable without overflow or underflow. If
language rules or surrounding context allow, other divisions by constants can be
closely approximated via multiplication by the reciprocal.

Integer division does not exist as a hardware opcode. Division by a constant can
always be done via UMULH of another appropriate constant, followed by a right
shift. General quadword division by true variables can be done via a subroutine.
The subroutine could test for small divisors (less than about 1000 in absolute value)
and for those, do a table lookup on the exact constant and shift count for an UMULH
/shift sequence. For the remaining cases, a table lookup on about a 1000-entry table
and a multiply can give a linear approximation to 1/divisor that is accurate to 16
bits.

Using this approximation, a multiply and a back-multiply and a subtract can
generate one 16-bit quotient "digit" plus a 48-bit new partial dividend. Three more
such steps can generate the full quotient. Having prior knowledge of the possible
sizes of the divisor and dividend, normalizing away leading bytes of zeros, and
performing an early-out test can reduce the average number of multiplies to about
five (compared to a best case of one and a worst case of nine).

A.4.3 Byte Swap
When it is necessary to swap all the bytes of a datum, perhaps because the datum
originated on a machine of the opposite byte numbering convention, the simplest
sequence is to use the VAX floating-point load instruction to swap words, followed
by an integer sequence to swap four pairs of bytes. Assume as shown below that an
aligned quadword datum is in memory at location X and is to be left in R1 after byte
swapping; temp is an aligned quadword temporary, and "." (period) in the comments
stands for a byte of zeros. Similar sequences can be used for data in registers,
sometimes doing the byte swaps first and word swap second:

A-12 Appendixes

X ABCD EFGH
LDG FO,X FO GHEF CDAB
STT FO,temp
LDQ Rl,temp Rl GHEF CDAB
SLL Rl,#8,R2 R2 HEFC DAB.
SRL Rl,#8,Rl Rl .GHE FCDA
ZAP R2, #55 (hex) , R2 R2 H.F. D.B.
ZAP Rl,#AA(hex) ,Rl Rl .G.E .C.A
OR Rl,R2,Rl Rl HGFE DCBA

For bulk swapping of arrays, this sequence can be usefully unrolled about four times
and scheduled, using four different aligned quadword memory temps.

A.4.4 Stylized Code Forms

Using the same stylized code form for a common operation makes compiler output
a little more readable and makes it more likely that an implementation will speed
up the stylized form.

A.4.4.1 NOP

The universal NOP form is:

UNOP LDQ_U R31,O(Rx)

In most implementations, UNOP should encounter no operand issue delays,
no destination issue delay, and no functional unit issue delays. (In some
implementations, it may encounter an operand issue delay for Rx.) Implementations
are free to optimize UNOP into no action and zero execution cycles.

If the actual instruction is encoded as LDQ_U Rn,O(Rx), where n is other than
31, and such an instruction generates a memory-management exception, it is
UNPREDICTABLE whether UNOP would generate the same exception. On most
implementations, UNOP does not generate memory management exceptions.

The standard NOP forms are:

NOP
FNOP

BIS
CPYS

R31,R31,R31
F31,F31,F31

These generate no exceptions. In most implementations, they should encounter no
operand issue delays and no destination issue delay. Implementations are free to
optimize these into no action and zero execution cycles.

A.4.4.2 Clear a Register

The standard clear register forms are:

CLR
FCLR

BIS
CPYS

R31,R31,Rx
F31,F31,Fx

These generate no exceptions. In most implementations, they should encounter no
operand issue delays, and no functional unit issue delay.

Software Considerations A-13

A.4.4.3 Load Literal

The standard load integer literal (ZEXT 8-bit) form is:

MOV #lit8,Ry BIS R31, lit8, Ry

The Alpha AXP literal construct in Operate instructions creates a canonicallongword
constant for values 0..255.

A longword constant stored in an Alpha AXP 64-bit register is in canonical form
when bits <63:32>=bit <31>.

A canonical 32-bit literal can usually be generated with one or two instructions, but
sometimes three instructions are needed. Use the following procedure to determine
the offset fields of the instructions:

val <sign-extended, 32-bit value>

low
tmp1

val<15:0>
val - SEXT(low) Account for LDA instruction

high tmp1<31:16>
tmp2 tmp1 - SHIFT_LEFT (SEXT(high,16))

if tmp2 NE 0 then
! original val was in range 7FFF800016 .. 7FFFFFFF16

extra = 400016
tmpl tmpl - 4000000016
high = tmp1<31:16>

else
extra = 0

endif

The general sequence is:

LDA Rdst, low(R31)
LDAH Rdst, extra (Rdst)
LDAH Rdst, high(Rdst)

Omit if extra=O
Omit if high=O

A.4.4.4 Register-to-Register Move

The standard register move forms are:

MOV RX,RY
FMOV FX,FY

BIS RX,RX,RY
CPYS FX,FX,FY

These generate no exceptions. In most implementations, these should encounter no
functional unit issue delay.

A.4.4.5 Negate

The standard register negate forms are:

NEGz Rx,Ry
NEGz Fx,Fy
FNEGz Fx,Fy

SUBz
SUBz
CPYSN

R31,Rx,Ry
F31,Fx,Fy
Fx,Fx,Fy

z
z
z

L or Q
F G S or T
F G S or T

The integer subtract generates no Integer Overflow trap if Rx contains the largest
negative number (SUBzN would trap). The floating subtract generates a floating-

A-14 Appendixes

point exception for a non-finite value in Fx. The CPYSN form generates no
exceptions.

A.4.4.6 NOT

The standard integer register NOT form is:

NOT Rx,Ry ORNOT R31,Rx,Ry

This generates no exceptions. In most implementations, this should encounter no
functional unit issue delay.

A.4.4.7 Booleans

The standard alternative to BIS is:

OR Rx,Ry,Rz

The standard alternative to BIC is:

ANDNOT Rx,Ry,Rz ==
The standard alternative to EQV is:

XORNOT Rx,Ry,Rz ==

BIS

BIC

EQV

Rx,Ry,Rz

RX,Ry,Rz

RX,Ry,Rz

A.4.5 Trap Barrier

The TRAPB instruction guarantees that it and any following instructions do not
issue until all possible preceding traps have been signaled. This does not mean that
all preceding instructions have necessarily run to completion (for example, a Load
instruction may have passed all the fault checks but not yet delivered data from a
cache miss).

A.4.6 Pseudo-Operations (Stylized Code Forms)

This section summarizes the pseudo-operations for the Alpha AXP architecture that
may be used by various software components in an Alpha AXP system. Most of these
forms are discussed in preceding sections.

In the context of this section, pseudo-operations all represent a single underlying
machine instruction. Each pseudo-operation represents a particular instruction
with either replicated fields (such as FMOV), or hard-coded zero fields. Since the
pattern is distinct, these pseudo-operations can be decoded by instruction decode
mechanisms.

In Table A-I, the pseudo-operation codes can be viewed as macros with parameters.
The formal form is listed in the left column, and the expansion in the code stream
listed in the right column.

Some instruction mnemonics have synonyms. These are different from pseudo
operations in that each synonym represents the same underlying instruction with
no special encoding of operand fields. As a result, synonyms cannot be distinquished
from each other. They are not listed in the table that follows. Examples of synonyms
are: BIC/ANDNOT, BIS/OR, and EQVIXORNOT.

Software Considerations A-15

Table A-1: Decodable Pseudo-Operations (Stylized Code Forms)

Pseudo-Operation in Listing Actual Instruction Encoding

No-exception generic floating absolute value:
FABS Fx,Fy CPYS

Branch to target (21-bit signed displacement):
BR target BR

Clear integer register:
CLR Rx BIS

Clear a floating-point register:
FCLR Fx CPYS

Floating-point move:
FMOV Fx, Fy CPYS

No-exception generic floating negation:
FNEG Fx, Fy CPYSN

Floating-point no-op:
FNOP C~S

Move Rx/8-bit zero-extended literal to Ry:
MOV {RxlLit8}, Ry BIS

Move 16-bit sign-extended literal to Rx:
MOV Lit, Rx LDA

F31,Fx,Fy

R31, target

R31, R31, Rx

F31,F31,Fx

Fx,Fx,Fy

Fx,Fx,Fy

F31, F31, F31

R31, {RxlLit8}, Ry

Rx, lit(R31)

Move to FPCR:
MT_FPCR Fx MT_FPCR Fx,Fx,Fx

Move from FPCR:
MF_FPCR Fx MF_FPCR Fx,Fx,Fx

Negate F_floating:
NEGF Fx,Fy SUBF F31,Fx,Fy

Negate F_floating, semi-precise:
NEGF/S Fx,Fy SUBF/S F31,Fx,Fy

Negate G_floating:
NEGG Fx,Fy SUBG F31,Fx,Fy

Negate G_floating, semi-precise:
NEGG/S Fx,Fy SUBGIS F31,Fx,Fy

Negate longword:

A-16 Appendixes

Table A-1 (Cont.): Decodable Pseudo-Operations (Stylized Code Forms)

Pseudo-Operation in Listing Actual Instruction Encoding

NEGL {RxlLit8}, Ry SUBL R31, {RxlLit}, Ry

Negate longword with overflow detection:
NEGUV {RxlLit8}, Ry SUBUV R31, {RxlLit}, Ry

Negate quadword:
NEGQ {RxlLit8}, Ry SUBQ R31, {RxlLit}, Ry

Negate quadword with overflow detection:
NEGQN (RxlLit8}, Ry SUBQN R31, {RxlLit}, Ry

Negate S_floating:
NEGS Fx, Fy SUBS F31, Fx, Fy

Negate S_floating, software with underflow detection:
NEGS/SU Fx, Fy SUBS/SU F31, Fx, Fy

Negate S_floating, software with underflow and inexact result detection:
NEGS/SUI Fx, Fy SUBS/SUI F31, Fx, Fy

Negate T_floating:
NEGT Fx, Fy SUBT F31,Fx,Fy

Negate T_floating, software with underflow detection:
NEGT/SU Fx, Fy SUBT/SU F31, Fx, Fy

Negate T_floating, software with underflow and inexact result detection:
NEGT/SUI SUBT/SUI F31, Fx, Fy

Integer no-op:
NOP BIS R31, R31, R31

Logical NOT of Rx/8-bit zero-extended literal storing results in Ry:
NOT {RxlLit8}, Ry ORNOT R31, {RxlLit}, Ry

Longword sign-extension of Rx storing results in Ry:
SEXTL (RxlLit8}, Ry ADDL R31, {RxlLit}, Ry

Universal NOP for both integer and floating-point code:
UNOP LD~U R31,O(Rx)

A.5 Timing Considerations: Atomic Sequences

A sufficiently long instruction sequence between LDx_L and STx_C will never
complete, because periodic timer interrupts will always occur before the sequence
completes. The following rules describe sequences that will eventually complete in
all Alpha AXP implementations:

Software Considerations A-17

1. At most 40 operate or conditional-branch (not taken) instructions executed in the
sequence between LDx_L and STx_C.

2. At most two I-stream TB-miss faults. Sequential instruction execution
guarantees this.

3. No other exceptions triggered during the last execution of the sequence.

Implementation Note:

On all expected implementations, this allows for about 50 J1.sec of execution time,
even with 100 percent cache misses. This should satisfy any requirement for a
1 msec timer interrupt rate.

A-18 Appendixes

Appendix 8

IEEE Floating-Point Conformance

A subset of IEEE Standard for Binary Floating-Point Arithmetic (754-1985) is
provided in the Alpha AXP floating-point instructions. This appendix describes how
to construct a complete IEEE implementation.

The order of presentation parallels the order of the IEEE specification.

8.1 Alpha AXP Choices for IEEE Options

Alpha AXP supports IEEE single, double, and optionally (in software) extended
double formats. There is no hardware support for the optional extended double
format.

Alpha AXP hardware supports normal and chopped IEEE rounding modes. IEEE
plus infinity and minus infinity rounding modes can be implemented in hardware
or software.

Alpha AXP hardware does not support optional IEEE software trap enable/disable
modes; see the following discussion about software support.

Alpha AXP hardware supports add, subtract, multiply, divide, convert between
floating formats, convert between floating and integer formats, and compare.
Software routines support square root, remainder, round to integer in floating-point
format, and convert binary to/from decimal.

In the Alpha AXP architecture, copying without change offormat is not considered an
operation. (LDx, CPYSx, and STx do not check for non-finite numbers; an operation
would.) Compilers may generate ADDx F31,Fx,Fy to get the opposite effect.

Optional operations for differing formats are not provided.

The Alpha AXP choice is that the accuracy provided by conversions between decimal
strings and binary floating-point numbers will meet or exceed IEEE standard
requirements. It is implementation dependent whether the software binary/decimal
conversions beyond 9 or 17 digits treat any excess digits as zeros.

Overflow and underflow, NaNs, and infinities encountered during software binary to
decimal conversion return strings that specify the conditions. Such strings can be
truncated to their shortest unambiguous length.

Alpha AXP hardware supports comparisons of same-format numbers. Software
supports comparisons of different-format numbers.

In the Alpha AXP architecture, results are true-false in response to a predicate.

IEEE Floating-Point Conformance B-1

Alpha AXP hardware supports the required six predicates and the optional
unordered predicate. The other 19 optional predicates can be constructed from
sequences of two comparisons and two branches.

Except for the compare instructions (CMPTyy) and the Overflow Disable (OVFD)
option, Alpha AXP hardware supports infinity arithmetic by trapping. That is the
case when an infinity operand is encountered and when an infinity is to be created
from finite operands by overflow or division by zero. A software trap handler
(interposed between the hardware and the IEEE user) provides correct infinity
arithmetic.

Except for the Invalid Operation Disable (INVD) option, Alpha AXP hardware
supports NaNs by trapping when a NaN operand is encountered and when a NaN
is to be created. A software trap handler (interposed between the hardware and the
IEEE user) provides correct Signaling and Quiet NaN behavior.

In the Alpha AXP architecture, Quiet NaNs do not afford retrospective diagnostic
information.

In the Alpha AXP architecture, copying a Signaling NaN without a change of format
does not signal an invalid exception (LDx, CPYSx, and STx do not check for non-finite
numbers). Compilers may generate ADDx F31,Fx,Fy to get the opposite effect.

Alpha AXP hardware fully supports negative zero operands, and follows the IEEE
rules for creating negative zero results.

Except for the optional trap disable bits in the FPCR, Alpha AXP hardware does not
supply IEEE exception trap behavior; the hardware traps are a superset of the IEEE
required conditions. A software trap handler (interposed between the hardware and
the IEEE user) provides correct IEEE exception behavior.

In the Alpha AXP architecture, tininess is detected by hardware after rounding, and
loss of accuracy is detected by software as an inexact result.

In the Alpha AXP architecture, user trap handlers are supported by compilers and
a software trap handler (interposed between the hardware and the IEEE user), as
described in the next section.

B.2 Alpha AXP Hardware Support of Software Exception Handlers

Except for the optional trap disable bits in the FPCR, the hardware trap behavior of
Alpha AXP instructions is determined at compile time; short of recompiling, there
are no dynamic facilities for changing hardware trap behavior.

8.2.1 Choosing Degrees of IEEE Compliance

There is an essential disparity between the Alpha AXP design goal of fast execution
and the IEEE design goal of exact trap behavior. The Alpha AXP hardware
architecture provides means for users to choose various degrees of IEEE compliance,
at appropriate performance cost.

Instructions compiled without the /Software modifier cannot produce IEEE
compliant trap or status bit behavior, nor can they provide IEEE-compliant non-

B-2 Appendixes

finite arithmetic. Trapping and stopping on non-finite operands or results (rather
than the IEEE default of continuing with NaNs propagated) is an Alpha AXP value
added behavior that some users prefer.

Instructions compiled without the !Underflow hardware trap enable modifier cannot
produce IEEE-compliant underflow trap or status bit behavior, nor can they provide
IEEE-compliant denormal results. They are fast and provide true zero (not minus
zero) results whenever underflow occurs. This is an Alpha AXP value-added behavior
that some users prefer.

Instructions compiled without the /Inexact hardware trap enable modifier cannot
produce IEEE-compliant inexact trap or status bit behavior. Except when the Inexact
Disable (INED) option is implemented, trapping on inexact is painfully slow. Few
users appear to prefer enabling inexact trapping, but they can get it if they really
want it.

Except when the optional Overflow Disable (OVFD), Division by Zero Disable
(DZED), or Invalid Operation Disable (INVD) bits in the FPCR are set, IEEE
floating-point instructions compiled with the /Software enable modifier produce
hardware traps and unpredictable values for overflow, division by zero, or invalid
operation. A software trap handler may then produce the chosen IEEE-required
behavior. The software trap handler reports an enabled IEEE exception to the user
application as a fault, rather than as a trap. Because the exception is reported as a
fault, the reported PC points to the trigger instruction, rather than to a point after
the trigger instruction.

Regardless of whether or not an enabled fault occurs, the software completion
handler sets the result register and the status flags to the IEEE standard
nontrapping result, as further defined in the IEEE Standard section in Common
Architecture, Chapter 4.

Except when the optional Underflow Disable (UNFD) bit in the FPCR is set, IEEE
floating-point instructions compiled with the /Software enable and !Underflow enable
modifiers produce hardware traps and true zero values for underflow; a software
trap handler may then produce all IEEE-required behavior. Such instructions with
/Software and !Underflow enabled, but without an underflow condition that produce
zero value results, always have the correct sign.

IEEE floating-point instructions compiled with the /Inexact enable modifier produce
hardware traps that allow a software trap handler to produce all IEEE-required
behavior.

Thus, to get full IEEE compliance of all the required features of the standard, users
must compile with all three options enabled.

To get the optional full IEEE user trap handler behavior, a software trap handler
must be provided that implements the five exception flags, dynamic user trap handler
disabling, handler saving and restoring, default behavior for disabled user trap
handlers, and linkages that allow a user handler to return a substitute result.

The software trap handler uses the FP_Control quadword, along with the floating
point control register (FPCR), to provide various levels of IEEE-compliant behavior.

IEEE Floating-Point Conformance B-3

8.2.2 IEEE Floating-Point Control (FP_C) Quadword

Operating system implementations provide the following support for an IEEE
floating-point control quadword (FP_C), illustrated in Figure B-1 and described in
Table B-1.

Figure B-1: IEEE Floating-Point Control (FP_C) Quadword

63 22 21 20 19 18 17 16 6 5 4 321 0

IU 001 IU 001
Reserved NN VZN Reserved NN VZN

EF FEV E F FEV
SS SSS EE EEE

• The operating system software completion mechanism maintains the FP_C.
Therefore, the FP_C affects (and is affected by) only those instructions with the
/Software enable modifier.

• The FP_C quadword is context switched when the operating system switches the
thread context. (The FP_C can be placed in a currently switched data structure.)

• Although the operating system can keep the FP_C in a user mode memory
location, user code may not directly access the FP_C.

• Integer overflow (IOV) exceptions are controlled by the INVE enable mask bit
(FP_C<1», as allowed by the IEEE standard. Implementation software is
responsible for setting the INVS status bit (FP_C<17» when a CVTTQ or CVTQL
instruction traps into the integer overflow software completion mechanism.

• At process creation, all trap enable flags in the FP_C are clear. The setting of
other FP_C bits, defined in Table B-1 as reserved for implementation software,
are defined by operating system software.

At other events such as forks or thread creation, and at asynchronous routine calls
such as traps and signals, the operating system controls all assigned FP_C bits and
those defined as reserved for implementation software.

Table B-1: Floating-Point Control (FP_C) Quadword Bit Summary

Bit Description

63-48

47-22

21

8-4 Appendixes

Reserved for implementation software.

Reserved for future architecture definition.

Inexact Result Status (INES)

A floating arithmetic or conversion operation gave a result that differed from the
mathematically exact result.

Table B-1 (Cont.): Floating-Point Control (FP_C) Quadword Bit Summary

Bit Description

20

18

19

17

Underflow Status (UNFS)

A floating arithmetic or conversion operation underflowed the destination
exponent.

Overflow Status (OVFS)

A floating arithmetic or conversion operation overflowed the destination exponent.

Division by Zero Status (DZES)

An attempt was made to perform a floating divide operation with a divisor of zero.

Invalid Operation Status (INVS)

An attempt was made to perform a floating arithmetic, conversion, or comparison
operation, and one or more of the operand values were illegal.

Reserved for implementation software.

Reserved for future architecture definition.

Inexact Result Enable (INEE)

Initiate an INE exception if a floating arithmetic or conversion operation gives a
result that differs from the mathematically exact result.

4 Underflow Enable (UNFE)

16-12

11-6

5

Initiate a UNF exception ifa floating arithmetic or conversion operation underflows
the destination exponent.

3 Overflow Enable (OVFE)

Initiate an OVF exception if a floating arithmetic or conversion operation overflows
the destination exponent.

2 Division by Zero Enable (DZEE)

Initiate a DZE exception if an attempt is made to perform a floating divide
operation with a divisor of zero.

1 Invalid Operation Enable (INVE)

Initiate an INV exception if an attempt is made to perform a floating arithmetic,
conversion, or comparison operation, and one or more of the operand values is
illegal.

o Reserved for implementation software.

8.3 Mapping to IEEE Standard

There are five IEEE exceptions, each of which can be "IEEE software trap-enabled"
or disabled (the default condition). Implementing the IEEE software trap-enabled
mode is optional in the IEEE standard.

Our assumption, therefore, is that the only access to IEEE-specified software trap
enabled results will be generated in assembly language code. The following design
allows this, but only if such assembly language code has TRAPB instructions after

IEEE Floating-Point Conformance 8-5

each floating-point instruction, and generates the IEEE-specified scaled result in a
trap handler by emulating the instruction that was trapped by hardware overflow
lunderflow detection, using the original operands.

There is a set of detailed IEEE-specified result values, both for operations that are
specified to raise IEEE traps and those that do not. This behavior is created on
Alpha AXP by four layers of hardware, PALcode, the operating-system trap handler,
and the user IEEE trap handler, as shown in Figure B-2.

Figure B-2: IEEE Trap Handling Behavior

IUser Condition Handler I
The IEEE-specified trap behavior occurs only with respect to the user IEEE trap
handler (the last layer in Figure B-2); any trap-and-fixup behavior in the first three
layers is outside the scope of the IEEE standard.

The IEEE number system is divided into finite and non-finite numbers:

• The finites are normal numbers:

-MAX..-MIN, -0, 0, +MIN..+MAX

• The non-finites are:

Denormals, +/- Infinity, Signaling NaN, Quiet NaN

Alpha AXP hardware must treat minus zero operands and results as special cases,
as required by the IEEE standard.

Table B-2 specifies, for the IEEE /Software modes, which layer does each piece of
trap handling. See Common Architecture, Chapter 4, for more detail on the hardware
instruction descriptions.

B-6 Appendixes

Table B-2: IEEE Floating-Point Trap Handling

Alpha AXP Instructions Hardware

OS
Trap

PAL Handler

User
Software
Handler

Bits Only-No Exceptions

Bits Only-No Exceptions

Bits Only-No Exceptions

Bits Only-No ExceptionsFCMOVx

FBEQ FBNE FBLT FBLE FBGT Bits Only-No Exceptions
FBGE

LDS LDT

STS STT

CPYS CPYSN

ADDx SUBx INPUT Exceptions

Denormal operand Trap Trap Supply
sum

+/-Inf operand Trap Trap Supply
sum

QNaN operand Trap Trap Supply
QNaN

SNaN operand Trap Trap Supply [Invalid Op]
QNaN

+Inf + -Inf Trap Trap Supply [Invalid Op]
QNaN

ADDx SUBx OUTPUT Exceptions

Exponent overflow Trap Trap Supply [Overflow]
+/-Inf Scale by
+/-MAX bias adjust

Exponent underflow Supply - 1

and disabled +0

Exponent underflow Supply Trap Supply [Underflow]
and enabled +0 and +/-MIN Scale by

trap denorm bias adjust
+/-0

Inexact and disabled

Inexact and enabled Supply Trap [Inexact]
sum and
trap

1An implementation could choose instead to trap to PALcode and have the PALcode supply a zero result on all
underflows.

IEEE Floating-Point Conformance B-7

Table B-2 (Cant.): IEEE Floating-Point Trap Handling

OS User
Trap Software

Alpha AXP Instructions Hardware PAL Handler Handler

MULx INPUT Exceptions

Denormal operand Trap Trap Supply
prod.

+/-Inf operand Trap Trap Supply
prod.

QNaN operand Trap Trap Supply
QNaN

SNaN operand Trap Trap Supply [Invalid Op]
QNaN

o* Inf Trap Trap Supply [Invalid Op]
QNaN

MULx OUTPUT Exceptions

Exponent overflow Trap Trap Supply [Overflow]
+/-Inf Scale by
+/-MAX bias adjust

Exponent underflow Supply
and disabled +0

Exponent underflow Supply Trap Supply [Underflow]
and enabled +0 and +/-MIN Scale by

Trap denorm bias adjust
+/-0

Inexact and disabled

Inexact and enabled Supply Trap [Inexact]
prod. and
trap

DIVx INPUT Exceptions

Denormal operand Trap Trap Supply
quot.

+/-Inf operand Trap Trap Supply
quote

QNaN operand Trap Trap Supply
QNaN

SNaN operand Trap Trap Supply [Invalid Op]
QNaN

8-8 Appendixes

Table B-2 (Cont.): IEEE Floating-Point Trap Handling

OS User
Trap Software

Alpha AXP Instructions Hardware PAL Handler Handler

DIVx INPUT Exceptions

0/0 or Inf/Inf Trap Trap Supply [Invalid Op]
QNaN

AlO Trap Trap Supply [Div. Zero]
+/-Inf

DIVx OUTPUT Exceptions

Exponent overflow Trap Trap Supply [Overflow]
+/-Inf Scale by
+/-MAX bias adjust

Exponent underflow Supply
and disabled +0

Exponent underflow Supply Trap Supply [Underflow]
and enabled +0 and +/-MIN Scale by

trap denorm bias adjust
+/-0

Inexact and disabled

Inexact and enabled Supply Trap [Inexact]
quot. and
trap

CMPTEQ CMPTUN INPUT Exceptions

Denormal operand Trap Trap Supply
(=)

QNaN operand Trap Trap Supply
False
forEQ, True
for UN

SNaN operand Trap Trap Supply [Invalid Op]
False/
True

CMPTLT CMPTLE INPUT Exceptions

Denormal operand Trap Trap Supply
~ or <

QNaN operand Trap Trap Supply [Invalid Op]
False

IEEE Floating-Point Conformance 8-9

Table B-2 (Cont.): IEEE Floating-Point Trap Handling

Alpha AXP Instructions Hardware

CMPTLT CMPTLE INPUT Exceptions

SNaN operand Trap

OS
Trap

PAL Handler

Trap Supply
False

User
Software
Handler

[Invalid Op]

CVTfi INPUT Exceptions

Denormal operand Trap Trap Supply
Cvt

+/-Inf operand Trap Trap Supply 0 [Invalid Op]

QNaN operand Trap Trap Supply 0

SNaN operand Trap Trap Supply 0 [Invalid Op)

CVTfi OUTPUT Exceptions

Inexact and disabled

Inexact and enabled Supply Trap [Inexact]
Cvt and
trap

Integer overflow Supply Trap [Invalid Op]2
Trunc.
result
and trap
if enabled

CVTif OUTPUT Exceptions

Inexact and disabled

Inexact and enabled Supply Trap [Inexact]
Cvt and
trap

CVTff INPUT Exceptions

Denormal operand Trap Trap Supply
Cvt

+/-Inf operand Trap Trap Supply
Cvt

2An implementation could choose instead to trap to PALcode on extreme values and have the PALcode supply a
truncated result on all overflows.

8-10 Appendixes

Table B-2 (Cont.): IEEE Floating-Point Trap Handling

OS User
Trap Software

Alpha AXP Instructions Hardware PAL Handler Handler

CVTff INPUT Exceptions

QNaN operand Trap Trap Supply
QNaN

SNaN operand Trap Trap Supply [Invalid Op]
QNaN

CVTff OUTPUT Exceptions

Exponent overflow

Exponent underflow
and disabled

Exponent underflow
and enabled

Inexact and disabled

Inexact and enabled

Trap

Supply
+0

Supply
+0 and
trap

Supply
Cvt and
trap

Trap Supply
+/-Inf
+/-MAX

Trap Supply
+/-MIN
denorm
+/-0

Trap

[Overflow]
Scale by
bias adjust

[Underflow]
Scale by
bias adjust

[Inexact]

Other IEEE operations (software subroutines or sequences of instructions), are listed
here for completeness:

Remainder
SQRT
Round float to integer-valued float
Convert binary to/from decimal
Compare, other combinations than the four above

IEEE Floating-Point Conformance 8-11

Table B-3 shows the IEEE standard charts.

Table B-3: IEEE Standard Charts

IEEE Software IEEE Software
TRAP Disabled TRAP Enabled

Exception (IEEE Default) (Optional)

Invalid Operation

(1) Input signaling NaN Quiet NaN

(2) Mag. subtract Inf. Quiet NaN

(3) 0 * Inf. Quiet NaN

(4) % or InflInf Quiet NaN

(5) x REM 0 or Inf REM y Quiet NaN

(6) SQRT(negative non-zero) Quiet NaN

(7) Cvt to int(ovfl) Low-order bits

(8) Cvt to int(Inv, NaN) 0

(9) Compare unordered Quiet NaN

Division by Zero

x10, x finite <>0 +/-Inf

Overflow

Round nearest +/-Inf. Res/2**192 or 1536

Round to zero +/-MAX Res/2**192 or 1536

Round to -Inf +MAX/-Inf Res/2**192 or 1536

Round to +Inf +Inf/-MAX Res/2**192 or 1536

Underflow

Underflow O/denorm Res*2**192 or 1536

Inexact

Inexact Rounded Res

8-12 Appendixes

Appendix C

Instruction Summary

This appendix contains a summary of all instructions and opcodes in the Alpha AXP
architecture. All values are in hexadecimal radix.

C.1 Common Architecture Instruction Summary

This section contains a summary of all common Alpha AXP instructions. Table C-l
describes the contents of the Format and Opcode columns in Table C-2.

Table C-1: Instruction Format and Opcode Notation

Instruction Format Opcode
Format Symbol Notation Meaning

Branch Bra 00 00 is the 6-bit opcode field

Floating- F-P oo.iff 00 is the 6-bit opcode field
point fff is the II-bit function code field

Memory Mem 00 00 is the 6-bit opcode field

Memory/ Mfc oo.ffif 00 is the 6-bit opcode field
func code ffff is the I6-bit function code in the displacement

field

Memory/ Mbr oo.h 00 is the 6-bit opcode field
branch h is the high-order two bits of the displacement field

Operate Opr oo.ff 00 is the 6-bit opcode field
ff is the 7-bit function code field

PALcode Pcd 00 00 is the 6-bit opcode field; the particular PALcode
instruction is specified in the 26-bit function code
field

Qualifiers for operate format instructions are shown in Table C-2. Qualifiers for
IEEE and VAX floating-point instructions are shown in Sections C-3 and C-4,
respectively.

Table C-2: Common Architecture Instructions
Mnemonic Format Opcode Description

ADDF F-P 15.080 Add F_floating

Instruction Summary C-1

Table C-2 (Cont.): Common Architecture Instructions

Mnemonic Format Opcode Description

ADDG
ADDL
ADDUV
ADDQ
ADDQN
ADDS
ADDT
AND
BEQ
BGE
BGT
BIC
BIS
BLBC
BLBS
BLE
BLT
BNE
BR
BSR
CALL_PAL
CMOVEQ
CMOVGE
CMOVGT
CMOVLBC
CMOVLBS
CMOVLE
CMOVLT
CMOVNE
CMPBGE
CMPEQ
CMPGEQ
CMPGLE
CMPGLT
CMPLE
CMPLT
CMPTEQ
CMPTLE
CMPTLT
CMPTUN
CMPULE
CMPULT
CPYS
CPYSE
CPYSN
CVTDG
CVTGD

C-2 Appendixes

F-p
Opr

Opr

F-P
F-P
Opr
Bra
Bra
Bra
Opr
Opr
Bra
Bra
Bra
Bra
Bra
Bra
Mbr
Pcd
Opr
Opr
Opr
Opr
Opr
Opr
Opr
Opr
Opr
Opr
F-P
F-P
F-P
Opr
Opr
F-P
F-P
F-P
F-P
Opr
Opr
F-P
F-P
F-P
F-P
F-P

15.0AO
10.00
10.40
10.20
10.60
16.080
16.0AO
11.00
39
3E
3F
11.0
11.20
38
3C
3B
3A
3D
30
34
00
11.24
11.46
11.66
11.16
11.14
11.64
11.44
11.26
10.0F
10.2D
15.0A5
15.0A7
15.0A6
10.6D
10.4D
16.0A5
16.0A7
16.0A6
16.0A4
10.3D
10.ID
17.020
17.022
17.021
15.09E
15.0AD

Add G_floating
Add longword

Add quadword

Add S_floating
Add T_floating
Logical product
Branch if = zero
Branch if;::: zero
Branch if > zero
Bit clear
Logical sum
Branch if low bit clear
Branch if low bit set
Branch if ~ zero
Branch if < zero
Branch if # zero
Unconditional branch
Branch to subroutine
Trap to PALcode
CMOVE if = zero
CMOVE if ;::: zero
CMOVE if > zero
CMOVE if low bit clear
CMOVE if low bit set
CMOVE if ~ zero
CMOVE if < zero
CMOVE if # zero
Compare byte
Compare signed quadword equal
Compare G_floating equal
Compare G_floating less than or equal
Compare G_floating less than
Compare signed quadword less than or equal
Compare signed quadword less than
Compare T_floating equal
Compare T_floating less than or equal
Compare T_floating less than
Compare T_floating unordered
Compare unsigned quadword less than or equal
Compare unsigned quadword less than
Copy sign
Copy sign and exponent
Copy sign negate
Convert D_floating to G_floating
Convert G_floating to D_floating

Table C-2 (Cant.): Common Architecture Instructions

Mnemonic Format Opcode Description

CVTGF
CVTGQ
CVTLQ
CVTQF
CVTQG
CVTQL
CVTQUSV
CVTQUV
CVTQS
CVTQT
CVTST
CVTTQ
CVTTS
DIVF
DIVG
DIVS
DIVT
EQV
EXCB
EXTBL
EXTLH
EXTLL
EXTQH
EXTQL
EXTWH
EXTWL
FBEQ
FBGE
FBGT
FBLE
FBLT
FBNE
FCMOVEQ
FCMOVGE
FCMOVGT
FCMOVLE
FCMOVLT
FCMOVNE
FETCH
FETCH_M
INSBL
INSLH
INSLL
INSQH
INSQL
INSWH
INSWL

F-P
F-P
F-P
F-P
F-P
F-P

F-P
F-P
F-P
F-P
F-P
F-P
F-P
F-P
F-P
Opr
Mfc
Opr
Opr
Opr
Opr
Opr
Opr
Opr
Bra
Bra
Bra
Bra
Bra
Bra
F-P
F-P
F-P
F-P
F-P
F-P
Mfc
Mfc
Opr
Opr
Opr
Opr
Opr
Opr
Opr

15.0AC
15.0AF
17.010
15.0BC
15.0BE
17.030
17.530
17.130
16.0BC
16.0BE
16.2AC
16.0AF
16.0AC
15.083
15.0A3
16.083
16.0A3
11.48
18.0400
12.06
12.6A
12.26
12.7A
12.36
12.5A
12.16
31
36
37
33
32
35
17.02A
17.02D
17.02F
17.02E
17.02C
17.02B
18.8000
18.AOOO
12.0B
12.67
12.2B
12.77
12.3B
12.57
12.1B

Convert G_floating to F_floating
Convert G_floating to quadword
Convert longword to quadword
Convert quadword to F_floating
Convert quadword to G_floating
Convert quadword to longword

Convert quadword to S_floating
Convert quadword to T_floating
Convert S_floating to T_floating
Convert T_floating to quadword
Convert T_floating to S_floating
Divide F_floating
Divide G_floating
Divide S_floating
Divide T_floating
Logical equivalence
Exception barrier
Extract byte low
Extract longword high
Extract longword low
Extract quadword high
Extract quadword low
Extract word high
Extract word low
Floating branch if = zero
Floating branch if ~ zero
Floating branch if > zero
Floating branch if ~ zero
Floating branch if < zero
Floating branch if =f zero
FCMOVE if =zero
FCMOVE if ~ zero
FCMOVE if > zero
FCMOVE if ~ zero
FCMOVE if < zero
FCMOVE if =f zero
Prefetch data
Prefetch data, modify intent
Insert byte low
Insert longword high
Insert longword low
Insert quadword high
Insert quadword low
Insert word high
Insert word low

Instruction Summary C-3

Table C-2 (Cont.): Common Architecture Instructions

Mnemonic Format Opcode Description

JMP Mbr 1A.0 Jump
JSR Mbr 1A.1 Jump to subroutine
JSR_COROUTINE Mbr 1A.3 Jump to subroutine return
LDA Mem 08 Load address
LDAH Mem 09 Load address high
LDF Mem 20 Load F_floating
LDG Mem 21 Load G_floating
LDL Mem 28 Load sign-extended longword
LDL_L Mem 2A Load sign-extended longword locked
LDQ Mem 29 Load quadword
LD~L Mem 2B Load quadword locked
LD~U Mem OB Load unaligned quadword
LDS Mem 22 Load S_floating
LDT Mem 23 Load T_floating
MB Mfc 18.4000 Memory barrier
MF_FPCR F-P 17.025 Move from FPCR
MSKBL Opr 12.02 Mask byte low
MSKLH Opr 12.62 Mask longword high
MSKLL Opr 12.22 Mask longword low
MSKQH Opr 12.72 Mask quadword high
MSKQL Opr 12.32 Mask quadword low
MSKWH Opr 12.52 Mask word high
MSKWL Opr 12.12 Mask word low
MT_FPCR F-P 17.024 Move to FPCR
MULF F-P 15.082 Multiply F_floating
MULG F-P 15.0A2 Multiply G_floating
MULL Opr 13.00 Multiply longword
MULLN 13.40
MULQ Opr 13.20 Multiply quadword
MULQN 13.60
MULS F-P 16.082 Multiply S_floating
MULT F-P 16.0A2 Multiply T_floating
ORNOT Opr 11.28 Logical sum with complement
RC Mfc I8.EOOO Read and clear
RET Mbr 1A.2 Return from subroutine
RPCC Mfc 18.COOO Read process cycle counter
RS Mfc I8.FOOO Read and set
S4ADDL Opr 10.02 Scaled add longword by 4
S4ADDQ Opr 10.22 Scaled add quadword by 4
S4SUBL Opr 10.0B Scaled subtract longword by 4
S4SUBQ Opr 10.2B Scaled subtract quadword by 4
S8ADDL Opr 10.12 Scaled add longword by 8
S8ADDQ Opr 10.32 Scaled add quadword by 8
S8SUBL Opr 10.1B Scaled subtract longword by 8
S8SUBQ Opr 10.3B Scaled subtract quadword by 8
SLL Opr 12.39 Shift left logical
SRA Opr 12.3C Shift right arithmetic

C-4 Appendixes

Table C-2 (Cont.): Common Architecture Instructions

Mnemonic Format Opcode Description

SRL Opr 12.34 Shift right logical
STF Mem 24 Store F_floating
STG Mem 25 Store G_floating
STS Mem 26 Store S_floating
STL Mem 2C Store longword
STL_C Mem 2E Store longword conditional
STQ Mem 2D Store quadword
ST~C Mem 2F Store quadword conditional
ST~U Mem OF Store unaligned quadword
STT Mem 27 Store T_floating
SUBF F-P 15.081 Subtract F_floating
SUBG F-P 15.0A1 Subtract G_floating
SUBL Opr 10.09 Subtract longword
SUBUV 10.49
SUBQ Opr 10.29 Subtract quadword
SUBQN 10.69
SUBS F-P 16.081 Subtract S_floating
SUBT F-P 16.0Al Subtract T_floating
TRAPB Mfc 18.0000 Trap barrier
UMULH Opr 13.30 Unsigned multiply quadword high
WMB Mfc 18.4400 Write memory barrier
XOR Opr 11.40 Logical difference
ZAP Opr 12.30 Zero bytes
ZAPNOT Opr 12.31 Zero bytes not

Instruction Summary C-5

C.2 IEEE Floating-Point Instructions

Table C-3 lists the hexadecimal value of the II-bit function code field for the
IEEE floating-point instructions, with and without qualifiers. The opcode for these
instructions is 1616 -

Table C-3: IEEE Floating-Point Instruction Function Codes

None IC 1M ID IU IUC IUM IUD

ADDS 080 000 040 OCO 180 100 140 1CO
ADDT OAO 020 060 OEO lAO 120 160 lEO
CMPTEQ OA5
CMPTLT OA6
CMPTLE OA7
CMPTUN OA4
CVTQS OBC 03C 07C OFC
CVTQT OBE 03E 07E OFE
CVTST See below
CVTTQ See below
CVTTS OAC 02C 06C OEC lAC 12C 16C 1EC
DIVS 083 003 043 OC3 183 103 143 1C3
DIVT OA3 023 063 OE3 1A3 123 163 1E3
MULS 082 002 042 OC2 182 102 142 1C2
MULT 0A2 022 062 OE2 1A2 122 162 lE2
SUBS 081 001 041 OC1 181 101 141 lCl
SUBT OA1 021 061 OE1 1A1 121 161 lEI

ISU ISUC ISUM ISUD ISUI ISUIC ISUIM ISUID

ADDS 580 500 540 5CO 780 700 740 7CO
ADDT 5AO 520 560 5EO 7AO 720 760 7EO
CMPTEQ 5A5
CMPTLT 5A6
CMPTLE 5A7
CMPTUN 5A4
CVTQS 7BC 73C 77C 7FC
CVTQT 7BE 73E 77E 7FE
CVTTS 5AC 52C 56C 5EC 7AC 72C 76C 7EC
DIVS 583 503 543 5C3 783 703 743 7C3
DIVT 5A3 523 563 5E3 7A3 723 763 7E3
MULS 582 502 542 5C2 782 702 742 7C2
MULT 5A2 522 562 5E2 7A2 722 762 7E2
SUBS 581 501 541 5C1 781 701 741 7C1
SUBT 5A1 521 561 5E1 7A1 721 761 7E1

None IS

CVTST 2AC 6AC

C-6 Appendixes

C.4 Opcode Summary

Table C-5 lists all Alpha AX.P opcodes from 00 (CALL_PAL) through 3F (BGT). In
the table, the column headings that appear over the instructions have a granularity
of 816 . The rows beneath the leftmost column supply the individual hex number to
resolve that granularity.

If an instruction column has a 0 (zero) in the right (low) hex digit, replace that 0 with
the number to the left of the backslash in the leftmost column on the instruction's
row. If an instruction column has an 8 in the right (low) hexadecimal digit, replace
that 8 with the number to the right of the backslash in the leftmost column.

For example, the third row (2/A) under the 10 column contains the symbol INTS*,
representing all the integer shift instructions. The opcode for those instructions
would then be 1216 because the 0 in 10 is replaced by the 2 in the leftmost column.
Likewise, the third row under the 18 column contains the symbol JSR*, representing
all jump instructions. The opcode for those instructions is lA because the 8 in the
heading is replaced by the number to the right of the backslash in the leftmost
column.

The instruction format is listed under the instruction symbol.

The symbols in Table C-5 are explained in Table C-6.

Instruction Summary C-9

Table C-5: Opcode Summary
00 08 10 18 20 28 30 38

0/8 PAL* LDA INTA* MISC* LDF LDL BR BLBC
(pal) (mem) (op) (mem) (mem) (mem) (br) (br)

1/9 Res LDAH INTL* \ PAL\ LDG LDQ FBEQ BEQ
(mem) (op) (mem) (mem) (br) (br)

21A Res Res INTS* JSR* LDS LDL_L FBLT BLT
(op) (mem) (mem) (mem) (br) (br)

31B Res LD~U INTM* \ PAL\ LDT LD~L FBLE BLE
(mem) (op) (mem) (mem) (br) (br)

4/e Res Res Res Res STF STL BSR BLBS
(mem) (mem) (br) (br)

5ID Res Res FLTV* \ PAL\ STG STQ FBNE BNE
(op) (mem) (mem) (br) (br)

6/E Res Res FLTI* \ PAL\ STS STL_C FBGE BGE
(op) (mem) (mem) (br) (br)

7/F Res ST~U FLTL* \ PAL \ STT ST~C FBGT BGT
(mem) (op) (mem) (mem) (br) (br)

Table C-6: Key to Opcode Summary (Table C-5)

Symbol Meaning

FLTI* IEEE floating-point instruction opcodes

FLTL* Floating-point Operate instruction opcodes

FLTV* VAX floating-point instruction opcodes

INTA* Integer anthmetic instruction opcodes

INTL* Integer logical instruction opcodes

INTM* Integer multiply instruction opcodes

INTS* Integer shift instruction opcodes

JSR* Jump instruction opcodes

MISC* Miscellaneous instruction opcodes

PAL* PALcode instruction (CALL_PAL) opcodes

\ PAL \ Reserved for PALcode

Res Reserved for Digital

C-10 Appendixes

C.5 Common Architecture Opcodes in Numerical Order

Table C-7: Common Architecture Opcodes in Numerical Order

Opcode Opcode Opcode

00 CALL_PAL 11.26 CMOVNE 15.01E CVTDG/C
01 OPC01 11.28 ORNOT 15.020 ADDG/C
02 OPC02 11.40 XOR 15.021 SUBG/C
03 OPC03 11.44 CMOVLT 15.022 MULG/C
04 OPC04 11.46 CMOVGE 15.023 DIVG/C
05 OPC05 11.48 EQV 15.02C CVTGF/C
06 OPC06 11.64 CMOVLE 15.02D CVTGD/C
07 OPC07 11.66 CMOVGT 15.02F CVTGQ/C
08 LDA 12.02 MSKBL 15.03C CVTQF/C
09 LDAH 12.06 EXTBL 15.03E CVTQG/C
OA OPCOA 12.0B INSBL 15.080 ADDF
OB LDQ_U 12.12 MSKWL 15.081 SUBF
OC OPCOC 12.16 EXTWL 15.082 MULF
OD OPCOD 12.1B INSWL 15.083 DIVF
OE OPCOE 12.22 MSKLL 15.09E CVTDG
OF ST~U 12.26 EXTLL 15.0AO ADDG
10.00 ADDL 12.2B INSLL 15.0A1 SUBG
10.02 S4ADDL 12.30 ZAP 15.0A2 MULG
10.09 SUBL 12.31 ZAPNOT 15.0A3 DIVG
10.0B S4SUBL 12.32 MSKQL 15.0A5 CMPGEQ
10.0F CMPBGE 12.34 SRL 15.0A6 CMPGLT
10.12 S8ADDL 12.36 EXTQL 15.0A7 CMPGLE
10.lB S8SUBL 12.39 SLL 15.0AC CVTGF
10.1D CMPULT 12.3B INSQL 15.0AD CVTGD
10.20 ADDQ 12.3C SRA 15.0AF CVTGQ
10.22 S4ADDQ 12.52 MSKWH 15.0BC CVTQF
10.29 SUBQ 12.57 INSWH 15.0BE CVTQG
10.2B S4SUBQ 12.5A EXTWH 15.100 ADDFIUC
10.2D CMPEQ 12.62 MSKLH 15.101 SUBFIUC
10.32 S8ADDQ 12.67 INSLH 15.102 MULFIUC
10.3B S8SUBQ 12.6A EXTLH 15.103 DIVFIUC
10.3D CMPULE 12.72 MSKQH 15.11E CVTDGIUC
10.40 ADDLN 12.77 INSQH 15.120 ADDGIUC
10.49 SUBLN 12.7A EXTQH 15.121 SUBGIUC
10.4D CMPLT 13.00 MULL 15.122 MULGIUC
10.60 ADDQN 13.20 MULQ 15.123 DIVGIUC
10.69 SUBQN 13.30 UMULH 15.12C CVTGFIUC
10.6D CMPLE 13.40 MULLN 15.12D CVTGDIUC
11.00 AND 13.60 MULQN 15.12F CVTGQNC
11.08 BIC 14 OPC14 15.180 ADDFIU
11.14 CMOVLBS 15.000 ADDF/C 15.181 SUBFIU
11.16 CMOVLBC 15.001 SUBF/C 15.182 MULFIU
11.20 BIS 15.002 MULF/C 15.183 DIVFIU
11.24 CMOVEQ 15.003 DIVF/C 15.19E CVTDGIU

Instruction Summary C-11

Table C-7 (Cont.): Common Architecture Opcodes in Numerical Order

Opcode Opcode Opcode

15.1AO ADDGIU 15.580 ADDF/SU 16.0A6 CMPrLT
15.1A1 SUBGIU 15.581 SUBF/SU 16.0A7 CMPrLE
15.1A2 MULGIU 15.582 MULF/SU 16.0AC CVTTS
15.1A3 DIVGIU 15.583 DIVF/SU 16.0AF CVTTQ
15.1AC CVfGFIU 15.59E CVTDG/SU 16.0BC CVTQS
15.1AD CVTGDIU 15.5AO ADDG/SU 16.0BE CVTQT
15.1AF CVTGQIV 15.5A1 SUBG/SU 16.0CO ADDSID
15.400 ADDF/SC 15.5A2 MULG/SU 16.0C1 SUBSID
15.401 SUBF/SC 15.5A3 DIVG/SU 16.0C2 MULSID
15.402 MULF/SC 15.5AC CVTGF/SU 16.0C3 DIVSID
15.403 DIVF/SC 15.5AD CVTGD/SU 16.0EO ADDTID
15.41E CVTDG/SC 15.5AF CVTGQ/SV 16.0E1 SUBTID
15.420 ADDGISC 16.000 ADDSIC 16.0E2 MULTID
15.421 SUBGISC 16.001 SUBS/C 16.0E3 DIVTID
15.422 MULG/SC 16.002 MULS/C 16.0EC CVTTS/D
15.423 DIVG/SC 16.003 DIVS/C 16.0EF CVTTQID
15.42C CVTGF/SC 16.020 ADDT/C 16.0FC CVTQSID
15.42D CVTGD/SC 16.021 SUBTIC 16.0FE CVTQTID
15.42F CVTGQlSC 16.022 MULT/C 16.100 ADDSIUC
15.480 ADDF/S 16.023 DIVT/C 16.101 SUBSIUC
15.481 SUBF/S 16.02C CVTTS/C 16.102 MULSIUC
15.482 MULF/S 16.02F CVTTQlC 16.103 DIVSIUC
15.483 DIVF/S 16.03C CVTQS/C 16.120 ADDTIUC
15.49E CVTDG/S 16.03E CVTQT/C 16.121 SUBTIUC
15.4AO AbDG/S 16.040 ADDS/M 16.122 MULTIUC
15.4A1 SUBGIS 16.041 SUBS/M 16.123 DIVTIUC
15.4A2 MULG/S 16.042 MULS/M 16.12C CVTTSIuC
15.4A3 DIVG/S 16.043 DIVS/M 16.12F CVTTQlVC
15.4A5 CMPGEQlS 16.060 ADDT/M 16.140 ADDSIUM
15.4A6 CMPGLT/S 16.061 SUBT/M 16.141 SUBSlUM
15.4A7 CMPGLE/S 16.062 MULT/M 16.142 MULSIUM
15.4AC CVTGF/S 16.063 DIVT/M 16.143 DIVSIUM
15.4AD CVTGD/S 16.06C CVTTS/M 16.160 ADDTIUM
15.4AF CVTGQlS 16.06F CVTTQIM 16.161 SUBTIUM
15.500 ADDF/SUC 16.07C CVTQS/M 16.162 MULTIUM
15.501 SUBF/SUC 16.07E CVTQT/M 16.163 DIVTIUM
15.502 MULF/SUC 16.080 ADDS 16.16C CVTTSIUM
15.503 DIVF/SUC 16.081 SUBS 16.16F CVTTQIVM
15.51E CVTDG/SUC 16.082 MULS 16.180 ADDSIU
15.520 ADDG/SUC 16.083 DIVS 16.181 SUBSIU
15.521 SUBG/SUC 16.0AO ADDT 16.182 MULSIU
15.522 MULG/SUC 16.0A1 SUBT 16.183 DIVSIU
15.523 DIVG/SUC 16.0A2 MULT 16.1AO ADDTIU
15.52C CVTGF/SUC 16.0A3 DIVT 16.1A1 SUBTIU
15.52D CVTGD/SUC 16.0A4 CMPTUN 16.1A2 MULTIU
15.52F CVTGQ/SVC 16.0A5 CMPTEQ 16.1A3 DIVTIU

C-12 Appendixes

Table C-7 (Cont.): Common Architecture Opcodes in Numerical Order

Opcode Opcode Opcode

16.1AC CVTTSIU 16.5AF CVTTQlSV 16.7BC CVTQS/SUI
16.1AF CVTTQN 16.5CO ADDS/SUD 16.7BE CVTQT/SUI
16.1CO ADDSIUD 16.5C1 SUBS/SUD 16.7CO ADDS/SUID
16.1C1 SUBSIUD 16.5C2 MULS/SUD 16.7C1 SUBS/SUID
16.1C2 MULSIUD 16.5C3 DIVS/SUD 16.7C2 MULS/SUID
16.1C3 DIVSIUD 16.5EO ADDT/SUD 16.7C3 DIVS/SUID
16.1EO ADDTIUD 16.5E1 SUBT/SUD 16.7EO ADDT/SUID
16.1E1 SUBTIUD 16.5E2 MULT/SUD 16.7E1 SUBT/SUID
16.1E2 MULTIUD 16.5E3 DIVT/SUD 16.7E2 MULT/SUID
16.1E3 DIVTIUD 16.5EC CVTTS/SUD 16.7E3 DIVT/SUID
16.1EC CVTTSIUD 16.5EF CVTTQlSVD 16.7EC CVTTS/SUID
16.1EF CVTTQND 16.6AC CVTST/S 16.7EF CVTTQlSVID
16.2AC CVTST 16.700 ADDS/SUIC 16.7FC CVTQS/SUID
16.500 ADDS/SUC 16.701 SUBS/SUIC 16.7FE CVTQT/SUID
16.501 SUBS/SUC 16.702 MULS/SUIC 17.010 CVTLQ
16.502 MULS/SUC 16.703 DIVS/SUIC 17.020 CPYS
16.503 DIVS/SUC 16.720 ADDT/SUIC 17.021 CPYSN
16.520 ADDT/SUC 16.721 SUBT/SUIC 17.022 CPYSE
16.521 SUBT/SUC 16.722 MULT/SUIC 17.024 MT_FPCR
16.522 MULT/SUC 16.723 DIVT/SUIC 17.025 MF_FPCR
16.523 DIVT/SUC 16.72C CVTTS/SUIC 17.02A FCMOVEQ
16.52C CVTTS/SUC 16.72F CVTTQlSVIC 17.02B FCMOVNE
16.52F CVTTQlSVC 16.73C CVTQS/SUIC 17.02C FCMOVLT
16.540 ADDS/SUM 16.73E CVTQT/SUIC 17.02D FCMOVGE
16.541 SUBS/SUM 16.740 ADDS/SUIM 17.02E FCMOVLE
16.542 MULS/SUM 16.741 SUBS/SUIM 17.02F FCMOVGT
16.543 DIVS/SUM 16.742 MULS/SUIM 17.030 CVTQL
16.560 ADDT/SUM 16.743 DIVS/SUIM 17.130 CVTQLIV
16.561 SUBT/SUM 16.760 ADDT/SUIM 17.530 CVTQUSV
16.562 MULT/SUM 16.761 SUBT/SUIM 18.0000 TRAPB
16.563 DIVT/SUM 16.762 MULT/SUIM 18.0400 EXCB
16.56C CVTTS/SUM 16.763 DIVT/SUIM 18.4000 MB
16.56F CVTTQlSVM 16.76C CVTTS/SUIM 18.4400 WMB
16.580 ADDS/SU 16.76F CVTTQlSVIM 18.8000 FETCH
16.581 SUBS/SU 16.77C CVTQS/SUIM 18.AOOO FETCH_M
16.582 MULS/SU 16.77E CVTQT/SUIM 18.COOO RPCC
16.583 DIVS/SU 16.780 ADDS/SUI 18.EOOO RC
16.5AO ADDT/SU 16.781 SUBS/SUI 18.FOOO RS
16.5A1 SUBT/SU 16.782 MULS/SUI 19 PAL19
16.5A2 MULT/SU 16.783 DIVS/SUI 1A.0 JMP
16.5A3 DIVT/SU 16.7AO ADDT/SUI IA.1 JSR
16.5A4 CMPTUN/SU 16.7A1 SUBT/SUI IA.2 RET
16.5A5 CMPTEQISU 16.7A2 MULT/SUI IA.3 JSR_COROUTINE
16.5A6 CMPTLT/SU 16.7A3 DIVT/SUI 1B PALIB
16.5A7 CMPTLE/SU 16.7AC CVTTS/SUI IC OPC1C
16.5AC CVTTS/SU 16.7AF CVTTQlSVI 1D PALID

Instruction Summary C-13

Table C-7 (Cont.): Common Architecture Opcodes in Numerical Order

Opeode Opeode Opeode

IE PALIE 2A LDL_L 36 FBGE
IF PALIF 2B LD(LL 37 FBGT
20 LDF 2C STL 38 BLBC
21 LDG 2D STQ 39 BEQ
22 LDS 2E STL_C 3A BLT
23 LDT 2F ST(LC 3B BLE
24 STF 30 BR 3C BLBS
25 STG 31 FBEQ 3D BNE
26 STS 32 FBLT 3E BGE
27 STT 33 FBLE 3F BGT
28 LDL 34 BSR
29 LDQ 35 FBNE

C-14 Appendixes

C.6 OpenVMS AXP PALcode Instruction Summary

Table C-8: OpenVMS AXP Unprivileged PALcode Instructions

Mnemonic Opcode Description

AMOVRM
AMOVRR
BPT
BUGCHK
CHMK
CHME
CHMS
CHMU
GENTRAP
1MB
INSQHIL
INSQHILR
INSQHIQ
INSQHIQR
INSQTIL
INSQTILR
INSQTIQ
INSQTIQR
INSQUEL
INSQUELID
INSQUEQ
INSQUEQID
PROBER
PROBEW
RD_PS
READ_UNQ
REI
REMQHIL
REMQHILR
REMQHIQ
REMQHIQR
REMQTIL
REMQTILR
REMQTIQ
REMQTIQR
REMQUEL
REMQUELID
REMQUEQ
REMQUEQID
RSCC
SWASTEN
WRITE_UNQ
WR_PS_SW

00.00A1
OO.OOAO
00.0080
00.0081
00.0083
00.0082
00.0084
00.0085
OO.OOAA
00.0086
00.0087
00.00A2
00.0089
00.00A4
00.0088
00.00A3
00.008A
00.00A5
00.008B
00.008D
00.008C
00.008E
00.008F
00.0090
00.0091
00.009E
00.0092
00.0093
00.00A6
00.0095
00.00A8
00.0094
00.00A7
00.0096
00.00A9
00.0097
00.0099
00.0098
00.009A
00.009D
OO.009B
OO.009F
OO.009C

Atomic move from register to memory
Atomic move from register to register
Breakpoint
Bugcheck
Change mode to kernel
Change mode to executive
Change mode to supervisor
Change mode to user
Generate software trap
I-stream memory barrier
Insert into longword queue at head interlocked
Insert into longword queue at head interlocked resident
Insert into quadword queue at head interlocked
Insert into quadword queue at head interlocked resident
Insert into longword queue at tail interlocked
Insert into longword queue at tail interlocked resident
Insert into quadword queue at tail interlocked
Insert into quadword queue at tail interlocked resident
Insert entry into longword queue
Insert entry into longword queue deferred
Insert entry into quadword queue
Insert entry into quadword queue deferred
Probe for read access
Probe for write access
Move processor status
Read unique context
Return from exception or interrupt
Remove from longword queue at head interlocked
Remove from longword queue at head interlocked resident
Remove from quadword queue at head interlocked
Remove from quadword queue at head interlocked resident
Remove from longword queue at tail interlocked
Remove from longword queue at tail interlocked resident
Remove from quadword queue at tail interlocked
Remove from quadword queue at tail interlocked resident
Remove entry from longword queue
Remove entry from longword queue deferred
Remove entry from quadword queue
Remove entry from quadword queue deferred
Read system cycle counter
Swap AST enable for current mode
Write unique context
Write processor status software field

Instruction Summary C-15

Table C-9: OpenVMS AXP Privileged PALcode Instructions

Mnemonic Opcode Description

CFLUSH
CSERVE
DRAINA
HALT
LDQP
MFPR_ASN
MFPR_ESP
MFPR_FEN
MFPR_IPL
MFPR_MCES
MFPR_PCBB
MFPR_PRBR
MFPR_PTBR
MFPR_SCBB
MFPR_SISR
MFPR_SSP
MFPR_TBCHK
MFPR_USP
MFPR_VPTB
MFPR_WHAMI
MTPR_ASTEN
MTPR_ASTSR
MTPR_DATFX
MTPR_ESP
MTPR_FEN
MTPR_IPIR
MTPR_IPL
MTPR_MCES
MTPR_PERFMON
MTPR_PRBR
MTPR_SCBB
MTPR_SIRR
MTPR_SSP
MTPR_TBIA
MTPR_TBIAP
MTPR_TBIS
MTPR_TBISD
MTPR_TBISI
MTPR_USP
MTPR_VPTB
STQP
SWPCTX
SWPPAL

C-16 Appendixes

00.0001
00.0009
00.0002
00.0000
00.0003
00.0006
OO.OOlE
OO.OOOB
OO.OOOE
00.0010
00.0012
00.0013
00.0015
00.0016
00.0019
00.0020
OO.OOlA
00.0022
00.0029
00.003F
00.0026
00.0027
00.002E
OO.OOlF
OO.OOOB
OO.OOOD
OO.OOOE
00.0011
00.002B
00.0014
00.0017
00.0018
00.0021
OO.OOlB
OO.OOlC
OO.OOlD
00.0024
00.0025
00.0023
00.002A
00.0004
00.0005
OO.OOOA

Cache flush
Console service
Drain aborts
Halt processor
Load quadword physical
Move from processor register ASN
Move from processor register ESP
Move from processor register FEN
Move from processor register IPL
Move from processor register MCES
Move from processor register PCBB
Move from processor register PRBR
Move from processor register P'I'BR
Move from processor register SCBB
Move from processor register SISR
Move from processor register SSP
Move from processor register TBCHK
Move from processor register USP
Move from processor register VPTB
Move from processor register WHAMI
Move to processor register ASTEN
Move to processor register ASTSR
Move to processor register DATFX
Move to processor register ESP
Move to processor register FEN
Move to processor register IPRI
Move to processor register IPL
Move to processor register MCES
Move to processor register PERFMON
Move to processor register PRBR
Move to processor register SCBB
Move to processor register SIRR
Move to processor register SSP
Move to processor register TBIA
Move to processor register TBIAP
Move to processor register TBIS
Move to processor register TBISD
Move to processor register TBISI
Move to processor register USP
Move to processor register VPTB
Store quadword physical
Swap privileged context
Swap PALcode image

C.7 DEC OSF/1 PAlcode Instruction Summary

Table C-10: DEC OSF/1 Unprivileged PALcode Instructions

Mnemonic Opcode Description

bpt
bugchk
callsys
gentrap
imb
rdunique
wrunique

00.0080
00.0081
00.0083
OO.OOAA
00.0086
00.009E
00.009F

Breakpoint trap
Bugcheck
System call
Generate software trap
I-stream memory barrier
Read unique value
Write unique value

Table C-11: DEC OSF/1 Privileged PALcode Instructions

Mnemonic Opcode Description

cflush
cserve
draina
halt
rdmces
rdps
rdusp
rdval
retsys
rti
swpctx
swpipl
swppal
tbi
whami
wrent
wrfen
wripir
wrkgp
wrmces
wrperfmon
wrusp
wrval
wrvptptr

00.0001
00.0009
00.0003
00.0000
00.0010
00.0036
00.003A
00.0032
00.003D
00.003F
00.0030
00.0035
OO.OOOA
00.0033
00.003C
00.0034
00.002B
OO.OOOD
00.0037
00.0011
00.0039
00.0038
00.0031
00.002D

Cache flush
Console service
Drain aborts
Halt the processor
Read machine check error summary register
Read processor status
Read user stack pointer
Read system value
Return from system call
Return from trap or interrupt
Swap privileged context
Swap interrupt priority level
Swap PALcode image
Translation buffer invalidate
Who am I
Write system entry address
Write floating-point enable
Write interprocessor interrupt request
Write kernel global pointer
Write machine check error summary register
Performance monitoring function
Write user stack pointer
Write system value
Write virtual page table pointer

Instruction Summary C-17

C.8 Windows NT AXP Instruction Summary

Table C-12: Windows NT AXP Unprivileged PALcode Instructions

Mnemonic Opcode Description

bpt
callkd
callsys
gentrap
imb
kbpt
rdteb

00.0080
OO.OOAD
00.0083
OO.OOAA
00.0086
OO.OOAC
OO.OOAB

Breakpoint trap
Call kernel debugger
Call system service
Generate trap
Instruction memory barrier
Kernel breakpoint trap
Read TEB internal processor register

Table C-13: Windows NT AXP Privileged PALcode instructions

Mnemonic Opcode Description

csir
di
draina
dtbis
ei
halt
initpal
rdcounters
rdirql
rdksp
rdmces
rdpcr
rdpsr
rdstate
rdthread
reboot
restart
retsys
rfe
swpirql
swpksp
swppal
swpprocess
swpctx
ssir
tbia
tbis
tbisasn
wrentry
wrmces
wrperfmon

C-18 Appendixes

OO.OOOD
00.0008
00.0002
00.0016
00.0009
00.0000
00.0004
00.0030
00.0007
00.0018
00.0012
00.001C
00.001A
00.0031
00.001E
00.0002
00.0001
OO.OOOF
OO.OOOE
00.0006
00.0019
OO.OOOA
00.0011
00.0010
OO.OOOC
00.0014
00.0015
00.0017
00.0005
00.0013
00.0020

Clear software interrupt request
Disable interrupts
Drain aborts
Data translation buffer invalidate single
Enable interrupts
Trap to illegal instruction
Initialize the PALcode
Read PALcode event counters
Read current IRQL
Read initial kernel stack
Read machine check error summary
Read PCR (processor control registers)
Read processor status register
Read internal processor state
Read the current thread value
Transfer to console firmware
Restart the processor
Return from system service call
Return from exception
Swap IRQL
Swap initial kernel stack
Swap PALcode
Swap privileged process context
Swap privileged thread context
Set software interrupt request
Translation buffer invalidate all
Translation buffer invalidate single
Translation buffer invalidate single ASN
Write system entry
Write machine check error summary
Write performance monitoring values

Opcodes 00.003816 through 00.003F16 are reserved for processor implementation
specific PALcode instructions. All other opcodes are reserved for use by Digital.

Instruction Summary C-19

e.g PALcode Opcodes in Numerical Order

Table C-14: PALcode Opcodes in Numerical Order

Opcode16 OpcodelO OpenVMSAXP DEC OSF/l Windows NT AXP

00.0000 00.0000 HALT halt halt
00.0001 00.0001 CFLUSH cflush restart
00.0002 00.0002 DRAINA draina draina
00.0003 00.0003 LDQP reboot
00.0004 00.0004 STQP initpal
00.0005 00.0005 SWPCTX wrentry
00.0006 00.0006 MFPR_ASN swpirql
00.0007 00.0007 MTPR_ASTEN rdirql
00.0008 00.0008 MTPR_ASTSR di
00.0009 00.0009 CSERVE cserve ei
OO.OOOA 00.0010 SWPPAL swppal swppal
OO.OOOB 00.0011 MFPR_FEN
OO.OOOC 00.0012 MTPR_FEN ssir
OO.OOOD 00.0013 MTPR_IPIR wripir csir
OO.OOOE 00.0014 MFPR_IPL rfe
OO.OOOF 00.0015 MTPR_IPL retsys
00.0010 00.0016 MFPR_MCES rdmces swpctx
00.0011 00.0017 MTPR_MCES wrmces swpprocess
00.0012 00.0018 MFPR_PCBB rdmes
00.0013 00.0019 MFPR_PRBR wrmces
00.0014 00.0020 MTPR_PRBR tbia
00.0015 00.0021 MFPR_PTBR this
00.0016 00.0022 MFPR_SCBB dtbis
00.0017 00.0023 MTPR_SCBB tbisasn
00.0018 00.0024 MTPR_SIRR rdksp
00.0019 00.0025 MFPR_SISR swpksp
OO.OOlA 00.0026 MFPR_TBCHK rdpsr
OO.OOlB 00.0027 MTPR_TBIA
OO.OOIC 00.0028 MTPR_TBIAP rdpcr
OO.OOlD 00.0029 MTPR_TBIS
OO.OOlE 00.0030 MFPR_ESP rdthread
OO.OOlF 00.0031 MTPR_ESP
00.0020 00.0032 MFPR_SSP wrperfmon
00.0021 00.0033 MTPR_SSP
00.0022 00.0034 MFPR_USP
00.0023 00.0035 MTPR_USP
00.0024 00.0036 MTPR_TBISD
00.0025 00.0037 MTPR_TBISI
00.0026 00.0038 MFPR_ASTEN
00.0027 00.0039 MFPR_ASTSR
00.0029 00.0041 MFPR_VPTB
00.002A 00.0042 MTPR_VPTB
00.002B 00.0043 MTPR_PERFMON wrfen
00.002D 00.0045 wrvptptr

C-20 Appendixes

Table C-14 (Cant.): PALcode Opcodes in Numerical Order

Opcode16 OpcodelO OpenVMSAXP DEC OSF/l Windows NT AXP

00.002E 00.0046 MTPR_DATFX
00.0030 00.0048 swpctx rdcounters
00.0031 00.0049 wrval rdstate
00.0032 00.0050 rdval
00.0033 00.0051 tbi
00.0034 00.0052 wrent
00.0035 00.0053 swpipl
00.0036 00.0054 rdps
00.0037 00.0055 wrkgp
00.0038 00.0056 wrusp
00.0039 00.0057 wrperfmon
00.003A 00.0058 rdusp
00.003C 00.0060 whami
00.003D 00.0061 retsys
00.003F 00.0063 MFPR_WHAMI rti
00.0080 00.0128 BPT bpt bpt
00.0081 00.0129 BUGCHK bugchk
00.0082 00.0130 CHME
00.0083 00.0131 CHMK callsys callsys
00.0084 00.0132 CHMS
00.0085 00.0133 CHMU
00.0086 00.0134 1MB imb imb
00.0087 00.0135 INSQHIL
00.0088 00.0136 INSQTIL
00.0089 00.0137 INSQHIQ
00.008A 00.0138 INSQTIQ
00.008B 00.0139 INSQUEL
00.008C 00.0140 INSQUEQ
00.008D 00.0141 INSQUELID
00.008E 00.0142 INSQUEQ/D
00.008F 00.0143 PROBER
00.0090 00.0144 PROBEW
00.0091 00.0145 RD_PS
00.0092 00.0146 REI
00.0093 00.0147 REMQHIL
00.0094 00.0148 REMQTIL
00.0095 00.0149 REMQHIQ
00.0096 00.0150 REMQTIQ
00.0097 00.0151 REMQUEL
00.0098 00.0152 REMQUEQ
00.0099 00.0153 REMQUELID
00.009A 00.0154 REMQUEQ/D
00.009B 00.0155 SWASTEN
00.00ge 00.0156 WR_PS_SW
00.009D 00.0157 RSCC
00.009E 00.0158 READ_UNQ rdunique
00.009F 00.0159 WRITE_UNQ wrunique

Instruction Summary C-21

Table C-14 (Cont.): PALcode Opcodes in Numerical Order

Opcode16 OpcodelO OpenVMS AXP DEC OSF/l Windows NT AXP

OO.OOAO 00.0160 AMOVRR
00.00A1 00.0161 AMOVRM
00.00A2 00.0162 INSQHILR
00.00A3 00.0163 INSQTILR
00.00A4 00.0164 INSQHIQR
00.00A5 00.0165 INSQTIQR
00.00A6 00.0166 REMQHILR
00.00A7 00.0167 REMQTILR
OO.OOAa 00.0168 REMQHIQR
00.00A9 00.0169 REMQTIQR
OO.OOAA 00.0170 GENTRAP
OO.OOAB 00.0171
OO.OOAC 00.0172
OO.OOAD 00.0173

C-22 Appendixes

gentrap gentrap
rdteb
kbpt
callkd

C.10 Required PALcode Function Codes

The opcodes listed in Table C-15 are required for all Alpha AXP implementations.
The notation used is oo.ffff, where 00 is the hexadecimal 6-bit opcode and ffff is the
hexadecimal 26-bit function code.

Table C-15: Required PALcode Function Codes

Mnemonic Type Function Code

DRAINA

HALT

1MB

Privileged

Privileged

Unprivileged

00.0002

00.0000

00.0086

C.11 Opcodes Reserved to PALcode

The opcodes listed in Table C-16 are reserved for use in implementing PALcode.

Table C-16: Opcodes Reserved for PALcode

Mnemonic

PAL19
PALIE

19
IE

Mnemonic

PALIB
PALIF

1B
IF

Mnemonic

PALID ID

C.12 Opcodes Reserved to Digital

The opcodes listed in Table C-17 are reserved to Digital.

Table C-17: Opcodes Reserved for Digital

Mnemonic

OPCOI
OPC04
OPC07
OPCOD
OPCIC

01
04
07
OD
lC

Mnemonic

OPC02
OPC05
OPCOA
OPCOE

02
05
OA
OE

Mnemonic

OPC03
OPC06
OPCOC
OPC14

03
06
OC
14

C.13 Unused Function Code Behavior

Unused function codes for all opcodes assigned (not reserved) in the Version 5
Alpha AXP architecture specification (May 1992) produce UNPREDICTABLE but
not UNDEFINED results; they are not security holes.

Unused function codes for opcodes defined as reserved in the Version 5 Alpha AXP
architecture specification produce an illegal instruction trap. Those opcodes are 01,
02, 03, 04, 05, 06, 07, OA, OC, OD, OE, 14, 19, IB, IC, ID, IE, and IF. Unused

Instruction Summary C-23

function codes for those opcodes reserved to PALcode produce an illegal instruction
trap only if not used in the PALcode environment.

C-24 Appendixes

C.14 ASCII Character Set

This section contains the 7-bit ASCII character set and the corresponding
hexadecimal value for each character.

Table C-18: ASCII Character Set

Hex Hex Hex Hex
Char Code Char Code Char Code Char Code

NUL 0 SP 20 @ 40 60
SQH 1 ! 21 A 41 a 61
STX 2 22 B 42 b 62
ETX 3 # 23 C 43 c 63
EaT 4 $ 24 D 44 d 64
ENQ 5 % 25 E 45 e 65
ACK 6 & 26 F 46 f 66
BEL 7 27 G 47 g 67
BS 8 (28 H 48 h 68
HT 9) 29 I 49 'i 69
LF A * 2A J 4A j 6A
VT B + 2B K 4B k 6B
FF C 2C L 4C 1 6C
CR D 2D M 4D m 6D
so E 2E N 4E n 6E
SI F / 2F a 4F 0 6F
DLE 10 0 30 P 50 p 70
DC1 11 1 31 Q 51 q 71
DC2 12 2 32 R 52 r 72
DC3 13 3 33 S 53 s 73
DC4 14 4 34 T 54 t 74
NAK 15 5 35 U 55 u 75
SYN 16 6 36 V 56 v 76
ETB 17 7 37 W 57 w 77
CAN 18 8 38 X 58 x 78
EM 19 9 39 Y 59 y 79
SUB lA 3A Z 5A z 7A
ESC 1B 3B [5B { 7B
FS Ie < 3C \ 5C I 7C
GS 1D 3D] 5D } 7D
RS IE > 3E " 5E 7E
US IF ? 3F 5F DEL 7F

Instruction Summary C-25

Appendix D

Waivers and Implementation-Dependent Functionality

This appendix describes waivers to the Alpha AXP architecture and functionality
that is specific to particular hardware implementations.

0.1 Waivers

The following waivers have been passed for the Alpha AXP architecture.

0.1.1 DECchip 21064, DECchip 21066, and DECchip 21068 IEEE Divide
Instruction Violation

The DECchip 21064, DECchip 21066, and DECchip 21068 CPUs violate the
architected handling of IEEE divide instructions DIVS and DIVT with respect to
reporting Inexact Result exceptions.

NOTE
The DECchip 21064A, DECchip 21066A, and DECchip
21068A CPUs are compliant and require no waiver. The
DECchip 21164 is also compliant.

As specified by the architecture, floating-point exceptions generated by the CPU are
recorded in two places for all IEEE floating-point instructions:

1. If an exception is detected and the corresponding trap is enabled (such as ADD
IU for underflow), the CPU initiates a trap and records the exception in the
exception summary register (EXC_SUM).

2. The exceptions are also recorded as flags that can be tested in the floating
point control register (FPCR). The FPCR can only be accessed with MTPRlMFPR
instructions and an explicit MT_FPCR is required to clear the FPCR. The FPCR
is updated irrespective of whether the trap is enabled or not.

The DECchip 21064, DECchip 21066, and DECchip 21068 implementations differ
from the above specification in handling the Inexact condition for the IEEE DIVS
and DIVT instructions in two ways:

1. The DIVS and DIVT instructions with the !Inexact modifier trap unconditionally
and report the INE exception in the EXC_SUM register (except for NaN, infinity,
and denormal inputs that result in INVs). This allows for a software calculation
to determine the correct INE status.

2. The FPCR <INE> bit is never set by DIVS or DIVT. This is because the
DECchip 21064, DECchip 21066, and DECchip 21068 do not include hardware
to determine that particular exactness.

Waivers and Implementation-Dependent Functionality 0-1

0.1.2 DECchip 21064, DECchip 21066, and DECchip 21068 Write Buffer Violation

The DECchip 21064, DECchip 21066, and DECchip 21068 CPUs can be made to
violate the architecture by, under one contrived case, indefinitely delaying a buffered
off-chip write.

NOTE
The DECchip 21064A, DECchip 21066A, and DECchip
21068A CPUs are compliant and require no waiver. The
DECchip 21164 is also compliant.

The CPUs in violation can send a buffered write off-chip when one of the following
conditions is met:

1. The write buffer contains at least two valid entries.

2. The write buffer contains one valid entry and 256 cycles have elapsed since the
execution of the last write.

3. The write buffer contains an MB or STx_C instruction.

4. A load miss hits an entry in the write buffer.

The write can be delayed indefinitely under condition 2 above, when there is an
indefinite stream of writes to addresses within the same aligned 32-byte write buffer
block.

0.2 Implementation-Specific Functionality

The following functionality, although a documentated part of the Alpha AXP
architecture, is implemented in a manner that is specific to the particular hardware
implementation.

0.2.1 OECchip 21064/21066/21068 Performance Monitoring

NOTE
All functions, arguments, and descriptions in this
section apply to the DECchip 21064/21064A, 21066
/21066A, and 21068/21068A.

PALcode instructions control the DECchip 21064121066/21068 on-chip performance
counters. For OpenVMS AXP, the instruction is MTPR_PERFMON; for DEC OSF/l
and Windows NT AXP, the instruction is wrperfmon.

The instruction arguments and results are described in the following sections. The
scratch register usage is operating system specific.

There are two on-chip counters that count events. The bit width of the counters (8,
12, or 16 bits) can be selected and the event that they count can be switched among a
number of available events. One possible event is an "external" event. For example,
the processor board can supply an event that causes the counter to increment. In
this manner, off-chip events can be counted.

0-2 Appendixes

The two counters can be switched independently. There is no hardware support for
reading, writing, or resetting the counters. The only way to monitor the counters is
to enable them to cause an interrupt on overflow.

The performance monitor functions, described in Section D.2.1.2, can provide the
following, depending on implementation:

• Enable the performance counters to interrupt and trap into the performance
monitoring vector in the operating system.

• Disable the performance counter from interrupting. This does not necessarily
mean that the counters will stop counting.

• Select which events will be monitored and set the width of the two counters.

• In the case of OpenVMS AXP and DEC OSF/l, implementations can choose to
monitor selected processes. If that option is selected, the PME bit in the PCB
controls the enabling of the counters. Since the counters cannot be read/written
/reset, if more than one process is being monitored, the rounding error may
become significant.

0.2.1.1 OECchip 21064/21066/21068 Performance Monitor Interrupt Mechanism

The performance monitoring interrupt mechanism varies according to the particular
operating system.

For the OpenVMS AXP Operating System
When a counter overflows and interrupt enabling conditions are correct, the counter
causes an interrupt to PALcode. The PALcode builds an appropriate stack frame.
The PALcode then dispatches in the form of an exception (not in the form of an
interrupt) to the operating system by vectoring to the SCB performance monitor
entry point through SCBB+650 (HWSCB$Q_PERF_MONITOR), at IPL 29, in kernel
mode.

1\vo interrupts are generated if both counters overflow. For each interrupt, the
status of each counter overflow is indicated by register R4:

R4 = 0 if performance counter 0 caused the interrupt
R4 = 1 if performance counter 1 caused the interrupt

When the interrupt is taken, the PC is saved on the stack frame as the old PC.

For the DEC OSF/1 Operating System
When a counter overflows and interrupt enabling conditions are correct, the counter
causes an interrupt to PALcode. The PALcode builds an appropriate stack frame and
dispatches to the operating system by vectoring to the interrupt entry point entINT,
at IPL 6, in kernel mode.

'!\vo interrupts are generated ifboth counters overflow. For each interrupt, registers
aO..a2 are as follows:

aO = osfint$c_perf (4)
al =scb$v_perfmon (650)
a2 = 0 if performance counter 0 caused the interrupt

Waivers and Implementation-Dependent Functionality 0-3

a2 =1 if performance counter 1 caused the interrupt

When the interrupt is taken, the PC is saved on the stack frame as the old PC.

For the Windows NT AXP Operating System
When a counter overflows and interrupt enabling conditions are correct, the counter
causes an interrupt to PALcode. The PALcode builds a frame on the interrupt stack
and dispatches to the kernel at the interrupt entry point.

0.2.1.2 Functions and Arguments for the OeCchip 21064/21066/21068

The functions execute on a single (the current running) processor only, and are
described in Table D-l.

The OpenVMS AXP MTPR_PERFMON instruction is called with a function code in
R16, a function-specific argument in R17, and status is returned in RO.

The DEC OSF/l wrperfmon instruction is called with a function code in aO, a function
specific argument in aI, and status is returned in vO.

The Windows NT AXP wrperfmon instruction is called with input parameters aO
through a3, as shown in Table D-I.

Table 0-1: OECchip 21064/21066/21068 Performance Monitoring Functions

Function Register Usage Comments

Enable performance monitoring

DEC OSF/l
Input:

Output:

OpenVMS AX.P
Input:

Output:

Windows NT AX.P
Input:

aO =1
al = 0
vO =1
vO = 0

Rl6 =1
Rl7 =0
RO =1
RO = 0

aO =0
aO =1
al =1

Function code
Argument
Success
Failure (not generated)

Function code
Argument
Success
Failure (not generated)

Select counter 0
Select counter 1
Enable selected counter

Disable performance monitoring

DEC OSF/l
Input:

Output:

OpenVMS AX.P

D-4 Appendixes

aO =0
al =0
vO =1
vO =0

Function code
Argument
Success
Failure (not generated)

Table 0-1 (Cont.): DECchip 21064/21066/21068 Performance Monitoring Functions

Function Register Usage Comments

Input: RIB =0 Function code
Rl7 =0 Argument

Output: RO = I Success
RO =0 Failure (not generated)

Windows NT AXP
Input: aO =0

aO = I
al =0

Select counter 0
Select counter I
Disable selected counter

Select desired events (mux_ctl)

DEC OSF/I
Input:

Output:

OpenVMS AXP
Input:

Output:

Windows NT AXP
Input:

aO =2
al =mux_ctl

vO = I
vO =0

RIB =2
Rl7 =mux_ctl

RO = I
RO = 0

a2 =PCMUXO
a2 =PCMUX1
a3 =PCO
a3 =PCI

Function code
mux_ctl is the exact contents of those fields from
the ICCSR register, in write format, described in
Table D-2
Success
Failure (not generated)

Function code
mux_ctl is the exact contents of those fields from
the ICCSR register, in write format, described in
Table D-2
Success
Failure (not generated)

For ICCSR<PCMUXO> field when aO =0
For ICCSR<PCMUXI> field when aO = I
For ICCSR<PCO> field when aO = 0
For ICCSR<PC1> field when aO = 1

Select performance monitoring options

DEC OSF/I
Input:

Output:

OpenVMSAXP
Input:

Output:

aO =3
al =opt

vO = I
vO =0

RIB =3
Rl7 = opt

RO = 1
RO =0

Function code
Function argument opt is:

<0> = log all processes if set
<1> =log only selected if set

Success
Failure (not generated)

Function code
Function argument opt is:

<0> =log all processes if set
<1> =log only selected if set

Success
Failure (not generated)

Waivers and Implementation-Dependent Functionality 0-5

0.2.1.3 OECchip 21064/21066/21068 MUX Control Fields in ICCSR Register

Table 0-2: OECchip 21064/21066/21068 MUX Control Fields in ICCSR Register

Bits Option Description

34:32 PCMUX1 Event selection, counter 1:

Val Name

0 DCACHE_MISSES
1 ICACHE_MISSES
2 DUAL_ISSUE_CYCLES
3 BRANCH_MISPREDICTS

4 FP_INSTRUCTIONS

5 INTEGER_OPERATE

6 STORE_INSTRUCTIONS
7 EXTERNAL

Description

Total D-cache misses
Total I-cache misses
Cycles of dual issue
Branch mispredicts
(conditional, JSR, HW_REI)
FP operate instructions
(not BR, LOAD, STORE)
Integer operates
(including LDA, LDAH into RO-R30)
Total store instructions
External events supplied by pin. See
Section D.2.1.4 for a description of
external performance counter events

0-6 Appendixes

Table 0-2 (Cont.): OECchip 21064/21066/21068 MUX Control Fields in ICCSR Register

Bits Option Description

11:8 PCMUXO Event selection, counter 0:

Val Name Description

o ISSUES Total issues divided by 2
1 Unused
2 PIPELINE_DRY Nothing issued, no valid I-stream data
3 Unused
4 LOAD_INSTRUCTIONS All load instructions
5 Unused
6 PIPELINE_FROZEN Nothing issued, resource conflict
7 Unused
8 BRANCH_INSTRUCTIONS All branches (conditional,

unconditional, JSR, HW_REI)

3 PCO

9 Unused
10 CYCLES
11 PAL_MODE
12 NON_ISSUES
13 Unused
14 EXTERNAL

15 Unused

Frequency setting, counter 0:

Total cycles
Cycles while in PALcode environment
Total nonissues divided by 2

External event supplied by pin. See
Section D.2.1.4 for a description of
external performance counter events

Val Name

o LOW
1 HIGH

Description

2**16 (65536) events per interrupt
2**12 (4096) events per interrupt

o PC1 Frequency setting, counter 1:

Val Name

o LOW
1 HIGH

Description

2**12 (4096) events per interrupt
2**8 (256) events per interrupt

Waivers and Implementation-Dependent Functionality 0-7

0.2.1.4 Monitoring External Events for the OECchip 21064/21066/21068

External events can be monitored. How such events are monitored is implementation
dependent. For example, the DECchip 21066/21066A and 21068/21068A monitor
the following external events through the error address register (EAR). The EAR
has one field for each performance counter (2 fields total) that selects particular
events. EAR<31:29> selects counter 1 and EAR<2:0> selects counter 0, as shown in
Table D-3

Table 0-3: External Performance Counter Events

Counter 0 Counterl
Select Event Select Event

0 Number of reads to Bcache from the 0 Number of events from event 0 that are also from
CPU orDMA the CPU and Bcache hits

Number of writes to Bcache from the Number of events from event 0 that are also from
CPU orDMA the CPU and Bcache misses and clean

2 Number of reads to DRAM from the 2 Number of events from event 0 that are also from
CPU or DMA the CPU and Bcache misses and dirty

3 Number of writes to DRAM from the 3 Number of events from event 0 that are also from
CPU orDMA DMA and Bcache hits

4 Number of DRAM accesses that do 4 Number of events from event 0 that are also from
page mode cycles DMA and Bcache misses

5 Number of DRMA assesses that miss 5 Number of CPU writes that write less than a full
page model quadword

6 Number of writes to graphics address 6 Number of DMA writes that write less than a full
space quadword

7 Number of reads to graphics address 7 Number of chip cycles that the memory controller
space is idle2

lDRAM page-mode hit + DRAM page-mode miss does not equal all DRAM cycles because page-mode miss does not include
DRAM accesses when the mem_ras_l signal was already deasserted.
2Idle means not accessing Bcache or DRAM or not doing a DRAM refresh or VRAM shift-register load.

Implementation Notes:

• The performance counters provide the ability to generate a PC-histogram of an
event. While there is a degree of uncertainty about exactly where the PC points,
performance counters have proven useful in pinpointing hot spots in code.

• Future implementations should consider adding the on-chip capability to read
Iwrite the counters from PALcode. With an on-chip register that contains the
two counters AND any counter/mux control information, a single load/store in
SWPCTX could context switch performance monitoring data for each process
individually. The performance impact to the SWPCTX flow would be minimal.

0-8 Appendixes

0.2.2 OECchip 21164 Performance Monitoring
PALcode instructions control the DECchip 21164 on-chip performance counters. For
OpenVMS AXP, the instruction is MTPR_PERFMON; for DEC OSF/l, the instruction
is wrperfmon.

The instruction arguments and results are described in the following sections. The
scratch register usage is operating system specific.

There are three on-chip counters that count events. Counters 0 and 1 are 16-bit
counters; counter 2 is a 14-bit counter. Each counter is individually programmable.
They can be read and written and are not required to interrupt.

Processes can be selectively monitored via the PME bit.

The counters can be collectively restricted according to the processor mode.

The performance monitor functions, described in Section D.2.2, can provide the
following, depending on implementation:

• Enable and disable the performance counters. Disabling a counter stops the
counter from counting interrupts but does not change the value stored in the
counter to zero.

• Select which events will be monitored.

• Select which processor modes will be recognized.

• Establish the interrupt frequency for each counter.

• Read and write the counter contents.

0.2.2.1 OECchip 21164 Performance Monitor Interrupt Mechanism

The performance monitoring interrupt mechanism varies according to the particular
operating system.

For the OpenVMS AXP Operating System
When a counter overflows and interrupt enabling conditions are correct, the counter
causes an interrupt to PALcode. The PALcode builds an appropriate stack frame.
The PALcode then dispatches in the form of an exception (not in the form of an
interrupt) to the operating system by vectoring to the SCB performance monitor
entry point through SCBB+650 (HWSCB$Q_PERF_MONITOR), at IPL 29, in kernel
mode.

An interrupt is generated for each counter overflow. For each interrupt, the status
of each counter overflow is indicated by register R4:

R4 = 0 if performance counter 0 caused the interrupt
R4 =1 if performance counter 1 caused the interrupt
R4 = 2 if performance counter 2 caused the interrupt

When the interrupt is taken, the PC is saved on the stack frame as the old PC.

Waivers and Implementation-Dependent Functionality 0-9

For the DEC OSF/1 Operating System
When a counter overflows and interrupt enabling conditions are correct, the counter
causes an interrupt to PALcode. The PALcode builds an appropriate stack frame and
dispatches to the operating system by vectoring to the interrupt entry point entINT,
at IPL 6, in kernel mode.

An interrupt is generated for each counter overflow. For each interrupt, registers
aO..a2 are as follows:

aO = osfint$c_perf (4)
al =scb$v_perfmon (650)
a2 = 0 if performance counter 0 caused the interrupt
a2 = 1 if performance counter 1 caused the interrupt
a2 = 2 if performance counter 2 caused the interrupt

When the interrupt is taken, the PC is saved on the stack frame as the old PC.

0.2.2.2 Functions and Arguments for the DECchip 21164

The functions execute on a single (the current running) processor only, and are
described in Table D-4.

The OpenVMS AXP MTPR_PERFMON instruction is called with a function code in
R16, a function-specific argument in R17, and status is returned in RO.

The DEC OSF/I wrperfmon instruction is called with a function code in aO, a function
specific argument in aI, and status is returned in vO.

Table 0-4: OECchip 21164 Performance Monitoring Functions

Function Register Usage Comments

Enable performance monitoring; do not reset counters

DEC OSF/l
Input:

Output:

OpenVMSAXP
Input:

Output:

aO = 1
al =arg
vO =1
vO = 0

Rl6 =1
R17 =arg
RO =1
RO =0

Function code value
Argument from Section D.2.2.3
Success
Failure (not generated)

Function code value
Argument from Section D.2.2.3
Success
Failure (not generated)

Enable performance monitoring; start the counters from zero

DEC OSF/l
Input:

0-10 Appendixes

aO =7
al =arg

Function code value
Argument from Section D.2.2.3

Table 0-4 (Cont.): DECchip 21164 Performance Monitoring Functions

Function Register Usage Comments

Output: vO =1 Success
vO =0 Failure (not generated)

OpenVMS AX.P
Input: Rl6 =7 Function code value

Rl7 =arg Argument from Section D.2.2.3
Output: RO =1 Success

RO =0 Failure (not generated)
Disable performance monitoring; do not reset counters

DEC OSF/l
Input:

Output:

OpenVMS AX.P
Input:

Output:

aO =0
al =arg
vO =1
vO = 0

Rl6 =0
Rl7 =arg
RO =1
RO =0

Function code value
Argument from Section D.2.2.4
Success
Failure (not generated)

Function code value
Argument from Section D.2.2.4
Success
Failure (not generated)

Select desired events (MUX_SELECT)

DEC OSF/l
Input:

Output:

OpenVMS AX.P
Input:

Output:

aO =2
al =arg
vO =1
vO =0

Rl6 = 2
Rl7 =arg
RO =1
RO =0

Function code value
Argument from Section D.2.2.5
Success
Failure (not generated)

Function code value
Argument from Section D.2.2.5
Success
Failure (not generated)

Select Processor Mode options

DEC OSF/l
Input:

Output:

OpenVMS AX.P
Input:

Output:

aO = 3
al =arg
vO =1
vO =0

Rl6 =3
Rl7 =arg
RO =1
RO = 0

Function code value
Argument from Section D.2.2.6
Success
Failure (not generated)

Function code value
Argument from Section D.2.2.6
Success
Failure (not generated)

Select interrupt frequencies

Waivers and Implementation-Dependent Functionality 0-11

Table 0-4 (Cont.): OECchip 21164 Performance Monitoring Functions

Function Register Usage Comments

DEC OSF/I
Input:

Output:

OpenVMS AXP
Input:

Output:

Read the counters

DEC OSF/I
Input:

Output:
OpenVMSAXP

Input:

Output:

Write the counters

DEC OSF/I
Input:

Output:

OpenVMS AXP
Input:

Output:

aO =4
al =arg
vO = I
vO =0

RI6 =4
RI7 =arg
RO = I
RO =0

aO =5
al =arg
vO =val

RI6 =5
RI7 =arg
RO =val

aO =6
al =arg
vO = I
vO =0

RI6 =6
RI7 =arg
RO = I
RO =0

Function code value
Argument from Section D.2.2.7
Success
Failure (not generated)

Function code value
Argument from Section D.2.2.7
Success
Failure (not generated)

Function code value
Argument from Section D.2.2.8
Return value from Section D.2.2.8

Function code value
Argument from Section D.2.2.8
Return value from Section D.2.2.8

Function code value
Argument from Section D.2.2.9
Success
Failure (not generated)

Function code value
Argument from Section D.2.2.9
Success
Failure (not generated)

0.2.2.3 Enable Counters Argument Format

Table 0-5: Enable Counters Argument Format

Bits Name Meaning When Set

2
I
o

CTR2
CTRI
CTRO

Operate on counter 2
Operate on counter I
Operate on counter 0

0-12 Appendixes

0.2.2.4 Disable Counters Argument Format

Table 0-6: Disable Counters Argument Format

Bits Name Meaning When Set

2
1
o

CTR2
CTRI
CTRO

Operate on counter 2
Operate on counter 1
Operate on counter 0

0.2.2.5 Select Desired Events (MUX_SELECT) Argument Format

Table 0-7: Select Desired Events (MUX_SELECT) Argument Format

Bits Name Meaning

63:32 MBZ
31 PCSELO Counter 0 selection:

Val Name

o CYCLES
1 ISSUES

Meaning

Cycles
Issues

30:25 MBZ
24:22 CBOX2 CBOX2 event selection (only has meaning when event selection field

PCSEL2 is value <15>; otherwise MBZ):

Val Name

o SCACHE_MISS
1 SCACHE_READ_MISS
2 SCACHE_WRITE_MISS
3 SCACHE_SH_WRITE
4 SCACHE_WRITE
5 BCACHE_MISS
6 SYS_INV
7 SYS_READ_REQ

Meaning

S-cache misses
S-cache read misses
S-cache write misses
S-cache shared writes
S-cache writes
B-cache misses
System invalidates
System read requests

Waivers and Implementation-Dependent Functionality 0-13

Table D-7 (Cont.): Select Desired Events (MUX_SELECT) Argument Format

Bits Name Meaning

21:19 CBOXI CBOXI event selection (only has meaning when event selection field
PCSELI is value <15>; otherwise MBZ):

Val Name Meaning

0 SCACHE_ACCESS S-cache access
1 SCACHE_READ S-cache read
2 SCACHE_WRITE S-cache write
3 SCACHE_VICTIM S-cache victim
4 Unused value
5 BCACHE_HIT B-cache hit
6 BCACHE_VICTIM B-cache victim
7 SYS_REQ Sys req

18:8 MBZ

0-14 Appendixes

Table D-7 (Cont.): Select Desired Events (MUX_SELECT) Argument Format

Bits Name Meaning

7:4 PCSELI Counter 1 event selection:

Val

o
1

2
3

4
5
6
7
8

Name

NON_ISSUE_CYCLES
SPLIT_ISSUE_CYCLES

PIPELINE_DRY
REPLAY_TRAP

SINGLE_ISSUE_CYCLES
DUAL_ISSUE_CYCLES
TRIPLE_ISSUE_CYCLES
QUAD_ISSUE_CYCLES
FLOW_CHANGE

Meaning

Nothing issued, pipeline frozen
Some but not all issuable instruc
tions issued
Nothing issued, pipeline dry
Replay traps (ldu, wb/maf, lit
mus test)
Single issue cycles
Dual issue cycles
Triple issue cycles
Quad issue cycles
Flow change (all branches, jsr
ret, hw_rei), where:

If PCSEL2 has value 3 (BRANCH_MISPREDICTS), then:
COND_BRANCHES Conditional branch instructions

Or:

If PCSEL2 has value 2 (PC_MISPR), then:
JSR_RET Jsr-ret instructions

9
10

11
12
13
14
15

INTEGER_OPERATE
FP_INSTRUCTIONS

LOAD_INSTRUCTIONS
STORE_INSTRUCTIONS
ICACHE_ACCESS
DCACHE_ACCESS
CBOXI

Integer operate instructions
Floating point operate instruc
tions
Load instructions
Store instructions
Instruction cache access
Data cache access
Use CBOXI selection

Waivers and Implementation-Dependent Functionality 0-15

Table D-7 (Cont.): Select Desired Events (MUX_SELECT) Argument Format

Bits Name Meaning

3:0 PCSEL2 Counter 2 event selection:

Val

o
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Name

PC_MISPR
BRANCH_MISPREDICTS
ICACHE_MISSES
ITB_MISS
DCACHE_MISSES
DTB_MISS
LOADS_MERGED
LDU_REPLAYS
WB_MAF_FULL_REPLAYS
EXTERNAL
CYCLES
MEM_BARRIER
LOAD_LOCKED
CBOX2

Meaning

Long stalls (> 12 cycles)
Unused value
PC mispredicts
Branch mispredicts
I-cache misses
ITB misses
D-cache misses
DTB misses
Loads merged in MAF
LDU replays
WBIMAF full replays
Event from external pin
Cycles
Memory barrier instructions
LDx/L instructions
Use CBOX2 selection

0.2.2.6 Select Special Options Argument Format

Table 0-8: Select Special Options Argument Format

Bits Name Meaning

63:31
30
29:10
9
8
7:1
o

NOT_USER

NOT_PAL
NOT_KERNEL

PROCESSES

MBZ
Stop count in user mode
MBZ
Stop count in PAL mode
Stop count in kernel mode
MBZ
Monitor selected processes (when clear monitor all processes)

Setting any of the "NOT" bits causes the counters to not count when the processor is
running in the specified mode. Under OpenVMS AXP, IINOT_KERNEL" also stops
the count in executive and supervisor mode, except as noted below:

0-16 Appendixes

NOT_BITS Counters Operate Under These Modes When Bits Set:

K U P

0 0 0 KESUP
0 0 1 KESU
0 1 0 KES P
0 1 1 KES
1 0 0 UP
1 0 1 U
1 1 0 P
1 1 1 ES (here "NOT_KERNEL" stops kernel counter only)

0.2.2.7 Select Desired Frequencies Argument Format

All frequency fields in Table D-9 are two-bit fields with the following values defined:
Table D-9 contains the selection definitions for each of the three counters:

Table 0-9: Select Desired Frequencies Argument Format

Bits Name Meaning When Set

63:10 MBZ
9:8 PCFREQO Counter 0 frequency:

Value Meaning

o Do not interrupt
1 Unused
2 Low frequency (2**16 (65536) events per interrupt)
3 High frequency (2**8 (256) events per interrupt)

7:6 PCFREQI Counter 1 frequency:

Value Meaning

o Do not interrupt
1 Unused
2 Low frequency (2**16 (65536) events per interrupt)
3 High frequency (2**8 (256) events per interrupt)

Waivers and Implementation-Dependent Functionality 0-17

Table 0-9 (Cont.): Select Desired Frequencies Argument Format

Bits Name Meaning When Set

5:4 PCFREQ2 Counter 2 frequency:

Value Meaning

o Do not interrupt
1 Unused
2 Low frequency (2**14 (16384) events per interrupt)
3 High frequency (2**8 (256) events per interrupt)

3:0 MBZ

0.2.2.8 Read Counters Argument Format

Table 0-10: Read Counters Argument Format

Bits Name Meaning When Returned

63:48
47:32
31:30
29:16
15:1
o

CTRO
CTR1

CTR2

STATUS

Counter 0 returned value
Counter 1 returned value
MBZ
Counter 2 returned value
MBZ
Set means success; clear means failure

0.2.2.9 Write Counters Argument Format

Table 0-11: Write Counters Argument Format

Bits Name Meaning

63:48
47:32
31:30
29:16
15:0

CTRO
CTRI

CTR2

Counter 0 written value
Counter 1 written value
MBZ
Counter 2 written value
MBZ

0-18 Appendixes

Index

A
Aborts, forcing, (I), 6-6
Absolute longword queue, (II-A), 2-21
Absolute quadword queue, (II-A), 2-25
Access control violation (ACV) fault (II-A)

6-11 ' ,
has precedence, (II-A), 3-13
memory protection, (II-A), 3-8
service routine entry point, (II-A) 6-29

Access violation fault, (II-B), 3-10· '(II-Cl
4-3 ' /,

ADDF instruction, (1),4-98
ADDG instruction, (1),4-98
Add instructions

See also Floating-point operate
addlongword, (V,4-24
add quadword, (1),4-26
add scaled longword, (I), 4-25
add scaled quadword, (1),4-27

ADDL instruction, (1),4-24
ADDQ instruction, (1),4-26
Address space, (II-C), 3-1
Address space match (ASM)

bit in PTE, (II-A), 3-5; (II-B), 3-5; (II-C),
3-5

TBIAP register uses, (II-A) 5-27
vi~tual cache coherency, (I): 5-4
wIth context switch, (II-C), 2-9, 5-32

Address space number (ASN) register, (II-A)
5-4; (II-C),2-3 '

at processor initialization, (III), 3-20
defined, (II-B), 1-2
described, (II-B), 3-9
HWRPB field for maximum value (III)

2-6 ' ,
in HWPCB, (II-A), 4-2
in initial HWPCB, (III) 3-21
in process context, (II-B) 4-1
privileged context, (II-A): 2-92
range supported, (II-A), 3-12
TBCHK register uses, (II-A), 5-24
TBIS register uses, (II-A), 5-28
translation buffer with (II-A) 3-11
vi~tual cache coherenc;, (I), 5~
wIth context switch, (II-C) 2-9
with PALcode switching, (ill), 3-9

Address translation
algorithm to perform, (II-A), 3-9, 3-11
page frame number (PFN), (II-A), 3-8
page table structure, (II-A), 3-8· (II-C)

3-2 "
perfo.rmance enhancements, (II-A), 3-10
phYSIcal, (II-B), 3-7
translation buffer with, (II-A), 3-11
virtual, (II-B), 3-8
virtual address segment fields (II-A) 3-8

ADDS instruction, (1),4-99 ' ,
ADDT instruction, (1),4-99
Aligned byte/word memory accesses, A-II
ALIGNED data objects, (I), 1-9
Alignment

atomic longword, (I), 5-2
atomic quadword, (1),5-2
data alignment trap, (II-A), 6-17
data considerations, A-6
double-width data paths, A-I
D_floating, (I), 2-6
F_floating, (I), 2-4
G_floating, (I), 2-5
instruction, A-2
longword, (I), 2-2
longword integer, (I), 2-12
memory accesses, A-II
program counter (PC), (II-A), 6-7
quadword, (1),2-3
quadword integer, (I), 2-13
stack, (II-A), 6-33
S_floating, (I), 2-9
T_floating, (I), 2-10
when data is unaligned, (II-A), 6-30
X_floating, (I), 2-11

Alpha AXP architecture
See also Conventions
addressing, (I), 2-1
overview, (I), 1-1
porting operating systems to, (I), 1-1
programming implications (I) 5-1
registers, (1), 3-1 "
security, (I), 1-7

Alpha AXP privileged architecture library
See PALcode

Index-1

Index

AMOVRM (PALcode) instruction, (II-A), 2-77
AMO~R (PALcode) instruction, (II-A), 2-77
AND Instruction, (I), 4-38
APC_LEVEL, IRQL table index name (II-C\

2-2 ' /,
ARC Restart Block, (II-C) 5-20
Arithmetic exceptions, (II:"'C), 4-5

See also Arithmetic traps
Arithmetic instructions, (I), 4-23

See also specific arithmetic instructions
Arithmetic left shift instruction (I) 4-37
Arithmetic trap entry (entArith) re~ster

aI-B), 1-2, 5-4 '
Arithmetic traps, (II-C), 4-5

defined, aI-A), 6-10; aI-B) 5-1
described, (II-A), 6-13 '
disabling, (I), 4-67
division by zero, (I), 4-66, 4-69; (II-A),

6-16; (II-B), 5-5; (II-C) 4-6
d~v~s~on by zero, disabling, (1),'4-69
dIVISIon by zero, enabling B-5
division by zero, status or: B-5
dynamic rounding mode, (1),4-69
enabling, B-4
F31 as destination, (II-A) 6-13
inexact result, (I), 4-66, 4-69; (II-A),

6-16; (II-B), 5-5; (II-C) 4-6
~nexact result, disabling, (I), ~68
~nexact result, enabling, B-5
Inexact result, status of B-4
integer overflow, (I), 4-67, 4-69; (II-A),

6-16; (II-B), 5-5; (II-C) 4-6
~nteger overflow, disabling, B-4
Integer overflow, enabling B-4
invalid operation, (I), 4-65, 4-69; (II-A),

6-15; (II-B), 5-5; (II-C),4-7
~nval~d operation, disabling, (I), 4-69
InvalId operation, enabling, B-5
invalid operation, status of, B-5
overflow, (I), 4-66, 4-69; (II-A), 6-16;

aI-B), 5-5; aI-C),4-6
overflow, disabling, (I), 4-69
overflow, enabling, B-5
overflow, status of, B-5
program counter (PC) value, (II-A), 6-15
programming implications for, (I), 5-26
R31 as destination, (II-A), 6-13
recorded for software, (II-A), 6-14
REI instruction with, (II-A), 6-10
service routine entry point, (II-A), 6-29
system entry for, (II-B), 5-4
TRAPB instruction with, (1),4-126
underflow, (I), 4-66; (II-A), 6-16; (II-B),

5-5; (II-C), 4-6
underflow, disabling, (I), 4-68

Index-2

Arithmetic traps (cont'd)
underflow, enabling, B-5
underflow, status of, B-5
underflow to zero, disabling, (I), 4-68
when concurrent with data alignment,

(II-A), 6-17
when registers affected by, (II-A), 6-14

ASCII character set, C-25
ASN_wrap_indicator, (II-C), 2-9
AST enable (ASTEN) register

at processor initialization (III) 3-20
changing access modes in' (II-A) 4-4
described, (II-A), 5-5' ,
in HWPCB, (II-A), 4-2
in initial HWPCB, (III), 3-21
interrupt arbitration, (II-A), 6-37
operation (with ASTs), (II-A) 4-4
privileged context, (II-A), 2-92
SWASTEN instruction with, (II-A), 2-19

AST summary (ASTSR) register
at processor initialization, (III), 3-20
described, (II-A), 5-7
~ndicates pending ASTs, (II-A), 4-4
In HWPCB, (II-A), 4-2
in initial HWPCB, (III), 3-21
interrupt arbitration, (II-A) 6-36
privileged context, (II-A), 2":'92

Asynchronous procedure call (APC)
SIRR register field for, (II-C), 4-16
software interrupt for, (II-C), 4-13

Asynchronous system traps (AST)
ASTEN/ASTSR registers with (II-A) 4-4
initiating, (II-A), 4-4 ' ,
interrupt, defined, (II-A), 6-21
se.rvice routine entry point, (II-A), 6-29
WIth PS register, (II-A), 4-4

Atomic access, (I), 5-2
Atomic move operations, (II-A) 2-76
Atomic operations '

accessing longword datum, (I), 5-2
accessing quadword datum (I) 5-2
modifying page table entry: (Ii-A) 3-6
updating shared data structures (I) 5-7
using load locked and store conditio~al (I)

5-7 ' ,
Atomic sequences, A-17
AUTO_ACTION environment variable (III)

2-26 ' ,
overriding, (III), 3-27
st~te transitions and, (111),3-1
WIth cold bootstrap, (III), 3-10
with error halts, (III), 3-31
with system restarts, (III), 3-29

B
BB_WATCH

at power-up initialization, (111),3-4
requirements, (III), 3-44
w~th po~erfail interrupts, (III), 3-29
wIth pnmary console switching, (111),3-32
with primary-eligible (PE) bit (III) 3-45

BEQ instruction, (I), 4-18 ' ,
BGE instruction, (I), 4-18
BGT instruction, (I), 4-18
BIC instruction, (I), 4-38
Big-endian addressing, (I), 2-14

byte operation examples, (I), 4-50
byte swapping for, A-12
extract byte with, (I), 4-47
insert byte with, (I), 4-51
load F_floating with, (I), 4-79
load long/quad locked with, (I), 4-8
load long/quad with, (I), 4-6
load S_floating with, (I), 4-81
mask byte with, (1),4-53
store F_floating with, (I), 4-83
store long/quad conditional with, (I), 4-11
store long/quad with, (I), 4-14
store S_floating with, (I), 4-85

BIS instruction, (I), 4-38
BITMAP_CHECKSUM, memory cluster field

aID, 3-13 '
BITMAP_PA, memory cluster field, (III), 3-13
BITMAP_VA, memory cluster field, (III) 3-13
BLBC instruction, (I), 4-18 '
BLBS instruction, (I), 4-18
BLE instruction, (I), 4-18
BLT instruction, (I), 4-18
BNE instruction, (I), 4-18
Boolean instructions, (I), 4-37

logical functions, (I), 4-38
Boolean stylized code forms, A-15
Boot block on disk, (III), 3-38
BOOTDEF_DEV environment variable (III)

2-26 ' ,
with loading system software, (III), 3-19

BOOTED_DEV environment variable (III)
2-26 ' ,

with loading system software, (III), 3-19
BOOTED_FILE environment variable (III)

2-27 ' ,
with loading system software, (III), 3-19

BOOTED_OSFLAGS environment variable
(lID, 2-27 '

with l~ading system software, (III), 3-19
Boot enVIronment, restoring, (II-C), 5-20

Index

BOOTP-UDP/IP network protocol, (111),3-43
Boot sequence, establishing, (II-C), 1-2
Bootstrap address space

regions, (III), 3-14
Bootstrap-in-progress (BIP) flag

at multiprocessor boot, (III), 3-23
at power-up initialization, (III), 3-4
at processor initialization, (III), 3-20
per-CPU state contains, (III), 2-23
state transitions .and, (III), 3-1
with failed bootstrap, (III), 3-18

Bootstrapping, (III), 3-1
adding processor while running system

aID, 3-27 '
address space at cold, (III), 3-14
boot block in ROM, (111),3-42
boot block on disk, (III), 3-38
cold in uniprocessor environment, (III), 3-9
control to system software (III) 3-20
failure of, (III), 3-18 ' ,
from disk, (III), 3-37
from magtape, (111),3-39
from MOP-based network, (111),3-43
from ROM, (111),3-42
implementation considerations (III) 3-46
loading page table space at cold (IIi) 3-14
loading primary image, (III), 3-36 '
loading system software, (III), 3-18
ME~C table at cold, (III), 3-13
multIprocessor, (III), 3-23
PALcode loading at cold, (III), 3-14
processor initialization, (III), 3-20
request from system software, (III), 3-27
state flags with, (III), 3-18
system, (III), 3-4
unconditional, (III), 3-27
warm, (111),3-22

BOOT_DEV environment variable (III) 2-26
with loading system software, (ill), 3~18

BOOT_FILE environment variable (III)
2-26, 3-40 ' ,

with loading system software, (III), 3-19
BOOT_OSFLAGS environment variable (III)

2-27 ' ,
with loading system software, (III), 3-19

BOOT_RESET environment variable (III)
2-27 ' ,

at system initialization, (III), 3-4
at warm bootstrap, (III), 3-22
overriding, (III), 3-27
with cold bootstrap, (III), 3-10

bpt (PALcode) instruction, (II-B) 2-2- (II-C\,
5-41 ' , /

required recognition of, (I), 6-5

Index-3

Index

BPI' (PALcode) instruction, (II-A), 2-4
required recognition of, (I), 6-4
service routine entry point, (II-A) 6-30
trap information, (II-A), 6-17 '

Branch instructions, (I), 4-17
See also Control instructions
backward conditional, (I), 4-18
conditional branch, (I), 4-18
displacement, (I), 4-19
floating-point, summarized, (I), 4-87
format of, (I), 3-10
forward conditional, (I), 4-18
opcodes and format summarized, C-l
unconditional branch, (I), 4-20
with trap shadow, (1),4-65

Branch prediction model, (I), 4-16
Branch prediction stack, with BSR

instruction, (I), 4-20
Breakpoint exceptions, (II-C), 4-9

initiating, (II-A), 2-4
Breakpoint trap, initiating, (II-B), 2-2
BR instruction, (I), 4-20
BSR instruction, (I), 4-20
Bugcheck exception, initiating, (II-A), 2-5
bugchk (PALcode) instruction, (II-B), 2-3

required recognition of, (I), 6-5
BUGCHK (PALcode) instruction, (II-A), 2-5

required recognition of, (I), 6-4
service routine entry point, (II-A), 6-30
trap information, (II-A), 6-18

Byte data type, (I), 2-1
Byte manipulation instructions, (I), 4-43

See also Extract instructions; Insert
instructions; Mask instructions' Zero
instructions '

Byte swapping, A-12
Byte_within_page field, (II-A), 3-2; (II-B),

3-2

c
Cache blocks, virtual

invalidating all, (II-C), 5-33
invalidating single, (II-C), 5-34

Cache coherency, (II-C), 2-7
barrier instructions for, (I), 5-23
defined, (I), 5-2
HAL interface for, (II-C), 1-3
in multiprocessor environment, (1), 5-5

Caches
design considerations, A-I
flushing physical page from, (II-A), 2-85;

(II-B),2-9
I-stream considerations, A-5
MB and 1MB instructions with, (1),5-23

Index-4

Caches (cont'd)
requirements for, (I), 5-4
translation buffer conflicts, A-8
with powerfaiVrecovery, (I), 5-5

callkd (PALcode) instruction, (II-C), 5-42
callsys (PALcode) instruction, (II-B), 2-4'

(II-C),5-43 '
entSys with, (II-B), 5-9
stack frames for, (II-B), 5-3

CALL_PAL (call privileged architecture
library) instruction, (I), 4-120

Canonical form, (I), 4-57
Catastrophic errors, (II-C), 4-19
Causal ordering, (I), 5-9
cflush (PALcode) instruction, (II-B), 2-9
CFLySH (PALcode) instruction, (II-A), 2-85

wIth powerfail, (II-A), 6-23
Characters

getting from console, (III), 2-35
writing to console, (III), 2-39

Ch.arged process cycles register, (II-A), 2-93
In HWPCB, (II-A), 4-2
in process context, (II-B), 4-1
PCC register and, (II-A), 4-3

CHAR_SET environment variable, (111),2-28
Checksum, HWRPB field for, (III), 2-9

at multiprocessor boot, (III), 3-23
CHME (PALcode) instruction, (II-A), 2-6

service routine entry point, (II-A), 6-30
trap initiation, (II-A), 6-18

CHMK (PALcode) instruction, (II-A), 2-7
service routine entry point, (II-A), 6-30
trap initiation, (II-A), 6-18

CHMS (PALcode) instruction, (II-A), 2-8
service routine entry point, (II-A), 6-30
trap initiation, (II-A), 6-19

CHMU (PALcode) instruction, (II-A), 2-9
service routine entry point, (II-A), 6-30
trap initiation, (II-A), 6-19

Clear a register, A-I3
Clock

See BB WATCH
CLOCK_HIGH, IRQL table index name,

(II-C),2-2
CLOSE device routine, (111),2-47
Clusters, memory, (III), 3-10
CMOVEQ instruction, (1),4-39
CMOVGE instruction, (1),4-39
CMOVGT instruction, (1),4-39
CMOVLBC instruction, (1),4-39
CMOVLBS instruction, (1),4-39
CMOVLE instruction, (1),4-39
CMOVLT instruction, (1),4-39

CMOVNE instruction, (1),4-39
CMPBGE instruction, (1),4-45
CMPEQ instruction, (1),4-28
CMPGEQ instruction, (1),4-100
CMPGLE instruction, (1),4-100
CMPGLT instruction, (1),4-100
CMPLE instruction, (1),4-28
CMPLT instruction, (1),4-28
CMPTEQ instruction, (1),4-101
CMPTLE instruction, (1),4-101
CMPTLT instruction, (1),4-101
CMPTUN instruction, (1),4-101
CMPULE instruction, (I), 4-29
CMPULT instruction, (1),4-29
Code forms, stylized, A-13

Boolean, A-15
load literal, A-14
negate, A-14
NOP, A-13
NOT, A-15
register, clear, A-13
register-to-register move, A-14

Code sequences, A-II
Coherency

cache, (I), 5-2
memory, (I), 5-1

Compare instructions
See also Floating-point operate
compare byte, (1),4-45
compare integer signed, (I), 4-28
compare integer unsigned, (I), 4-29

Conditional move instructions, (I), 4-39
See also Floating-point operate
with trap shadow, (I), 4-64

CONFIG
See Configuration data block

CONFIG block, in HWRPB, (111),2-10
CONFIG offset, HWRPB field for, (111),2-8
Configuration data block, (III), 2-23
Console

at system restart, (III), 3-27
at warm bootstrap, (111),3-22
console I/O mode, (III), 3-4
console initialization mode, (III), 3-4
data structure linkage, (III), 2-64
data structures loading at cold boot, (III),

3-14
definition, (III), 1-1
detached, (III), 1-2
detached implementations of, (III), 3-47
embedded, (III), 1-2
embedded implementation of, (111),3-46
environment variables, (III), 2-26
error halt and recovery, (III), 3-30

Index

Console (cont'd)
forcing entry to I/O mode, (III), 3-36
HWRPB with, (III), 2-1
implementation registry, (III), 1-3
implementations, (III), 1-2
inter-console communications buffer, (III),

2-72
internationalization, (III), 1-4
interprocessor communications for, (III),

2-71
ISO Latin-l support with, (III), 1-5
loading PALcode, (III), 3-14
loading system software, (III), 3-18
lock mechanisms, (III), 1-2
major state transitions, (III), 3-3
messages for, (III), 1-4
miscellaneous routines, (III), 2-62
multiprocessor boot, (III), 3-23
multiprocessor implementation of, (III),

3-46
presentation layer, (III), 1-3
processor state flags, (111),3-18
program I/O mode, (111),3-4
remapping routines, (III), 2-66
requirements for, (III), 1-2
resetting, (III), 2-41
RESTORE_TERM routine, (111),3-36
SAVE_TERM routine, (111),3-35
secondary at multiprocessor boot, (III),

3-26
security for, (III), 1-4
sending commands to secondary, (111),2-73
sending messages to primary, (III), 2-73
supported character set requirements, (III),

2-29
switching primary processors, (III), 2-63

Console callback routine block, in HWRPB,
(111),2-10

Console callback routines, (111),2-29
at cold boot, (III), 3-14
CTB describes, (III), 2-69
data structures for, (III), 2-64
fixing up the virtual address, (III), 2-62
HWRPB field for, (111),2-8
remapping, (111),2-66
summary of, (III), 2-31
system software invoking, (III), 2-30

Console environment variables
See also Environment variables
loading system software, (III), 3-19

Console firmware, transferring to, (II-C),
5-20

Console I/O mode, (III), 3-3
forcing entry to, (III), 3-36

Index-5

Index

Console initialization mode, (III), 3-4
Console interface, (III), 2-1
Console overview, (I), 7-1
Console routine block (CRB), (III), 2-64

console callback routines with, (III), 2-64
initializing, (III), 2-66
offset, HWRPB field for, (III), 2-8
structure of, (III), 2-65

Console terminal block (CTB)
console callback routines with, (III), 2-64
described, (III), 2-32, 2-69
HWRPB fields for, (111),2-7
number, HWRPB field for, (111),2-7
offset, HWRPB field for, (III), 2-8
size, HWRPB field for, (111),2-7
structure of, (III), 2-70

Console terminal routines, (III), 2-32
Context switching

See also Hardware; Process
between address spaces, (II-C), 5-32
defined, (II-A),4-1
hardware, (II-A), 4-2
initiating, (II-A), 2-92
multiprocessor considerations, (I), 5-22
PDR register with, (II-C), 3-3
raising IPL while, (II-A), 4-4
software, (II-A), 4-2
thread, (II-C), 5-27
thread to process, (II-C), 2-9
thread to thread, (II-C), 2-8

Context valid (CV) flag
at multiprocessor boot, (III), 3-23
at processor initialization, (III), 3-20
per-CPU state contains, (III), 2-22

Control instructions, (I), 4-16
Conventions

code examples, (I), 1-9
code flows, (II-C), 1-4
extents, (I), 1-8
figures, (I), 1-9
instruction format, (I), 3-9
notation, (I), 3-8
numbering, (I), 1-7
ranges, (I), 1-8

IC opcode qualifier
IEEE floating-point, (I), 4-61
VAX floating-point, (I), 4-61

Corrected error interrupts, logout area for,
(II-A),6-26

CPU ID, HWRPB field for primary, (111),2-6
at multiprocessor boot, (III), 3-23

CPU slot offset, HWRPB field for, (111),2-7
CPYSE instruction, (I), 4-93

Index-6

CPYS instruction, (I), 4-93
CPYSN instruction, (1),4-93
CRB

See Console routine block
cserve (PALcode) instruction, (II-B), 2-10

required recognition of, (1),6-5
CSERVE (PALcode) instruction, (II-A), 2-86

required recognition of, (I), 6-4
csir (PALcode) instruction, (II-C), 5-4

clears software interrupts, (II-C), 4-16
CTB

See Console terminal block
CTB table, in HWRPB, (III), 2-10
Current mode field, in PS register, (II-A), 6-7
Current PALcode, (111),3-5
Current PC, (II-A), 6-2
CVTDG instruction, (I), 4-105
CVTGD instruction, (1),4-105
CVTGF instruction, (I), 4-105
CVTGQ instruction, (1),4-103
CVTLQ instruction, (I), 4-94
CVTQF instruction, (I), 4-104
CVTQG instruction, (1),4-104
CVTQL instruction, (I), 4-94

FP_C quadword with, B-4
CVTQS instruction, (I), 4-108
CVTQT instruction, (1),4-108
CVTST instruction, (1),4-109
CVTTQ instruction, (1),4-107

FP_C quadword with, B-4
CVTTS instruction, (I), 4-110
Cycle counter frequency, HWRPB field for,

(111),2-7

D
Data alignment, A-6
Data alignment trap (DAT) register

privileged context, (II-A), 2-93
Data alignment traps, (II-A), 6-16

fixup (DAT) bit, in HWPCB, (II-A), 4-2
fixup (DATFX) register, (II-A), 5-9
memory management, (II-A), 6-17
registers used, (II-A), 6-17; (II-B), 5-4
service routine entry point, (II-A), 6-30
system entry for, (II-B), 5-9
when concurrent with arithmetic, (II-A),

6-17
Data fetches (memory), (I), 5-11
Data format, overview, (I), 1-3
Data sharing (multiprocessor), A-7

synchonization requirement, (I), 5-5
Data stream considerations, A-6

Data stream translation buffer (DTB), (III),
2-13

Data structures, shared, (I), 5-5
Data types

byte, (I), 2-1
IEEE floating-point, (I), 2-7
longword, (I), 2-2
longword integer, (I), 2-12
quadword, (1),2-2
quadword integer, (I), 2-13
unsupported in hardware, (1),2-13
VAX floating-point, (I), 2-3
word, (I), 2-1

DATA_BUS_ERROR code, (II-C), 4-19
Datum, changed, (1),5-5
Datum, updated, (I), 5-6
DECchip 21064, waivers for, D-1
DECchip 21064121064A, performance

monitoring for, D-2
DECchip 21066, waivers for, D-1
DECchip 21066/21066A, performance

monitoring for, D-2
DECchip 21068, waivers for, D-1
DECchip 21068/21068A, performance

monitoring for, D-2
DECchip 21164, performance monitoring, D-8
DEC OSF/l PALcode, instruction summary,

C-17
Deferred procedure call (DPC)

SIRR register field for, (II-C), 4-16
software interrupt for, (II-C), 4-13
stack for, (II-C), 2-8

Denormal, (I), 4-58
Detached console, (III), 1-2
DEVICE ID, CTB field for, (III), 2-70
Device-specific data (DSD), (III), 2-71
DEVICE TYPE, CTB field for, (111),2-70
DEVICE_HIGH_LEVEL, IRQL table index

name, (II-C), 2-2
DEVICE_LEVEL, IRQL table index name,

(II-C),2-2
di (PALcode) instruction, (II-C), 5-5

as synchronization function, (II-C), 4-16
Dirty pages, tracking, (II-C), 3-5
Dirty zero, (I), 4-58
Disk bootstrap image, (III), 3-37
DISPATCH, CRB fields for, (111),2-65
DISPATCH procedure, (111),2-65
DISPATCH_LEVEL, IRQL table index name,

(II-C),2-2
DIVF instruction, (I), 4-111
DIVG instruction, (I), 4-111
Division

integer, A-12
performance impact of, A-12

Index

Division by zero bit, exception summary
register, (II-C), 4-6

Division by zero enable (DZEE)
FP_C quadword bit, B-5

Division by zero status (DZES)
FP_C quadword bit, B-5

Division by zero trap, (II-A), 6-16; (II-B),
5-5; (II-C), 4-6

DIVS instruction, (I), 4-113
DIVT instruction, (I), 4-113
DMA control, HAL interface for, (II-C), 1-3
DMK bit, machine check error summary

register, (II-C), 4-18
fD opcode qualifier

FPCR (floating-point control register), (I),
4-67

IEEE floating-point, (I), 4-61
DPC bit, machine check error summary

register, (II-A), 5-15; (II-B), 5-8;
(II-C), 4-18

draina (PALcode) instruction, (II-C), 5-6
required, (I), 6-6
with machine checks, (II-C), 4-19

DRAINA (PALcode) instruction
required, (I), 6-6

DSC bit, machine check error summary
register, (II-A), 5-15; (II-B), 5-8;
(II-C),4-18

DSD, CTB field for, (III), 2-71
DSD LENGTH, CTB field for, (111),2-71
DSRDB block, in HWRPB, (111),2-10
DSRDB offset, HWRPB field for, (111),2-9
DTB

See data stream translation buffer
dtbis (PALcode) instruction, (II-C), 3-6, 5-7
Dual-issue instruction considerations, A-2
DUMP_DEV environment variable, (III),

2-27
DYN bit

See Arithmetic traps, dynamic rounding
mode

DZE bit
See also Arithmetic traps, division by zero
exception summary parameter, (II-A),

6-15
exception summary register, (II-B), 5-5;

(II-C),4-6
DZED bit

See Trap disable bits, division by zero
D_floating data type, (I), 2-6

alignment of, (I), 2-6
mapping, (1),2-6
restricted, (I), 2-6

Index-7

Index

E
ei (PALcode) instruction, (II-C), 5-8

as synchronization function, (II-C), 4-16
Embedded console, (III), 1-2
ENABLE_AUDIT environment variable (III)

2-28,3-37 ' ,
entArith

See Arithmetic trap entry
entIF

See Instruction fault entry
entInt

See Interrupt entry
entMM

See Memory management fault entry
ENTRY, CRB field for, (111),2-66
entSys

See System call entry
Environment variables, (III), 2-24

at power-up initialization, (111),3-4
at processor initialization, (III) 3-20
getting, (III), 2-57 '
resetting, (III), 2-58
routines described, (III), 2-56
saving, (III), 2-59
setting, (III), 2-61

EQV instruction, (I), 4-38
Error address register (EAR), performance

counters with, D-8
Error halt and recovery, (III), 3-30
Error messages

console, (III), 1-4
Errors, correctable, (II-C), 4-17
Errors, processor, (II-A), 6-24; (II-B), 5-8
Errors, system, (II-A), 6-24; (II-B),5-8
Errors, uncorrectable, (II-C), 4-17
EXCB (exception barrier) instruction (I)

4-121 ' ,
Exceptional events

actions, summarized, (II-A), 6-2
defined, (II-A), 6-1

Exception classes, (II-C), 4--1
registry of handling routines for, (II-C)

5-36 '
values for, (II-C), 5-37

Exception dispatch, (II-C), 4--1
Exception handlers, B-2

TRAPB instruction with, (I), 4--126
Exception handling routines, registery for,

(II-C), 5-36
ExceptionPC address, (II-C), 4--5
Exception register write mask, (II-B), 5-6

Index-8

Exceptions
See also Arithmetic traps; Faults;

Synchronous traps
actions, summarized, (II-A), 6-2
arithmetic, (II-C), 4--5
breakpoint, (II-C), 4-9
defined, aI-B), 5-1
general class common dispatch (II-C)

4--10 "
general class of, (II-C), 4-4
illegal instruction, (II-C), 4-7
initializing entry points, (II-C) 6-2
initiated before interrupts (II-A) 6-19
initiated by PALcode, (II-A), 6-33
introduced, (II-A), 6-10
invalid address, (II-C), 4--8
memory management class, (II-C), 4--3
processor state transitions, (II-A), 6-38
returning from, (II-C), 4--2, 5-24
software, (II-C), 4-8
stack frames for, (II-A), 6-9; (II-B), 5-4
subsetted IEEE, (II-C), 4--9
system service calls, (II-C), 4-4
trap frames with, (II-C), 4--3
unaligned access, (II-C), 4-7

Exception service routines
entry point, (II-A), 6-27
introduced, (II-A), 6-9

Except~on summary parameter, (II-A), 6-14
ExceptIon summary register, (II-B), 5-2, 5-6;

(II-C),4-6
format of, (II-B), 5-4

EXCEPTION_SUMMARY, (II-C), 4--6
Executive read enable (ERE), bit in PTE,

(II-A),3-4
Executive stack pointer (ESP) register (II-A)

5-10 ' ,
as internal processor register (II-A) 5-1
in HWPCB, (II-A), 4--2 ' ,
in initial HWPCB, (III), 3-21

Executive write enable (EWE), bit in PTE,
(II-A),3-4

EXTBL instruction, (I), 4-47
EXTLH instruction, (I), 4-47
EXTLL instruction, (I), 4-47
EXTQH instruction, (1),4-47
EXTQL instruction, (1),4-47
Extract instructions (list), (I), 4-47
EXTWH instruction, (I), 4-47
EXTWL instruction, (I), 4-47

F

Fault on execute (FOE), (II-A), 6-13; (II-B),
3-10

bit in PTE, (II-A), 3-5; (II-B),3-5
service routine entry point, (II-A), 6-29
software usage of, (II-A), 6-13

Fault on read (FOR), (II-A), 6-12; (II-B),
3-10

bit in PTE, (II-A), 3-6; (II-B),3-5
service routine entry point, (II-A), 6-29
software usage of, (II-A), 6-12

Fault on write (FOW), (II-A), 6-12; (II-B),
3-10

bit in PTE, (II-A), 3-6; (II-B), 3-5; (II-C),
3-5

service routine entry point, (II-A), 6-29
software usage of, (II-A), 6-12

Faults, (II-C), 4-3
access control violation, (II-A), 6-11
defined, (II-A), 6-10; aI-B),5-1
fault on execute, (II-A), 6-13; (II-B), 3-10
fault on read, (II-A), 6-12; (II-B),3-10
fault on write, (II-A), 6-12; (II-B), 3-10
floating-point disabled, (II-A), 6-11
memory management, (II-B), 3-10
MM flag, (II-A), 6-11
program counter (PC) value, (II-A), 6-10
REI instruction with, (II-A), 6-10
translation not valid, (II-A), 6-12

FBEQ instruction, (I), 4-88
FBGE instruction, (1),4-88
FBGT instruction, (I), 4-88
FBLE instruction, (I), 4-88
FBLT instruction, (I), 4-88
FBNE instruction, (I), 4-88
FCMOVEQ instruction, (1),4-95
FCMOVGE instruction, (1),4-95
FCMOVGT instruction, (1),4-95
FCMOVLE instruction, (1),4-95
FCMOVLT instruction, (I), 4-95
FCMOVNE instruction, (1),4-95
FEN

See Floating-point enable
FETCH (prefetch data) instruction, (I), 4-122

performance optimization, A-I0
FETCH_M (prefetch data, modify intent)

instruction, (I), 4-122
performance optimization, A-I0

Field replaceable unit (FRU)
offset, HWRPB field for, (III), 2-8
table, in HWRPB, (111),2-10
table description, (Ill), 2-24

Finite number, Alpha AXP, contrasted with
VAX, (I), 4-59

Index

Firmware components, (II-C), 1-2
Firmware restart address, (II-C), 2-6,6-4
FIXUP console routine, (111),2-62

procedure descriptor for, (III), 2-65
using, (III), 2-67
with PALcode switching, (111),3-8

Floating-point branch instructions, (I), 4-87
Floating-point control register (FPCR), (I),

4-67
accessing, (I), 4-70
at processor initialization, (I), 4-71
bit descriptions, (1),4-68
instructions to read/write, (I), 4-97
operate instructions that use, (I), 4-90
saving and restoring, (I), 4-71
trap disable bits in, (I), 4-67

Floating-point convert instructions, (I), 3-13
Fa field requirements, (I), 3-13

Floating-point disabled fault, (II-A), 6-11
service routine entry point, (II-A), 6-29

Floating-point division, performance impact
of, A-12

Floating-point enable (FEN) register
at processor initialization, (III), 3-20
defined, (II-B), 1-3
described, (II-A), 5-11
in HWPCB, (II-A), 4-2
in initial HWPCB, (111),3-21
in process context, (II-B), 4-1
privileged context, (II-A), 2-93
with PALcode switching, (111),3-9

Floating-point format, number representation
(encodings), (I), 4-59

Floating-point instructions
branch (list), (I), 4-87
faults, (I), 4-57
function field format, (I), 4-73
introduced, (I), 4-57
memory format (list), (I), 4-78
opcodes and format summarized, C-l
operate (list), (I), 4-90
rounding modes, (I), 4-60
terminology, (I), 4-58
trapping modes, (I), 4-62
traps, (I), 4-57

Floating-point load instructions, (I), 4-78
load F_floating, (I), 4-79
load G_floating, (I), 4-80
load S_floating, (1),4-81
load T_floating, (I), 4-82
with non-finite values, (1),4-78

Floating-point operate instructions, (I), 4-90
add (IEEE), (I), 4-99
add (VAX), (I), 4-98
compare (IEEE), (I), 4-101

Index-9

Index

Floating-point operate instructions (cont'd)
compare (VAX), (I), 4-100
conditional move, (I), 4-95
convert IEEE floating to integer, (I), 4-107
convert integer to IEEE floating, (I), 4-108
convert integer to integer, (I), 4-94
convert integer to VAX floating, (I), 4-104
convert S_floating to T_floating, (I), 4-109
convert T_floating to S_floating, (I), 4-110
convert VAX floating to integer, (1),4--103
convert VAX floating to VAX floating, (I),

4-105
copy sign, (I), 4-93
divide (IEEE), (I), 4-113
divide (VAX), (I), 4-111
format of, (I), 3-12
move from/to FPCR, (I), 4-97
multiply (IEEE), (I), 4-115
multiply (VAX), (I), 4-114
subtract (IEEE), (I), 4-118
subtract (VAX), (I), 4-116
unused function codes with, (I), 3-12

Floating-point registers, (1),3-2
See also Registers
with PALcode switching, (111),3-9

Floating-point rounding modes, (I), 4--60
Floating-point single-precision operations, (I),

4--57
Floating-point store instructions, (I), 4--78

store F_floating, (I), 4--83
store G_floating, (I), 4-84
store S_floating, (I), 4--85
store T_floating, (I), 4--86
with non-finite values, (I), 4-78

Floating-point support
floating-point control (FP_C) quadword,

B-4
FPCR (floating-point control register), (I),

4-67
IEEE, (1),2-7
IEEE standard 754-1985, (I), 4-76
instruction overview, (I), 4-57
longword integer, (I), 2-12
operate instructions, (1),4-90
optional, (I), 4-2
quadword integer, (I), 2-13
rounding modes, (I), 4-60
single-precision operations, (I), 4-57
trap modes, (1), 4-62
VAX, (1),2-3

Floating-point trapping modes, (I), 4-62
See also Arithmetic traps
imprecision from pipelining, (I), 4-63

Index-10

FLOAT_REGISTER_MASK, (II-C), 4--5
FNOP code form, A-13
FOE

See Fault on execute
FOR

See Fault on read
FOW

See Fault on write
FP

See Frame pointer
FPCR

See Floating-point control register
FP_C quadword, B-4
Frame pointer (FP) register, linkage for,

(II-B),l-l
FRU

See Field replaceable unit
F_floating data type, (I), 2-3

alignment of, (I), 2-4
compared to IEEE S_floating, (I), 2-8
MAXIMIN, (I), 4-60
operations, (I), 4-57
when data is unaligned, (II-A), 6-30

G
General class exceptions, (II-C), 4-4

common dispatch of, (II-C), 4-10
General exception address (GENERAL_

ENTRY) register, (II-C), 2-3
gentrap (PALcode) instruction, (II-B), 2-5;

(II-C),5-45
raises software exceptions, (II-C), 4-8
required recognition of, (I), 6-5

GENTRAP (PALcode) instruction, (II-A),
2-10

required recognition of, (I), 6-4
trap information, (II-A), 6-18

GETC terminal routine, (111),2-35
ISO Latin-l support and, (III), 1-5

GET_ENV variable routine, (111),2-57
GH

See Granularity hint
Global pointer (GP) register, linkage for,

(II-B),l-l
Global translation hint, (II-C), 3-5
Granularity hint (GH)

bits in PTE, (II-A), 3-5; (II-B),3-5;
(II-C),3-5

block in HWRPB, (111),2-13
fields in, (III), 2-13

G_floating data type, (I), 2-5
alignment of, (I), 2-5
mapping, (I), 2-5
MAXIMIN, (I), 4-60

G_floating data type (cont'd)
when data is unaligned, (II-A), 6-30

H
HAL (Hardware abstraction layer), (II-C),

1-2
halt (PALcode) instruction, (II-C), 5-9

See also reboot (PALcode) instruction
required, (I), 6-8
writes PAL_BASE register, (II-C), 2-4

HALT (PALcode) instruction
required, (I), 6-8
state transitions and, (III), 3-1

Halt PCBB register, per-CPU slot field for,
(111),2-19

Halt processor, per-CPU slot fields for, (III),
2-20

Halt requested, per-CPU state flag, (III), 2-22
at multiprocessor boot, (III), 3-23

Hardware abstraction layer
interfaces for, (II-C), 1-2

Hardware context, (II-B), 4-1
Hardware errors, when unrecoverable, (II-C),

4-10
Hardware interrupts, (II-C), 4-13

interprocessor, (II-A), 6-22
interval clock, (II-A), 6-22
powerfail, (II-A), 6-23
servicing, (II-B), 5-7

Hardware nonprivileged context, (II-A), 4-3
Hardware privileged context, (II-A), 4-2

switching, (II-A), 4-2
Hardware privileged context block (HWPCB)

at cold boot, (III), 3-21
at warm boot, (111),3-22
format, (II-A), 4-2
original built by HWRPB, (II-A), 4-5
PCBB register, (II-A), 5-17
process unique value in, (II-A), 2-81
specified by PCBB, (II-A), 4-2
swapping ownership, (II-A), 2-92
writing to, (II-A), 4-3

Hardware restart parameter block (HWRPB),
(111),2-1

fields for, (III), 2-6
interval clock interrupt, (II-A), 6-22
loading at cold boot, (111), 3-14
logout area, (II-A), 6-26
overview of, (111), 2-2
size field in, (III), 2-6
structure of, (III), 2-4
with cold boot, (III), 3-10

Index

HIGH_LEVEL, IRQL table index name,
(II-C),2-2

HWPCB
See Hardware privileged context block

HWRPB
See Hardware restart parameter block

I/O access, nonmapped, (II-C), 3-1
I/O device interrupts, (II-A), 6-22
I/O device registers, at power-up initializa

tion, (III), 3-5
I/O devices

closing generic for access, (III), 2-47
device-specific operations for, (III), 2-48
generic routines for, (III), 2-45
opening generic for access, (III), 2-50
reading from generic, (III), 2-52
required implementation support for, (III),

2-50
service routine entry points, (II-A), 6-32
writing to generic, (III), 2-54

I/O devices, DMA
MB and WMB with, (I), 5-20
reliably communicating with processor, (1),

5-24
shared memory locations with, (I), 5-10

I/O interface overview, (I), 8-1
I/O interrupts, (II-A), 6-23
I/O support, HAL interface for, (II-C), 1-3
IEEE, subsetted instruction exception, (II-C),

4-9
IEEE compliance, B-3

choosing degrees of, B-2
IEEE convert-to-integer trap mode,

instruction notation for, (1),4-63
IEEE floating-point

See also Floating-point instructions
exception handlers, B-2
floating-point control (FP_C) quadword,

B-4
format, (I), 2-7
FPCR (floating-point control register), (I),

4-67
function field format, (I), 4-74
hardware support, B-1
NaN, (I), 2-7
options, B-1
standard, mapping to, B-5
standard charts, B-12
S_floating, (1),2-7
trap handling, B-6
trap modes, (I), 4-63
T_floating, (I), 2-9

Index-11

Index

IEEE floating-point (cont'd)
X_floating, (I), 2-10

IEEE floating-point compliance, (1), 4-72
IEEE floating-point control word, B-4
IEEE floating-point instructions

add instructions, (I), 4-99
compare instructions, (I), 4-101
convert from integer instructions, (I),

4-108
convert S_floating to T_floating, (I), 4-109
convert to integer instructions, (1),4-107
convert T_floating to S_floating, (1),4-110
divide instructions, (I), 4-113
multiply instructions, (I), 4-115
opcodes for, C-6
operate instructions, (I), 4-90
subtract instructions, (I), 4-118

IEEE-FP bit, (III), 2-19
IEEE rounding modes, (I), 4-60
IEEE standard

conformance to, B-1
mapping to, B-5
supporlfor, (V,4-72

IEEE trap modes, required instruction
notation, (I), 4-63

IGN (ignore), (I), 1-9
IKSP register

See Kernel stack pointer, initial
Illegal instruction exceptions, (II-C), 4-7
Illegal instruction trap, (II-A), 6-18

service routine entry point, (II-A), 6-30
Illegal operand trap, service routine entry

point, (II-A), 6-30
Illegal PALcode operand trap, (II-A), 6-18
imb (PALcode) instruction, (II-C), 5-46

required, (I), 6-9
1MB (PALcode) instruction, (I), 5-21

required, (I), 6-9
virtual I-cache coherency, (I), 5-5

IMP (implementation dependent), (I), 1-9
INE bit

See also Arithmetic traps, inexact result
exception summary parameter, (II-A),

6-14
exception summary register, (II-B), 5-5;

(II-C),4-6
INED bit

See Trap disable bits, inexact result trap
Inexact result bit, exception summary

register, (II-C), 4-6
Inexact result enable (INEE)

FP_C quadword bit, B-5

Index-12

Inexact result status (INES)
FP_C quadword bit, B-4

Inexact result trap, (II-A), 6-16; (II-B), 5-5;
(II-C),4-6

Infinity, (I), 4-58, 4-59
conversion to integer, (I), 4-76

Initialization, PALcode environment, (II-C),
6-1

Initial kernel stack pointer (IKSP)
See also Kernel stack pointer, initial,

(II-C),2-9
initpal (PALcode) instruction, (II-C), 5-10

at initialization, (II-C), 6-2
interrupt stack access, (II-C), 2-7
reads PAL_BASE register, (II-C), 2-4
writes KGP register, (II-C), 2-4
writes PCR register, (II-C), 2-5
writes PDR register, (II-C), 2-5

INSBL instruction, (I), 4-51
Insert instructions (list), (I), 4-51
Insert into queue PALcode instructions

longword at head interlocked, (II-A), 2-31
longword at head interlocked resident,

(II-A), 2-33, 2-48
longword at tail interlocked, (II-A), 2-39
longword at tail interlocked resident,

(II-A), 2-42, 2-50
quadword at head interlocked, (II-A), 2-35
quadword at head interlocked resident,

(II-A), 2-37
quadword at tail interlocked, (II-A), 2-44
quadword at tail interlocked resident,

(II-A), 2-46
INSLH instruction, (I), 4-51
INSLL instruction, (I), 4-51
INSQHIL (PALcode) instruction, (II-A), 2-31
INSQHILR (PALcode) instruction, (II-A),

2-33
INSQH instruction, (I), 4-51
INSQHIQ (PALcode) instruction, (II-A), 2-35
INSQHIQR (PALcode) instruction, (II-A),

2-37
INSQL instruction, (I), 4-51
INSQTIL (PALcode) instruction, (II-A), 2-39
INSQTILR (PALcode) instruction, (II-A),

2-42
INSQTIQ (PALcode) instruction, (II-A), 2-44
INSQTIQR (PALcode) instruction, (II-A),

2-46
INSQUEL (PALcode) instruction, (II-A), 2-48
INSQUELID (PALcode) instruction, (II-A),

2-48
INSQUEQ (PALcode) instruction, (II-A), 2-50

INSQUEQ/D (PALcode) instruction, (II-A)
2-50 '

Instruction encodings
common architecture, C-2
numerical order, C-l1
opcodes and format summarized C-1

Instruction fault, system entry for,' (II-B), 5-4
Instruction fault entry (entIF) register, (II-B),

1-2, 5-4, 5-6
Instruction fetches (memory), (I), 5-11
Instruction formats

branch, (I), 3-10
conventions, (D, 3-9
floating-point convert, (I), 3-13
floating-point operate, (I), 3-12
illegal trap, (II-A), 6-18
memory, (I), 3-9
memory jump, (I), 3-10
operands, (I), 3-8
operand values, (I), 3-8
operate, (1),3-11
operators, (I), 3-6
overview, (I), 1-4
PALcode, (I), 3-13
registers, (I), 3-1

Instructions, overview, (I), 1-5
Instruction set

See also Floating-point instructions;
PALcode instructions

access type field, (I), 3-5
Boolean (list), (I), 4-37
branch (list), (I), 4-17
byte (list), (I), 4-43
conditional move (integer), (1),4-39
data type field, (I), 3-5
extract (list), (I), 4-43
~oating-pointsubsetting, (I), 4-2
Insert (list), (I), 4-43
~nteger arithmetic (list), (I), 4-23
Introduced, (I), 1-6
jump (list), (I), 4-17
load memory integer (list), (1),4-4
mask (list), (1),4-43
miscellaneous (list), (I), 4-119
name field, (I), 3-4
opcode qualifiers, (I), 4-3
operand notation, (I), 3-4
overview, (I), 4-1
shift, arithmetic, (I), 4-42
shift, logical, (I), 4-41
software emulation rules, (I), 4-2
store memory integer (list), (I), 4-4
VAX compatibility, (I), 4-128

Index

Instruction stream
See I-stream

Instruction stream translation buffer (ITB),
(111),2-13

INSWH instruction, (I), 4-51
INSWL instruction, (I), 4-51
Integer arithmetic instructions

See Arithmetic instructions
Integer division, A-12
Integer overflow bit, exception summary

register, (II-C), 4-6
Integer overflow trap, (II-A), 6-16; (II-B),

5-5; (II-C),4-6
Integer registers

See also Registers
defined, (I), 3-1
R31 restrictions, (I), 3-1
with PALcode switching, (III), 3-9

INTEGER_REGISTER_MASK, (II-C), 4-6
Internal processor registers (IPR)

address space number, (II-A), 5-4; (II-C),
2-3

AST enable, (II-A), 5-5
AST summary, (II-A), 5-7
CALL_PAL MFPR with, (II-A), 5-1
CALL_PAL MTPR with, (II-A), 5-1
data alignment trap fixup, (II-A), 5-9
defined, (II-A), 1-1
executive stack pointer, (II-A), 5-10
floating-point enable, (II-A), 5-11
~eneral exception address, (II-C), 2-3
Interprocessor interrupt request, (II-A)

5-12 '
~nterrupt exception address, (II-C), 2-4
Interrupt priority level, (II-A), 5-13
kernel global pointer, (II-C), 2-4
kernel mode with, (II-A), 5-1
kernel stack pointer (IKSP), initial (II-C)

2-4 ' ,
machine check error summary, (II-A),

5-14; (II-C), 2-4
memory management exception (II-C\

2-4 ' J,

MFPR instruction with, (II-A), 2-88
MTPR instruction with, (II-A), 2-89
page directory base, (II-C), 2-5
page table base, (II-A), 5-19
P~code image base address, (II-C), 2-4
panIC exception, (II-C), 2-5
performance monitoring (II-A) 5-16
privileged context block 'base, (iI-A), 5-17
process control region base, (II-C), 2-5
processor base, (II-A), 5-18
processor status, (II-C), 2-5

Index-13

Index

Internal processor registers (IPR) (cont'd)
restart execution address, (II-C), 2-5
returning state of, (II-C), 5-18
software interrupt request, (II-A), 5-21;

(II-C),2-5
software interrupt summary, (II-A), 5-22
stack pointer, (II-A), 5-1
summarized, (II-A), 5-2; (II-C),2-2
supervisor stack pointer, (II-A), 5-23
system control block base, (II-A), 5-20
system service exception address, (II-C),

2-5
thread environment block base, (II-C), 2-6
thread unique value, (II-C), 2-6
translation buffer check, (II-A), 5-24
translation buffer invalidate all, (II-A),

5-26
translation buffer invalidate all process,

(II-A), 5-27
translation buffer invalidate single, (II-A),

5-28
user stack pointer, (II-A), 5-29
virtual page base, (II-A), 5-30
Who-Am-I, (II-A), 5-31

Interprocessor console communications, (III),
2-71

Interprocessor interrupt, (II-A), 6-22
generating, (II-B), 2-27
protocol for, (II-A), 6-23
service routine entry point, (II-A), 6-32

Interprocessor interrupt request (IPIR)
register

described, (II-A), 5-12
protocol for, (II-A), 6-22

Interrupt acknowledge, (II-C), 4-15
Interrupt dispatch

example, (II-C), 4-13
table (IDT), (II-C), 4-13
vectors, (II-C), 4-13

Interrupt enable mask, (II-C), 4-12
Interrupt entry (entInt) register, (II-B), 1-2,

5-4,5-7
Interrupt entry (entINT) register, D-3, D-9
Interrupt exception address (INTERRUPT_

ENTRY) register, (II-C), 2-4
Interrupt handling

HAL interface for, (II-C), 1-3
Interrupt level table (ILT), (II-C), 4-12

index values/names for, (II-C), 2-2
Interrupt mask table (IMT), (II-C), 4-12
Interrupt pending (IP) field, in PS register,

(II-A),6-7
Interrupt priority level (IPL)

See also Interrupt priority level (IPL)
register

Index-14

Interrupt priority level (IPL) (cont'd)
at processor initialization, (III), 3-20
events associated with, (II-A), 6-20
field in PS register, (II-A), 6-7
hardware levels, (II-A), 6-8
kernel mode software with, (II-A), 6-20
operation of, (II-A), 6-19
PS with, (II-B), 5-2
recording pending software (SISR register),

(II-A),5-22
requesting software (SIRR register), (II-A),

5-21
service routine entry points, (II-A), 6-31
software interrupts, (II-A), 6-21
software levels, (II-A), 6-8
with PALcode switching, (111),3-9

Interrupt priority level (IPL) register
See also Interrupt priority level (IPL)
described, (II-A), 5-13
interrupt arbitration, (II-A), 6-37

Interrupt request levels (IRQL)
ILT table for, (II-C), 4-12
in PSR, (II-C), 2-1
PSR and di instruction, (II-C), 5-5
swapping, (II-C), 5-29
with machine checks, (II-C), 4-19

Interrupts, (II-C), 4-12
actions, summarized, (II-A), 6-2
disabling, (II-C), 5-5
enabling, (II-C), 5-8
hardware arbitration, (II-A), 6-36
I/O device, (II-A), 6-22
initiated by PALcode, (II-A), 6-33
initiation, (II-A), 6-20
inpuUoutput, aI-A),6-23
instruction completion, (II-A), 6-19
interprocessor, (II-A), 6-22
introduced, (II-A), 6-19
PALcode arbitration, (II-A), 6-36
passive release, (II-A), 6-22
powerfail, (II-A), 6-23
processor state transitions, (II-A), 6-38
processor status register and, (II-C), 2-1
program counter value, (II-A), 6-2
returning from, (II-C), 5-24
software, (II-A), 6-20
software requests for, (II-C), 4-16
sources for, (II-B), 5-2
stack frames for, (II-A), 6-9; (II-B), 5-4
system entry for, (II-B), 5-4

Interrupt service routines
entry point, (II-A), 6-27
in each process, (II-A), 6-20
introduced, (II-A), 6-19

Interrupt stack, (II-C), 2-7
TrPreviousKSP with, (II-C), 4-14

Interrupt stack pointer (ISP) register
initializing, (II-C), 5-11

Interrupt synchronization, (II-C), 4-16
Interrupt tables (IDT, ILT, IMT), (II-C), 2-6
Interrupt tables, at initialization, (II-C), 6-3
Interrupt trap frame, building, (II-C), 4-14
Interrupt vectors

mask table for, (II-C), 4-12
Interval clock interrupt, (II-A), 6-22

HWRPB field for, (111),2-7
service routine entry point, (II-A), 6-31

intr_flag register, (I), 3-3; (II-B), 1-3
cleared by RC instruction, (I), 4-129
cleared by retsys, (II-C), 5-23
cleared by rfe, (II-C), 5-25
set by RS instruction, (I), 4-129

Invalid address exceptions, (II-C), 4-8
Invalid operation enable (INVE)

FP_C quadword bit, B-5
Invalid operations bit, exception summary

register, (II-C), 4-7
Invalid operation status (INVS)

FP_C quadword bit, B-5
Invalid operations trap, (II-C), 4-7
Invalid operation trap, (II-A), 6-15; (II-B),

5-5
INV bit

See also Arithmetic traps, invalid operation
exception summary parameter, (II-A),

6-15
exception summary register, (II-B), 5-5;

(II-C),4-7
INVD bit

See Trap disable bits, invalid operation
IOCTL console device routine, (III), 2-48
II opcode qualifier, IEEE floating-point, (I),

4-63
IOV bit

See also Arithmetic traps, integer overflow
exception summary parameter, (II-A),

6-14
exception summary register, (II-B), 5-5;

(II-C),4-6
IPI_LEVEL, IRQL table index name, (II-C),

2-2
IPR

See Internal processor registers (IPR)
IPR_KSP (internal processor register kernel

stack pointer), (II-A), 5-1
IRQL

See Interrupt request levels; See also rdirql
and swpirql

Index

ISO Latin-1 support, (III), 1-5
PROCESS_KEYCODE and, (111),2-37

I-stream
coherency of, (I), 6-9
design considerations, A-2
modifying physical, (I), 5-5
modifying virtual, (I), 5-5
PALcode with, (1),6-2
with caches, (I), 5-5

ITB
See Instruction stream translation buffer

J
JMP instruction, (I), 4-21
JSR instruction, (I), 4-21
JSR_COROUTINE instruction, (1),4-21
Jump instructions, (1),4-17,4-21

See also Control instructions
branch prediction logic, (I), 4-22
coroutine linkage, (I), 4-22
return from subroutine, (I), 4-21
unconditional long jump, (I), 4-22

K
kbpt (PALcode) instruction, (II-C), 5-47
Kernel global pointer (KGP) register, (II-B),

1-3; (II-C), 2-4
at initialization, (II-C), 6-2
initializing, (II-C), 5-11

Kernel mode, protection code with, (II-B), 3-6
Kernel read enable (KRE)

bit in PTE, (II-A), 3-5; (II-B), 3-4
with access control violation (ACV) fault,

(II-A),3-13
Kernel stack, (II-C), 2-7

under/overflow detection, (II-C), 5-49
Kernel stack, PALcode access to, (II-A), 6-33
Kernel stack, when corrupted, (II-C), 4-11
Kernel stack pointer (IKSP), initial, (II-C),

2-4
initializing, (II-C), 5-11
returning contents of, (II-C), 5-14
swapping to current, (II-C), 5-30
with context switch, (II-C), 2-8, 2-9, 5-28
with trap frames, (II-C), 4-3

Kernel stack pointer (KSP) register
at processor initialization, (III), 3-20
defined, (II-B), 1-3
in HWPCB, (II-A), 4-2
in initial HWPCB, (111),3-21
in process context, (II-B), 4-1
with PALcode switching, (111),3-9

Index-15

Index

Kernel write enable (KWE)
bit in PTE, (II-A), 3-4; (II-B), 3-4

KERNEL_BREAKPOINT breakpoint type,
(II-C),4-9

Keycode, translating, (III), 2-37
KGP

See Kernel global pointer
Kseg

format of, (II-B), 3-2
mapping of, (II-B), 3-1
physical space with, (II-B), 3-3

KSP
See Kernel stack pointer

L
LANGUAGE environment variable, (III),

2-28
Languages, supported by console, (III), 2-28
LDAH instruction, (I), 4-5
LDA instruction, (I), 4-5
LDF instruction, (I), 4-79

when data is unaligned, (II-A), 6-30
LDG instruction, (I), 4-80

when data is unaligned, (II-A), 6-30
LDL instruction, (I), 4-6

when data is unaligned, (II-A), 6-30
LDL_L instruction, (I), 4-8

restrictions, (I), 4-9
when data is unaligned, (II-A), 6-30
with processor lock register/flag, (I), 4-9
with STx_C instruction, (I), 4-8

LDQ instruction, (I), 4-6
when data is unaligned, (II-A), 6-30

LDQP (PALcode) instruction, (II-A), 2-87
LD~L instruction, (I), 4-8

restrictions, (I), 4-9
when data is unaligned, (II-A), 6-30
with processor lock register/flag, (I), 4-9
with STx_C instruction, (I), 4-9

LD~U instruction, (I), 4-7
LDS instruction, (I), 4-81

when data is unaligned, (II-A), 6-30
with FPCR, (I), 4-72

LDT instruction, (I), 4-82
when data is unaligned, (II-A), 6-30

LICENSE environment variable, (111),2-28
Literals, operand notation, (I), 3-4
Load instructions

See also Floating-point load instructions
emulation of, (I), 4-2
FETCH instruction, (1),4-122
load address, (I), 4-5
load address high, (I), 4-5
load quadword, (I), 4-6

Index-16

Load instructions (cont'd)
load quadword locked, (I), 4-9
load sign-extended longword, a), 4-6
load sign-extended longword locked, (1),

4-8
load unaligned quadword, (I), 4-7
multiprocessor environment, (1), 5-5
serialization, (I), 4-124
when data is unaligned, (II-A), 6-30

Load literal, A-14
. Load memory instructions, with trap shadow,

(1),4-65
Load memory integer instructions (list), (1),

4-4
Location, (I), 5-10
Location access order

after defined, (I), 5-15
before defined, (I), 5-15
defined, (I), 5-13
with access size, (1),5-15
with processor issue order, (I), 5-15

Location access size, (I), 5-13
Locked_physical_address register, (I), 3-2
Lock flag, per-processor

defined, (I), 3-2
when cleared, (I), 4-9
with load locked instructions, (I), 4-9
with store conditional instructions, (I),

4-11
Lock registers, per-processor

defined, (I), 3-2
with load locked instructions, (I), 4-9
with store conditional instructions, (I),

4-11
lock_flag register, (II-B), 1-3

cleared by retsys, (II-C), 5-23
cleared by rfe, (II-C), 5-25

Lock_flag register, (I), 3-2
See also Lock flag, per-processor; Lock

registers
Logical instructions

See Boolean instructions
Logout area, (II-A), 6-26

length, per-CPU slot field for, (III), 2-19
physical address, per-CPU slot field for,

(111),2-19
Longword data type, (1),2-2

alignment of, (I), 2-12
atomic access of, (1),5-2
integer floating-point format, (1),2-12

LSB (least significant bit), defined for
floating-point, (I), 4-59

M
Machine check error handling, (II-C), 4-18
Machine check error summary (MCES)

register, (II-C), 2-4
at processor initialization, (III), 3-20
defined, (II-B), 1-3
described, (II-A), 5-14
format of, (II-C), 4-18
reading, (II-B), 2-11
returning contents of, (II-C), 5-15
structure of, (II-B), 5-7
using, (II-A), 6-26
with PALcode switching, (111),3-9
writing, (II-B), 2-29
writing values to, (II-C), 5-38

Machine checks, (II-A), 6-24
actions, summarized, (II-A), 6-2
catastrophic conditions with, (II-C), 4-19
classes of, (II-C), 4-17
disabling during debug, (II-C), 4-18
initiated by PALcode, (II-A), 6-33
interrupt entry for, (II-B), 5-7
logout area, (II-A), 6-26
masking, (II-A), 6-25
no disabling of, (II-A), 6-25
one per error, (II-A), 6-25
processor correctable, (II-A), 6-24
program counter (PC) value, (II-A), 6-25
REI instruction with, (II-A), 6-25
retry flag, (II-A), 6-25
service routine entry points, (II-A), 6-31,

6-32
sources for, (II-C), 4-17
stack frames for, (II-A), 6-9
system correctable, (II-A), 6-24
type codes, (II-C), 4-19
unrecoverable reported, (II-C), 4-18

Magtape bootstrap image
ANSI format, (111),3-39
boot blocked, (III), 3-41

Major modes, (111),3-3
Major states, (III), 3-1
Major state transitions, (111),3-2

console rules for, (III), 3-3
MAP_F function, (I), 2-4
MAP_S function, (I), 2-8
Masking, machine checks with, (II-A), 6-25
Mask instructions (list), (I), 4-53
MAX, defined for floating-point, (I), 4-60
maxCPU, (II-B), 1-2
Maximum ASN value, HWRPB field for, (III),

2-6

Index

MB instruction, (I), 4-124
See also 1MB, WMB
multiprocessors only, (I), 4-124
using, (I), 5-21
with DMA I/O, (I), 5-20
with LDx_USTx_C, (I), 4-12
with multiprocessor D-stream, (I), 5-20
with shared data structures, (I), 5-8

MBZ (must be zero), (I), 1-9
MCES

See Machine check error summary
MCK bit, machine check error summary

register, (II-A), 5-14; (II-C), 4-18
MEMC

See Memory cluster descriptor
MEMDSC

See Memory data descriptor table
Memory, unrecoverable errors with, (II-A),

6-24
Memory access

aligned byte/word, A-11
coherency of, (I), 5-1
granularity of, (I), 5-2
width of, (I), 5-3
with WMB instruction, (I), 4-127

Memory access sequence, (I), 5-13
Memory alignment, requirement for, (1),5-2
Memory barrier instructions

See MB instruction; 1MB (PALcode)
instruction; WMB instruction, (I),
4-124

Memory barriers, (I), 5-20
Memory cluster descriptor (MEMC) table

structure of, (III), 3-13
Memory clusters, (III), 3-10
Memory data descriptor (MEMDSC) table

at warm boot, (III), 3-22
in HWRPB, (III), 2-10
offset, HWRPB field for, (III), 2-8
structure of, (III), 3-12
with cold boot, (III), 3-10

Memory format instructions
opcodes and format summarized, C-1

Memory instruction format, (I), 3-9
with function code, (I), 3-10

Memory jump instruction format, (I), 3-10
Memory-like behavior, (I), 5-3
Memory management, (II-C), 3-1

See also Address translation; Pages;
Processor modes; Virtual address
space

address translation, (II-A), 3-8
always enabled, (II-A), 3-3
control of, (II-B), 3-3

Index-17

Index

Memory management (cont'd)
faults, (II-A), 3-12, 6-11; (II-B),3-10
introduced, (II-A), 3-1
page frame number (PFN), (II-A), 3-6
page table entry (PTE), (II-A), 3-3
protection code, (II-A), 3-7
protection of individual pages, (II-A), 3-7
PTE modified by software, (II-A), 3-6
support in PALcode, (1),6-2
translation buffer with, (II-A), 3-11
unrecoverable error, (II-A), 6-24
with interrupts, (II-A), 6-20
with multiprocessors, (II-A), 3-6
with process context, (II-A), 4-1

Memory management exception (MEM_
MGMT_ENTRY) register, (II-C), 2-4

Memory management fault entry (entMM)
register, (II-B), 1-2, 5-4, 5-8

Memory management faults
registers used, (II-A), 6-11
system entry for, (II-B), 5-4
types, (II-B), 3-10
with unaligned data, (II-A), 6-17

Memory prefetch registers, A-I0
defined, (I), 3-3

Memory protection, (II-B), 3-6
Memory sizing at cold boot, (III), 3-10
MFPR IPR name (PALcode) instruction,

(ii-A) ,-2-88
MF FPCR instruction, (1),4-97
MIN, defined for floating-point, (I), 4-60
MIP bit, machine check error summary

register, (II-B), 5-8
Miscellaneous instructions (list), (I), 4-119
MMCSR, (II-B), 5-8
MMCSR code, (II-B), 3-10
MOP-based network bootstrapping, (111),3-43
1M opcode qualifier, IEEE floating-point, (I),

4-61
Move, register-to-register, A-14
Move instructions (conditional)

See Conditional move instructions
MSKBL instruction, (I), 4-53
MSKLH instruction, (I), 4-53
MSKLL instruction, (1),4-53
MSKQL instruction, (I), 4-53
MSKWH instruction, (I), 4-53
MSKWL instruction, (I), 4-53
MTPR IPR name (PALcode) instruction,

(II-A) ,-2-89
MT FPCR instruction, (I), 4-97

sYnchronization requirement, (I), 4-70
MULF instruction, (1),4-114

Index-18

MULG instruction, (I), 4-114
MULL instruction, (I), 4-30

with MULQ, (1),4-30
MULQ instruction, (1),4-31

with MULL, (1),4-30
with UMULH, (I), 4-31

MULS instruction, (1),4-115
MULT instruction, (1),4-115
Multiple instruction issue, A-2
Multiply instructions

See also Floating-point operate
multiply longword, (I), 4-30
multiply quadword, (I), 4-31
multiply unsigned quadward high, (1),4-32

Multiprocessor bootstrapping, (III), 3-23
primary processor, (III), 3-23

Multiprocessor environment
See also Data sharing
booting, (III), 3-23
cache coherency in, (I), 5-5
console requirements, (III), 2-25
context switching, (I), 5-22
interprocessor interrupt, (II-A), 6-22
interrupts with, (I), 5-24
I-stream reliability, (I), 5-21
MB and WMB with, (I), 5-21
memory faults, (II-A), 6-12
memory management in, (II-A), 3-6
move operations in, (II-A), 2-76
no implied barriers, (I), 5-20
read/write ordering, (I), 5-9
serialization requirements in, (I), 4-124
shared data, (1),5-5, A-7

Multithread implementation, (II-A), 2-81

N
NaN (Not-a-Number)

conversion to integer, (I), 4-76
copying, generating, propagating, (I), 4-77
defined, (I), 2-7
quiet, (I), 4-59
signaling, (I), 4-59

NATURALLY ALIGNED data objects, (I), 1-9
Negate stylized code form, A-14
Network bootstrapping, (III), 3-43
New PALcode, (111),3-5
Next PC, (II-A), 6-2

defined for arithmetic traps, (II-A), 6-15
Non-finite number, (I), 4-59
Nonmapped address space, (II-C), 3-1
Nonmemory-like behavior, (1),5-3
Nap, universal (UNOP), A-13

NOT instruction, ORNOT with zero, (I), 4-38
NOT stylized code form, A-15

o
Opcode qualifiers

See also specific qualifiers
default values, (I), 4-3
notation (list), (I), 4-3

Opcodes
common architecture, C-2
DEC OSF/1 PALcode, C-17
IEEE floating-point, C-6
in numerical order, C-11
notation used in summary, C-1
OpenVMS AXP PALcode, C-15
PALcode in numerical order, C-20
reserved, C-23
summary, C-9
unused function codes for, C-23
VAX floating-point, C-8
Windows NT AXP PALcode, C-18

opDec, (II-B), 1-5
OPEN device routine, (III), 2-50

determines WRITE characteristics, (III),
2-55

OpenVMS AXP PALcode, instruction
summary, C-15

OpenVMS AXP PALcode instructions (list),
(II-A),2-2

Operand expressions, (I), 3-4
Operand notation

defined, (I), 3-3
Operand values, (I), 3-4
Operate instruction format, (I), 3-11

floating-point, (I), 3-12
floating-point convert, (I), 3-13
unused function codes with, (I), 3-11

Operate instructions
opcodes and format summarized, C-1

Operate instructions, convert with integer
overflow, (I), 4-67

Operator halted (OH) flag, (III), 3-36
at multiprocessor boot, (III), 3-23
per-CPU state contains, (III), 2-23

Operators, instruction format, (I), 3-6
Optimization

See Performance optimizations
ORNOT instruction, (1),4-38
OS Loader, (II-C), 1-2
Overflow bit, exception summary register,

(II-C),4-6
Overflow enable (OVFE)

FP_C quadword bit, B-5

Index

Overflow status (OVFS)
FP_C quadword bit, B-5

Overflow trap, (II-A), 6-16; (II-B), 5-5;
(II-C),4-6

OVF bit
See also Arithmetic traps, overflow
exception summary parameter, (II-A),

6-14
exception summary register, (II-B), 5-5;

(II-C),4-6
OVFD bit

See Trap disable bits, overflow disable

p

Page directory base (PDR) register, (II-C),
2-5

initializing, (II-C), 5-11
maps PTEs, (II-C), 3-3
with context switch, (II-C), 5-32

Page directory entry (PDE), (II-C), 3-3
Page frame number (PFN)

bits in PTE, (II-A), 3-4; (II-B), 3-4;
(II-C),3-5

determining validation, (II-A), 3-6
finding for SCB, (II-A), 5-20
in PTE, (II-C), 3-2
PTBR register, (II-A), 5-19
when a PDR, (II-C), 3-3
with address translation, (II-A), 3-8
with context switch, (II-C), 2-9, 5-28
with hardware context switching, (II-A),

4-3
with physical address translation, (II-B),

3-7
Pages

collecting statistics on, (II-A), 6-12
individual protection of, (II-A), 3-7
max address size from, (II-A), 3-3
possible sizes for, (II-A), 3-2
size range of, (II-B), 3-1
virtual address space from, (II-A), 3-2

PAGES, CRB field for, (III), 2-65
pageSize, (II-B), 1-2
Page size, HWRPB field for, (III), 2-6
Page sizes, (II-B), 3-2
Page table base (PTBR) register, (II-A), 5-19

at processor initialization, (III), 3-20
defined, (II-B), 1-4
in HWPCB, (II-A), 4-2
in initial HWPCB, (III), 3-21
in process context, (II-B), 4-1
privileged context, (II-A), 2-92
with address translation, (II-A), 3-8
with PALcode switching, (III), 3-9

Index-19

Index

Page table base (PTBR) register (cont'd)
with physical address translation, (II-B),

3-7
Page table entry (PTE), (II-A), 3-3

after software changes, (II-A), 3-11
atomic modification of, (II-A), 3-6
bits, summarized, (II-B), 3-4
calculating at cold boot, (111),3-17
changing and managing, (II-B), 3-5
format of, (II-B), 3-3
modified by software, (II-A), 3-6
page frame number (PFN) with, (II-C), 3-2
page protection, (II-A), 3-7
physical access of, (II-A), 3-8; (II-B), 3-7
summary of, (II-C), 3-5
virtual access of, (II-A), 3-10; (II-B), 3-8
with multiprocessors, (II-A), 3-6

Page tables
calculating base, (III), 3-17
initial mapping at cold boot, (III), 3-17
physical traversal algorithm, (II-C), 3-4
traversing, (II-C), 3-3

Page table space
loading at cold boot, (III), 3-14

PALcode
See also Queues, support for
access to kernel stack, (II-A), 6-33
argument registers used, (II-C), 5-1
barriers with, (I), 5-20
CALL_PAL instruction, (1),4-120
compared to hardware instructions, (I), 6-1
current defined, (III), 3-5
debugging, (II-C), 5-49
event counters during debug, (II-C), 5-50
identifying the image, (III), 3-6
illegal operand trap, (II-A), 6-18
implementation-specific, (I), 6-3
initialization of, (III), 3-5
initializing environment for, (II-C), 6-1
initial processor context for, (II-C), 6-2
instead of microcode, (I), 6-1
instruction format, (I), 3-13
internal software registers, (II-C), 5-12
kernel activates, (II-C), 1-2
loading, (III), 3-5
loading at multiprocessor boot, (III), 3-23
memory management requirements, (II-A),

3-3
new defined, (III), 3-5
OpenVMS AXP, defined for, (II-A), 2-1
OSF/1 support for, (II-B), 5-9
OS Loader and, (II-C), 1-2
overview, (I), 6-1
processor state transitions, (II-A), 6-38
queue data type support, (II-A), 2-21

Index-20

PALcode (cont'd)
recognized instructions, (I), 6-4
replacing, (I), 6-3
required function support, (I), 6-3
required instructions, (I), 6-5
running environment, (1),6-2
special functions, (I), 6-3
swapping currently executing, (II-C), 5-31
switching, (II-B), 2-20; (III), 3-5
switching at multiprocessor boot, (III),

3-24
unexpected exceptions in, (II-C), 4-11
variants at loading, (III), 3-5
variants at multiprocessor boot, (III), 3-24
variants at processor initialization, (III),

3-20
version control, (II-C), 2-7

PALcode available, per-CPU slot field for,
(111),2-21

PALcode image base address (PAL_BASE)
register, (II-C), 2-4

from initpal, (II-C), 5-11
previous, (II-C), 6-4
structure of, (II-C), 6-4

PALcode instructions
DEC OSF/1 privileged (list), (II-B), 2-8
DEC OSF/1 unprivileged (list), (II-B), 2-1
opcodes and format summarized, C-1
opcodes in numerical order, C-20
OpenVMS AXP (list), (II-A), 2-2
OpenVMS AXP privileged (list), (II-A),

2-84
OpenVMS AXP unprivileged (list), (II-A),

2-3
required, opcodes for, C-23
reserved, opcodes for, C-23
VAX compatibility, (II-A), 2-76
Windows NT AXP privileged (list), (II-C),

5-2
Windows NT AXP unprivileged (list),

(II-C),5-40
PALcode instructions, DEC OSF/1 privileged

cache flush, (II-B), 2-9
console service, (II-B), 2-10
performance monitoring function, (II-B),

2-30
read machine check error summary, (II-B),

2-11
read processor status, (II-B), 2-12
read system value, (II-B), 2-14
read user stack pointer, (II-B), 2-13
return from system call, (II-B), 2-15
return from trap, fault, or interrupt, (II-B),

2-16
swap IPL, (II-B), 2-19

PALcode instructions, DEC OSF/1 privileged
(cont'd)

swap PALcode image, (II-B), 2-20
swap process context, (II-B), 2-17
TB (translation buffer) invalidate, (II-B),

2-22
who am I, (II-B), 2-23
write floating-point enable, (II-B), 2-26
write interprocessor interrupt request,

(II-B), 2-27
write kernel global pointer, (II-B), 2-28
write machine check error summary,

(II-B),2-29
write system entry address, (II-B), 2-24
write system value, (II-B), 2-32
write user stack pointer, (II-B), 2-31
write virtual page table pointer, (II-B),

2-33
PALcode instructions, DEC OSF/1

unprivileged
breakpoint, (II-B), 2-2
bugcheck, (II-B), 2-3
generate trap, (II-B), 2-5
read unique value, (II-B), 2-6
system call, (II-B), 2-4
write unique value, (II-B), 2-7

PALcode instructions, OpenVMS AXP
privileged

See also individual instructions
cache flush, (II-A), 2-85
console service, (II-A), 2-86
load quadword physical, (II-A), 2-87
move from processor register, (II-A), 2-88
move to processor register, (II-A), 2-89
store quadword physical, (II-A), 2-90
swap PALcode image, (II-A), 2-94
swap privileged context, (II-A), 2-91

PALcode instructions, OpenVMS AXP
unprivileged

See also individual instructions
breakpoint, (II-A), 2-4
bugcheck, aI-A), 2-5
change to executive mode, (II-A), 2-6
change to kernel mode, (II-A), 2-7
change to supervisor mode, (II-A), 2-8
change to user mode, (II-A), 2-9
generate software trap, (II-A), 2-10
insert into queue (list), (II-A), 2-30
probe for read access, (II-A), 2-11
probe for write access, (II-A), 2-11
read processor status, (II-A), 2-13
read system cycle counter, (II-A), 2-17
read unique context, (II-A), 2-82
return from exception or interrupt, (II-A),

2-14

Index

PALcode instructions, OpenVMS AXP
unprivileged (cont'd)

swap AST enable, (II-A), 2-19
thread, (II-A), 2-81
write PS software field, (II-A), 2-20
write unique context, (II-A), 2-83

PALcode instructions, required privileged, (I),
6-6

PALcode instructions, required unprivileged,
(1),6-9

PALcode instructions, Windows NT AXP
privileged

clear software interrupt request, (II-C),
5-4

data TB invalidate single, (II-C), 5-7
disable all interrupts, (II-C), 5-5
drain all aborts, (II-C), 5-6
enable interrupts, (II-C), 5-8
halt operating system, (II-C), 5-9
initialize PALcode data structures, (II-C),

5-10
read current IRQL, (II-C), 5-13
read initial kernel stack pointer, (II-C),

5-14
read internal processor state, (II-C), 5-18
read machine check error summary

register, (II-C), 5-15
read processor (PSR) status register,

(II-C), 5-17
read processor control region base address,

(II-C), 5-16
read software event counters, (II-C), 5-12
read thread value, (II-C), 5-19
restart operating system, (II-C), 5-21
return from exception or interrupt, (II-C),

5-24
return from system service call exception,

(II-C), 5-22
set software interrupt request, (II-C), 5-26
swap current IRQL, (II-C), 5-29
swap current PALcode, (II-C), 5-31
swap initial kernel stack pointer, (II-C),

5-30
swap process context, (II-C), 5-32
swap thread context, (II-C), 5-27
transfer to console firmware, (II-C), 5-20
translation buffer invalidate all, (II-C),

5-33
translation buffer invalidate single, (II-C),

5-34
translation buffer invalidate single for

ASN, (II-C), 5-35
write kernel exception entry routine,

(II-C), 5-36

Index-21

Index

PALcode instructions, Windows NT AXP
privileged (cont'd)

write machine check error summary
register, (II-C), 5-38

write performance monitor, (II-C), 5-39
PALcode instructions, Windows NT AXP

unprivileged
breakpoint trap, (II-C), 5-41
call kernel debugger, (II-C), 5-42
generate a trap, (II-C), 5-45
instruction memory barrier, (II-C), 5-46
kernel breakpoint trap, (II-C), 5-47
read TEB pointer, (II-C), 5-48
system service call, (II-C), 5-43

PALcode loaded (PL) flag, (III), 3-5
at multiprocessor boot, (III), 3-23
per-CPU state contains, (III), 2-22

PALcode loading at bootstrap, (III), 3-14
PALcode memory space

length of, (III), 2-17
physical address of, (III), 2-17
with PALcode loading, (111),3-5

PALcode memory valid (PMV) flag
at multiprocessor boot, (III), 3-23
per-CPU state contains, (III), 2-22
with PALcode loading, (111),3-5

PALcode revision, per-CPU slot field for, (III),
2-18

with PALcode switching, (111),3-7
PALcode scratch space

length of, (III), 2-17
physical address of, (III), 2-17
with PALcode loading, (111),3-5

PALcode scratch value
in initial HWPCB, (III), 3-21

PALcode swapping, (II-A), 2-94
PALcode valid (PV) flag

at multiprocessor boot, (III), 3-23
per-CPU state contains, (III), 2-22
with PALcode loading, (111),3-5

Panic exception (PANIC_ENTRY) register,
(II-C),2-5

Panic exceptions, (II-C), 4-10
kernel stack under/overflow, (II-C), 5-49
trap from and dispatch for, (II-C), 4-11

Panic stack, (II-C), 2-8
Panic stack pointer, (II-C), 2-6
PANIC_STACK_SWITCH code, (II-C), 4-11
Passive release interrupts, (II-A), 6-22

entry point, (II-A), 6-32
PASSIVE_LEVEL, IRQL table index name,

(II-C),2-2
PC

See Program counter

Index-22

PCO field, ICCSR register, D-5, D-7
PC1 field, ICCSR register, D-5, D-7
PCB

See Process control block
PCBB

See Process control block base
PCC

See Processor cycle counter
PCC_CNT, (I), 3-2, 4-125
PCC_OFF, (I), 3-2, 4-125
PCE bit, machine check error summary

register, (II-A), 5-14; (II-B), 5-8;
(II-C),4-18

PC halted, per-CPU slot fields for, (III), 2-20
PCMUXO field, ICCSR register, D-5, D-7
PCMUX1 field, ICCSR register, D-5, D-6
Per-CPU slots

block for, (III), 2-10
fields for, (III), 2-16
in HWRPB, (III), 2-14
number, HWRPB field for, (III), 2-7
size, HWRPB field for, (111),2-7
state flags at multiprocessor boot, (III),

3-23
state flags in, (III), 2-22
with PALcode switching, (111),3-8

Performance counters, controlling, D-2
Performance monitor (PME) register

privileged context, (II-A), 2-93 .
Performance monitoring enable (PME) bIt

defined, (II-B), 1-4
in HWPCB, (II-A), 4-2
in process context, (II-B), 4-1

Performance monitoring register (PERF
MON), (II-A), 5-16

using, D-2, D-8
writing, (II-B), 2-30 .

Performance monitor interrupt entry pOInt,
(II-A),6-32

Performance monitor interrupt mechanism,
D-3, D-9

Performance optimizations
branch prediction, A-3
code sequences, A-11
data stream, A-6
for frequently executed code, A-1
for I-streams, A-2
instruction alignment, A-2
instruction scheduling, A-5
I-stream density, A-5
multiple instruction issue, A-2
shared data, A-7

PFN
See Page frame number

Physical address size, HWRPB field for, (III),
2-6

Physical address space, (II-A), 3-3; (II-B),
3-3; (II-C),3-2

described, (I), 5-1
Physical address translation, (II-A), 3-9,

3-11; aI-B), 3-7; (II-C),3-2
Pipelined implementations, using EXCB

instruction with, (I), 4-121
PME

See Performance monitoring enable
PMI bus, uncorrected protocol errors, (II-A),

6-24
Powerfail, CFLUSH PALcode instruction

with, (II-A), 6-23
Powerfail and recovery

multiprocessor type of, (III), 3-29
split type of, (III), 3-30
uniprocessor type of, (III), 3-28
united type of, (III), 3-30

Powerfail interrupt, (II-A), 6-23
service routine entry point, (II-A), 6-32

Powerfail restart (PR) flag
powerfail and recovery, (III), 3-30

Power-up initialization, (III), 3-4
Prefetch data (FETCH instruction), (I), 4-122
Prefetch data registers, A-I0
Pre-PALcode initialization, (II-C), 6-1
previous_PAL_BASE register, (II-C), 6-5
Primary bootstrap image

format of, (III), 3-36
loading at cold, (III), 3-14

Primary-eligible (PE) bit, (111),2-19
at multiprocessor boot, (III), 3-23
with BB_WATCH, (III), 3-45
with console switching, (III), 3-32

Primary processor
at multiprocessor boot, (III), 3-23
definition of, (III), 1-1
modes for, (III), 3-4
running at multiprocessor boot, (III), 3-25
switching from, (III), 3-32

Privileged Architecture Library
See PALcode

Privileged context, (II-A), 2-92
Privileged context block base (PCBB) register,

(II-A), 5-17
at processor initialization, (III), 3-20
with PALcode switching, (111),3-9

Privileges, processor, (II-C), 2-2
PROBER (PALcode) instruction, (II-A), 2-11
PROBEW (PALcode) instruction, (II-A), 2-11

Index

Process, (II-A), 4-1
context switching the, (II-A), 4-4

Process context, (II-B), 4-1
saved in PCB, (II-B), 4-1

Process control block (PCB), (II-B), 4-1
structure, (II-B), 4-2

Process control block base (PCBB) register,
(II-B),1-3

Process control region base (PCR) register,
(II-C),2-5

Processor
adding to running system, (III), 3-27
states and modes, (III), 3-1

Processor, per-CPU slot field for
halt, (III), 2-20
revision, (III), 2-19
serial number, (III), 2-19
software compatibility, (III), 2-21
type, (III), 2-18
variation, (III), 2-19

Processor available (PA) flag
at multiprocessor boot, (III), 3-23
per-CPU state contains, (III), 2-23

Processor base (PRBR) register, (II-A), 5-18
Processor control block (PRCB)

at initialization, (II-C), 6-2
Processor control region, (II-C), 2-6

interrupt tables with, (II-C), 2-6
Processor control region base (PCR) register

at initialization, (II-C), 6-2
initializing, (II-C), 5-11
returning contents of, (II-C), 5-16

Processor correctable errors, (II-C), 4-17
reporting, (II-C), 4-18

Processor cycle counter (PCC) register, (I),
3-2

See also Charged process cycles
for DEC OSF/l, (II-B), 1-3
for OpenVMS AXP, (II-A), 1-1
in initial HWPCB, (III), 3-21
RPCC instruction with, (I), 4-125
system cycle counter with, (II-A), 2-17

Processor data areas, (II-C), 2-6
Processor hardware interrupt, service routine

entry points, (II-A), 6-31
Processor initialization, (III), 3-20
Processor issue order

access size effect on, (I), 5-14
causal ordering, (I), 5-12
defined, (I), 5-11
with location access order, (I), 5-15

Processor issue sequence, (I), 5-11
Processor modes, (II-C), 2-1; (III), 3-4

AST pending state, (II-A), 5-7
change to executive, (II-A), 2-6

Index-23

Index

Processor modes (cont'd)
change to kernel, (II-A), 2-7
change to supervisor, (II-A), 2-8
change to user, (II-A), 2-9
controlling memory access, (II-A), 3-7
enabling executive mode reads, (II-A), 3-4
enabling executive mode writes, (II-A), 3-4
enabling kernel mode reads, (II-A), 3-5
enabling supervisor mode reads, (II-A),

3-4
enabling supervisor mode writes, (II-A) ,

3-4
enabling user mode reads, (II-A), 3-4
enabling user mode writes, (II-A), 3-4
page access with, (II-A), 3-1
PALcode state transitions, (II-A), 6-38

Processor number, reading, (II-A), 5-31
Processor present (PP) flag

at multiprocessor boot, (III), 3-23
per-CPU state contains, (III), 2-23

Processors, switching primary, (III), 2-63
Processor state, defined, (II-A), 6-6
Processor state, internal, initialized, (II-C),

6-1
Processor state transitions, (II-A), 6-38
Processor status (PS) register

at processor initialization, (III), 3-20
bit meanings for, (II-B), 5-2
bit summary, (II-A), 6-7
bootstrap values in, (II-A), 6-7
current, (II-A), 6-6
defined, (II-A), 1-1; (II-B), 1-4
explicit reading of, (II-A), 6-6
in process context, (II-B), 4-1
in processor state, (II-A), 6-6
saved on stack, (II-A), 6-6
saved on stack frame, (II-A), 6-9
with PALcode switching, (III), 3-9
WR_PS_SW instruction, (II-A), 2-20

Processor status (PSR) register, (II-C), 2-1,
2-5

returning contents of, (II-C), 5-17
Processor uncorrectable errors, (II-C), 4-17
Processor unique value (unique) register

in initial HWPCB, (III), 3-21
with PALcode switching, (111),3-9

Process unique value (unique) register, (II-B),
1-4

in process context, (II-B), 4-1
PROCESS_KEYCODE console terminal

routine, (III), 2-37
Program counter (PC) register, (I), 3-1

alignment, (II-A), 6-7
current PC defined, (II-A), 6-2
defined, aI-B), 1-3

Index-24

Program counter (PC) register (cont'd)
explicit reading of, (II-A), 6-7
in process context, (II-B), 4-1
in processor state, (II-A), 6-6
next PC defined, (II-A), 6-15
saved on stack frame, (II-A), 6-9
with arithmetic traps, (II-A), 6-15; (II-B),

5-1
with EXCB instruction, (1),4-121
with faults, (II-A), 6-10
with interrupts, (II-A), 6-2
with machine checks, (II-A), 6-25
with PALcode switching, (111),3-9
with synchronous traps, (II-A), 6-16

Program I/O mode, (III), 3-3
Protection code, (II-A), 3-7; (II-B), 3-6
Protection modes, (II-A), 6-8
PS

See Processor status
Pseudo-ops, A-15
PSR

See Processor status register
PSWITCH console routine, (111),2-63,3-32
PS_<SP_ALIGN<XS> field, (II-A), 2-13
PTBR

See Page table base
PTE

See Page table entry
PUTS console terminal routine, (III), 2-39

Q
Quadword data type, (1),2-2

alignment of, (I), 2-3, 2-13
atomic access of, (I), 5-2
integer floating-point format, (I), 2-13
loading in physical memory, (II-A), 2-87
storing to physical memory, (II-A), 2-90
T_floating with, (I), 2-13

Queues, support for
absolute longword, (II-A), 2-21
absolute quadword, (II-A), 2-25
PALcode instructions (list), (II-A), 2-30
self-relative longword, (II-A), 2-21
self-relative quadword, (II-A), 2-26

R
R31

restrictions, (I), 3-1
with arithmetic traps, (II-A), 6-13

RAZ (read as zero), (I), 1-9
RC (read and clear) instruction, (I), 4-129

rdcounters (PALcode) instruction, (II-C), 5-12
rdirql (PALcode) instruction, (II-C), 5-13
rdksp (PALcode) instruction, (II-C), 5-14

reads IKSP register, (II-C), 2-4
reads kernel stack, (II-C), 2-8

rdmces (PALcode) instruction, (II-B), 2-11;
(II-C), 5-15

rdpcr (PALcode) instruction, (II-C), 5-16
reads peR register, (II-C), 2-5

rdps (PALcode) instruction, (II-B), 2-12
rdpsr (PALcode) instruction, (II-C), 5-17
rdstate (PALcode) instruction, (II-C), 5-18
rdteb (PALcode) instruction, (II-C), 5-48

reads TEB register, (II-C), 2-6
rdthread (PALcode) instruction, (II-C), 5-19

reads THREAD register, (II-C), 2-6
rdunique (PALcode) instruction, (II-B), 2-6

required recognition of, (I), 6-5
RDUNIQUE (PALcode) instruction

required recognition of, (I), 6-4
rdusp (PALcode) instruction, (II-B), 2-13
rdval (PALcode) instruction, (II-B), 2-14
RD_PS (PALcode) instruction, (II-A), 2-13
READ device routine, (III), 2-52
Read/write, sequential, A-9
Read/write ordering (multiprocessor), (I), 5-9

determining requirements, (I), 5-10
hardware implications for, (I), 5-25
memory location defined, (I), 5-10

READ_UNQ (PALcode) instruction, (II-A),
2-82

Reason-for-halt code
at power-up initialization, (III), 3-4

reboot (PALcode) instruction, (II-C), 5-20
operation of, (II-C), 6--3
tasks and sequence for, (II-C), 6-5

Regions, bootstrap address space, (III), 3-14
Regions in physical address space, (I), 5-1
Register mask, floating-point and integer,

(II-C),4-5
Registers, (1),3-1

See also specific registers
DEC OSF/1 usage, (II-B), 1-1
floating-point, (I), 3-2
integer, (I), 3-1
lock, (I), 3-2
memory prefetch, (I), 3-3
OpenVMS AXP specific usage, (II-A), 1-1
optional, (I), 3-3
processor cycle counter, (I), 3-2
program counter (PC), (I), 3-1
value when unused, (1),3-9
VAX compatibility, (I), 3-3
Windows NT AXP usage, (II-C), 1-3
with IPRs, (II-A), 5-1

Index

Register-to-register move, A-14
Register write mask, with arithmetic traps,

(II-A), 6-15
REI (PALcode) instruction, (II-A), 2-14

arithmetic traps, (II-A), 6-10
faults, (II-A), 6-10
interrupt arbitration, (II-A), 6--37
interrupts, (II-A), 6-2
machine checks, (II-A), 6-25
synchronous traps, (II-A),6-16

Remove from queue PALcode instructions
longword, (II-A), 2-72
longword at head interlocked, (II-A), 2-52
longword at head interlocked resident,

(II-A), 2-55
longword at tail interlocked, (II-A), 2-62
longword at tail interlocked resident,

(II-A), 2-65
quadword, (II-A), 2-74
quadword at head interlocked, (II-A), 2-57
quadword at head interlocked resident,

(II-A),2-60
quadword at tail interlocked, (II-A), 2-67
quadword at tail interlocked resident,

(II-A), 2-70
REMQHIL (PALcode) instruction, (II-A),

2-52
REMQHILR (PALcode) instruction, (II-A),

2-55
REMQHIQ (PALcode) instruction, (II-A),

2-57
REMQHIQR (PALcode) instruction, (II-A),

2-60
REMQTIL (PALcode) instruction, (II-A), 2-62
REMQTILR (PALcode) instruction, (II-A),

2-65
REMQTIQ (PALcode) instruction, (II-A), 2-67
REMQTIQR (PALcode) instruction, (II-A),

2-70
REMQUEL (PALcode) instruction, (II-A),

2-72
REMQUELID (PALcode) instruction, (II-A),

2-72
REMQUEQ (PALcode) instruction, (II-A),

2-74
REMQUEQID (PALcode) instruction, (II-A),

2-74
Representative result, (I), 4-59
Reserved instructions, opcodes for, C-23
Reserved operand, (I), 4-59
RESET_ENV variable routine, (111),2-58
RESET_TERM console terminal routine, (III),

2-41

Index-25

Index

restart (PALcode) instruction, (II-C), 5-21
tasks and sequence for, (II-C), 6-5

Restart block
with catastrophic errors, (II-C), 4-19

Restart block pointer, (II-C), 2-6, 6-3
Restart-capable (RC) flag

at multiprocessor boot, (III), 3-23
at power-up initialization, (111),3-4
at processor initialization, (III), 3-20
per-CPU state contains, (III), 2-23
state transitions and, (III), 3-1
with failed bootstrap, (III), 3-18

Restart execution address (RESTART_
ADDRESS) register, (II-C), 2-5

at PALcode exit, (II-C), 5-1
RESTART RTN VA, HWRPB field for, (III),

2-8
RESTART value, HWRPB field for, (111),2-9
RESTORE TERM console routine, (111),3-36
RESTORE=TERM VA, HWRPB field for, (III),

2-8
RESTORE_TERM value, HWRPB field for,

(111),2-8
Result latency, A-5
RET instruction, (I), 4-21
retsys (PALcode) instruction, (II-B), 2-15;

(II-C), 5-22
PS with, (II-B), 5-2
use of, (II-C), 4-2

Revision, HWRPB field for, (III), 2-6
rfe (PALcode) instruction, (II-C), 5-24

compared to retsys, (II-C), 5-22
interrupt stack access, (II-C), 2-7
use of, (II-C), 4-2

ROM boot block structure, (111),3-42
ROM bootstrapping, (111),3-42
Rounding modes

See Floating-point rounding modes
RPCC (read processor cycle counter)

instruction, (I), 4-125
RSCC instruction with, (II-A), 2-18

RS (read and set) instruction, (I), 4-129
RSCC (PALcode) instruction, (II-A), 2-17

RPCC instruction with, (II-A), 2-18
rti (PALcode) instruction, (II-B), 2-16

PS with, (II-B), 5-2
with exceptions, (II-B), 5-1

RX BUFFER, field in RXTX buffer area, (III),
2-72

RXLEN, field in RXTX buffer area, (III), 2-72
RXRDY bitmask, HWRPB field for, (111),2-9
RXRDY flag, (111),2-71

at multiprocessor boot, (III), 3-23

Index-26

RXTX buffer area, (111),2-72
per-CPU slot field for, (III), 2-21

s
S4ADDL instruction, (1),4-25
S4ADDQ instruction, (1),4-27
S4SUBL instruction, (1),4-34
S4SUBQ instruction, (I), 4-36
S8ADDL instruction, (1),4-25
S8ADDQ instruction, (1),4-27
S8SUBL instruction, (I), 4-34
S8SUBQ instruction, (I), 4-36
SAVE ENV variable routine, (111),2-59
SAVE-TERM console routine, (III), 3-35
SAVE=TERM RTN VA, HWRPB field for,

(111),2-8
SAVE_TERM value, HWRPB field for, (III),

2-8
SBZ (should be zero), (I), 1-9
SCC

See System cycle counter
SCE bit, machine check error summary

register, (II-A), 5-14; (II-B), 5-8;
(II-C), 4-18

Secondary processors
at multiprocessor boot, (III), 3-23
definition of, (III), 1-1
modes for, (III), 3-4

Security holes, (I), 1-7
with UNPREDICTABLE results, (I), 1-8

SegO, mapping of, (II-B), 3-1
Segl, mapping of, (II-B), 3-1
Segment number fields, (II-A), 3-2
Self-relative longword queue, (II-A), 2-21
Self-relative quadword queue, (II-A), 2-26
Sequential read/write, A-9
Serialization, MB instruction with, (I), 4-124
SET ENV variable routine, (111),2-61
SET=TERM_CTL console terminal routine,

(111),2-42
SET TERM INT console terminal routine,

-(III), 2-=43
Shared data (multiprocessor), A-7

changed vs. updated datum, (1),5-6
Shared data structures

atomic update, (I), 5-7
ordering considerations, (I), 5-8
using memory barrier (MB) instruction, (I),

5-8
Shared memory

accessing, (I), 5-10
access sequence, (I), 5-11
defined, (I), 5-10
issue sequence, (I), 5-11

Shift arithmetic instructions, (I), 4-42
Shift logical instructions, (I), 4-41
Single-precision floating-point, (I), 4-57
SLL instruction, (I), 4-41
Software (SW) field, in PS register, (II-A),

6-7
Software completion bit, exception summary

register, (II-A), 6-14; (II-B), 5-6;
(II-C),4-7

Software considerations, A-1
See also Performance optimizations

Software exceptions, (II-C), 4-8
Software interrupt request (SIRR) register,

(II-C),2-5
See also Software interrupts
clearing, (II-C), 5-4
described, (II-A), 5-21
format for, (II-C), 4-16
interrupt arbitration, (II-A), 6-37
protocol for, (II-A), 6-21
with interrupts, (II-A), 6-21

Software interrupts, (II-A), 6-20; (II-C),
4-13

asynchronous system traps (AST), (II-A),
6-21

protocol between summary and request,
(II-A), 6-21

recording pending state of, (II-A), 5-22
request (SIRR) register, (II-A), 6-21
requesting, (II-A), 5-21; (II-C), 4-16
requests after exception handling, (II-C),

5-22, 5-24
service routine entry points, (II-A), 6-31
setting, (II-C), 5-26
summary (SISR) register, (II-A), 6-20
supported levels of, (II-A), 5-21

Software interrupt summary (SISR) register
at processor initialization, (III), 3-20
described, (II-A), 5-22
protocol for, (II-A), 6-21
with interrupts, (II-A), 6-20

Software traps, generating, (II-A), 2-10
/S opcode qualifier

IEEE floating-point, (I), 4-63
VAX floating-point, (I), 4-62

SP
See Stack pointer

SRA instruction, (I), 4-42
SRL instruction, (I), 4-41
ssir (PALcode) instruction, (II-C), 5-26

sets software interrupts, (II-C), 4-16
Stack alignment, (II-A), 6-33

Index

Stack alignment (SP_ALIGN), field in saved
PS, (II-A), 6-7

Stack frames, (II-A), 6-8; (II-B),5-3
Stack pointer (SP) register

defined, (II-A), 1-1; (II-B), 1-4
linkage for, (II-B), 1-1

Stack pointer internal processor registers,
(II-A),5-1

State flags, per-CPU slot field for, (111),2-17
STATUS_ALPHA_ARITHMETIC code, (II-C),

4-5
STATUS_ALPHA_GENTRAP code, (II-C),

4-9
STATUS_BREAKPOINT code, (II-C), 4-9
STATUS_DATATYPE_MISALIGNMENT

code, (II-C), 4-7
STATUS_ILLEGAL_INSTRUCTION code,

(II-C),4-8
STATUS_INVALID_ADDRESS code, (II-C),

4-8
STF instruction, (I), 4-83

when data is unaligned, (II-A), 6-30
STG instruction, (I), 4-84

when data is unaligned, (II-A), 6-30
STL instruction, (I), 4-14

when data is unaligned, (II-A), 6-30
STL_C instruction, (I), 4-11

when data is unaligned, (II-A), 6-30
when guaranteed ordering with LDL_L, (I),

4-12
with LDx_L instruction, (I), 4-11
with processor lock register/flag, (I), 4-11

Storage, defined, (I), 5-15
Store instructions

See also Floating-point store instructions
emulation of, (I), 4-2
FETCH instruction, (I), 4-122
multiprocessor environment, (I), 5-5
serialization, (I), 4-124
store longword, (I), 4-14
store longword conditional, (I), 4-11
store quadword, (1), 4-14
store quadword conditional, (I), 4-11
store unaligned quadword, (I), 4-15
when data is unaligned, (II-A), 6-30

Store memory instructions, with trap shadow
W,4-65 '

Store memory integer instructions (list), (I)
4-4 '

STQ instruction, (I), 4-14
when data is unaligned, (II-A), 6-30

STQP (PALcode) instruction, (II-A), 2-90
STQ_C instruction, (I), 4-11

when data is unaligned, (II-A), 6-30

Index-27

Index

ST~C instruction (cont'd)
when guaranteed ordering with LDQ_L,

(1),4-12
with LDx_L instruction, (I), 4-11
with processor lock register/flag, (1),4-11

ST~U instruction, (1),4-15
STS instruction, (I), 4-85

when data is unaligned, (II-A), 6-30
with FPCR, (I), 4-72

STT instruction, (I), 4-86
when data is unaligned, (II-A), 6-30

SUBF instruction, (I), 4-116
SUBG instruction, (I), 4-116
SUBL instruction, (I), 4-33
SUBQ instruction, (1),4-35
SUBS instruction, (I), 4-118
SUBT instruction, (I), 4-118
Subtract instructions

See also Floating-point operate
subtract longword, (I), 4-33
subtract quadword, (I), 4-35
subtract scaled longword, (I), 4-34
subtract scaled quadword, (I), 4-36

SUM bit
See Summary bit

Summary bit, in FPCR, (1),4-68
Superpage address space, (II-C), 3-1

disabled by debug PALcode, (II-C), 5-49
Supervisor read enable (SRE), bit in PTE,

(II-A),3-4
Supervisor stack pointer (SSP) register,

(II-A),5-23
as internal processor register, (II-A), 5-1
in HWPCB, (II-A), 4-2
in initial HWPCB, (III), 3-21

Supervisor write enable (SWE), bit in PTE,
(II-A),3-4

SWASTEN (PALcode) instruction, (II-A),
2-19

interrupt arbitration, (II-A), 6-38
with ASTEN register, (II-A), 5-6

SWC bit
exception summary parameter, (II-A),

6-15
exception summary register, (II-B), 5-2,

5-6; (II-C),4-7
swpctx (PALcode) instruction, (II-B), 2-17;

(II-C), 5-27
PCB with, (II-B), 4-2
PDR register with, (II-C), 2-5
with ASNs, (II-B), 3-9
writes IKSP register, (II-C), 2-4
writes TEB register, (II-C), 2-6
writes THREAD register, (II-C), 2-6

Index-28

SWPCTX (PALcode) instruction, (II-A), 2-91
with ASTSR register, (II-A), 5-8

swpipl (PALcode) instruction, (II-B), 2-19
PS with, (II-B), 5-2

swpirql (PALcode) instruction, (II-C), 5-29
as synchronization function, (II-C), 4-16

swpksp (PALcode) instruction, (II-C), 5-30
reads kernel stack, (II-C), 2-8
writes IKSP register, (II-C), 2-4

swppal (PALcode) instruction, (II-B), 2-20;
(II-C), 5-31, 6-6

firmware contributes, (II-C), 1-2
required recognition of, (I), 6-5

SWPPAL (PALcode) instruction, (II-A), 2-94
required recognition of, (I), 6-5
with PALcode switching, (111),3-7

swpprocess (PALcode) instruction, (II-C),
5-32

writes PDR register, (II-C), 2-5
Synchronization levels, interrupt, (II-C), 4-13
Synchronous traps, (II-B), 5-2

data alignment, (II-A), 6-16
defined, UI-A),6-10
program counter (PC) value, (II-A), 6-16
REI instruction with, (II-A), 6-16

System, HWRPB field for
revision code, (111),2-7, 2-11
serial number, (III), 2-11
type, aID, 2-6, 2-12
variation, (III), 2-6, 2-12

System call entry (entSys) register, (II-B),
1-3, 5-4, 5-9

System control block (SCB)
arithmetic trap entry points, (II-A), 6-29
fault entry points, (II-A), 6-28
finding PFN, (II-A), 5-20
performance monitor with, D-3, D-9
saved on stack frame, (II-A), 6-9
structure of, (II-A), 6-27
with memory management faults, (II-A),

3-13
System control block base (SCBB) register,

(II-A),5-20
specifies PFN, (II-A), 6-27

System correctable errors, (II-C),4-17
reporting, (II-C), 4-18

System crash, requesting, (III), 3-31
System cycle counter (SCC) register

at processor initialization, (III), 3-20
reading, (II-A), 2-17

System entry addresses, (II-B), 5-4
System initialization, (III), 3-4
System restarts, (III), 3-27

error halt and recovery, (III), 3-30
forcing console I/O mode, (III), 3-36

System restarts (cont'd)
powerfail and recovery (multiprocessor),

(111),3-29
powerfail and recovery (split), (III), 3-30
powerfail and recovery (uniprocessor), (III),

3-28
powerfail and recovery (united), (III), 3-30
primary switching, (III), 3-32
requesting a crash, (III), 3-31
RESTORE_TERM routine, (111),3-36
restoring terminal state, (III), 3-34
SAVE_TERM routine, (111),3-35
saving terminal state, (III), 3-34

System service call exceptions, (II-C), 4-4
returning from, (II-C), 5-22

System service exception address (SYSCALL_
ENTRY) register, (II-C), 2-5

System uncorrectable errors, (II-C), 4-17
System value (sysvalue) register, (II-B), 1-4

with PALcode switching, (111),3-9
System variation field (HWRPB)

bit summary, (III), 2-12
Sysvalue

See System value
S_floating data type

alignment of, (I), 2-9
compared to F_floating, (I), 2-8
exceptions, (I), 2-8
format, (I), 2-8
mapping, (1),2-8
MAXIMIN, (I), 4-60
NaN with T_floating convert, (I), 4-76
operations, (1),4-57
when data is unaligned, (II-A), 6-30

T
Tape

See Magtape
TB

See Translation buffer
TBB

See Translation buffer hint block
TB hint offset, HWRPB field for, (111),2-7
tbi (PALcode) instruction, (II-B), 2-22

with TBs, (II-B), 3-9
tbia (PALcode) instruction, (II-C), 3-6, 5-33
tbis (PALcode) instruction, (II-C), 3-6, 5-34
tbisasn (PALcode) instruction, (II-C), 3-6,

5-35
Temporary PALcode registers, (II-C), 5-1
Terminals

setting controls for, (III), 2-42
setting interrupts for, (III), 2-43

Index

TESTED_PAGES, memory cluster field, (III),
3-13

Thread environment block base (TEB)
register, (II-C), 2-6

initializing, (II-C), 5-11
returning contents of, (II-C), 5-48
with context switch, (II-C), 2-8, 5-28

Thread unique value (THREAD) register,
(II-C),2-6

initializing, (II-C), 5-11
returning contents of, (II-C), 5-19
with context switch, (II-C), 2-8, 5-28

Timeliness of location access, (I), 5-16
Timer support, HAL interface fpr, (II-C), 1-3
Timing considerations, atomic sequences,

A-17
Translation

physical, (II-B), 3-7
virtual, (II-B), 3-8

Translation buffer (TB), (II-B), 3-8
address space number with, (II-A), 3-11
at context switch, (II-C), 2-9
fault on execute, (II-A), 6-13
fault on read, (II-A), 6-12
fault on write, (II-A), 6-12
granularity hint in PTE, (II-A), 3-5
invalidate all, (II-C), 5-33
invalidate single, (II-C), 5-34
invalidate single data, (II-C), 5-7
management of, (II-C), 3-5
recursion in, (II-C), 3-6
with invalid PTEs, (II-A), 3-11

Translation buffer check (TBCHK) register
described, (II-A), 5-24
with translation buffer, (II-A), 3-11

Translation buffer hint block (TBB), (III),
2-9, 2-13

Translation buffer invalidate all (TBIA)
register

described, (II-A), 5-26
with translation buffer, (II-A), 3-11

Translation buffer invalidate all process
(TBIAP) register

described, (II-A), 5-27
with translation buffer, (II-A), 3-11

Translation buffer invalidate single (TBIS)
register, (II-A), 5-28

Translation not valid fault, (II-A), 6-12;
(II-B), 3-10; (II-C), 4-3

service routine entry point, (II-A), 6-29
TRAPB (trap barrier) instruction, A-I5

described, (I), 4-126
with FPCR, (1),4-72
with trap shadow, (I), 4-65

Index-29

Index

Trap disable bits, (I), 4-67
division by zero, (I), 4-69
DZED with DZE arithmetic trap, (I), 4-66
DZED with INV arithmetic trap, (1),4-66
IEEE compliance and, B-3
inexact result, (1),4-68
invalid operation, (I), 4-69
overflow disable, (I), 4-69
underflow, (I), 4-68
underflow to zero, (I), 4-68
when unimplemented, (I), 4-67

Trap enable bits, B-4
Trap frames and offsets, (II-C), 4-3
Trap handler, with non-finite arithmetic

operands, (1),4-64
Trap handling, IEEE floating-point, B-6
Trap modes

floating-point, (I), 4-62
IEEE, (1),4-63
IEEE convert-to-integer, (I), 4-63
VAX, (I), 4-62
VAX convert-to-integer, (I), 4-63

Traps
See Arithmetic traps

Trap shadow, (II-B), 5-2
defined, (I), 4-63
defined for floating-point, (I), 4-59
programming implications for, (I), 5-26
trap handler requirement for, (I), 4-65

TRAP_CAUSE_UNKNOWN code, (II-C),
4-11

TrFir trap frame offset
from ExceptionPC address, (II-C), 4-5

Trigger instruction, (II-B), 5-2
TrPreviousKSP, with interrupt stack, (II-C),

4-14
True result, (I), 4-59
True zero, (I), 4-59
TTY_DEV environment variable, (111),2-28

with CTB, (111),2-69
TX BUFFER, field in RXTX buffer area, (III),

2-73
TXLEN, field in RXTX buffer area, (111),2-72
TXRDY bitmask, HWRPB field for, (111),2-9
TXRDY flag, (111),2-71

at multiprocessor boot, (III), 3-23
T_floating data type

alignment of, (I), 2-10
exceptions, (I), 2-10
format, (I), 2-9
MAXIMIN, (I), 4-60
NaN with S_floating convert, (I), 4-76
when data is unaligned, (II-A), 6-30

Index-30

u
UMULH instruction, (I), 4-32

with MULQ, (1),4-31
Unaligned access exceptions, (II-C) 4-7
Unaligned access fault '

system entry for, (II-B), 5-4
UNALIGNED data objects, (I), 1-9
Unaligned fault entry (entUna) register,

(II-B), 1-3, 5-9
Unconditional long jump, (I), 4-22
UNDEFINED operations, (I), 1-7
Underflow bit, exception summary register,

(II-C),4-6
Underflow enable (UNFE)

FP_C quadword bit, B-5
Underflow status (UNFS)

FP_C quadword bit, B-5
Underflow trap, (II-A), 6-16; (II-B), 5-5;

(II-C),4-6
UNDZ bit

See Trap disable bits, underflow to zero
UNF bit

See also arithmetic traps, underflow
exception summary parameter, (II-A),

6-14
exception summary register, (II-B), 5-5;

(II-C),4-6
UNFD bit

See Trap disable bits, underflow
Unique

See Processor unique value; see also
Process unique value

Unique, processor unique value, (III), 3-9
Unique, pro~ess unique value, (II-B), 1-4
UNOP code form, A-13
UNORDERED memory references, (1),5-9
UNPREDICTABLE results, (I), 1-7
/U opcode qualifier

IEEE floating-point, (I), 4-63
VAX floating-point, (I), 4-62

User mode, protection code with, (II-B), 3-6
User read enable (URE)

bit in PTE, (II-A), 3-4; (II-B),3-4
User stack, (II-C), 2-8
User stack pointer (USP) register, (II-A),

5-29
defined, (II-B), 1-4
in HWPCB, (II-A), 4-2
in initial HWPCB, (III), 3-21
in process context, (II-B), 4-1
internal processor register, (II-A), 5-1

User write enable (UWE)
bit in PTE, (II-A), 3-4; (II-B),3-4

USER_BREAKPOINT breakpoint type,
(II-C),4-9

USP
See User stack pointer

v
Valid (V)

bit in PTE, (II-A), 3-6; (II-B), 3-5; (II-C),
3-5

Validation, HWRPB field for, (III), 2-6
vaSize, (II-B), 1-2
VAX compatibility instructions, restrictions

for, (I), 4-128
VAX compatibility register, (I), 3-3
VAX convert-to-integer trap mode, (I), 4-63
VAX floating-point

See also Floating-point instructions
D_floating, (I), 2-6
F_floating, (1),2-3
G_floating, (I), 2-5
trap modes, (I), 4-63

VAX floating-point instructions
add instructions, (1),4-98
compare instructions, (I), 4-100
convert from integer instructions, (I),

4-104
convert to integer instructions, (I), 4-103
convert VAX floating format instructions,

(1),4-105
divide instructions, (I), 4-111
function field format, (1),4-75
multiply instructions, (I), 4-114
opcodes for, C-8
operate instructions, (1),4-90
subtract instructions, (I), 4-116

VAX-FP bit, (III), 2-19
VAX rounding modes, (1),4-60
VAX trap modes, required instruction

notation, (I), 4-63
Virtual addresses

format of, (II-C), 3-2
non-canonical at fault, (II-C), 4-8
physical view of, (II-C), 3-3
virtual view of, (II-C), 3-3

Virtual address format, (II-A), 3-2
segment number fields, (II-A), 3-2

Virtual address space, (II-A), 3-2; (II-B),
3-1; (II-C), 3-1

minimum and maximum, (II-A), 3-2
page size with, (II-A), 3-1

Virtual address translation, (II-A), 3-10;
aI-B), 3-8; aI-C), 3-3

Index

Virtual cache blocks
invalidating all, (II-C), 5-33
invalidating single, (II-C), 5-34

Virtual D-cache, (I), 5-4
maintaining coherency of, (I), 5-4

Virtual format, (II-B), 3-2
Virtual I-cache, (I), 5-4

maintaining coherency of, (I), 5-5
Virtual machine monitor (VMM), bit in PS

register, (II-A), 6-7
Virtual memory regions, initial, (III), 3-16
Virtual page table base (VPTB)

HWRPB field for, (111),2-7
with PALcode switching, (III), 3-8

Virtual page table base (VPTB) register,
(II-A), 5-30

Virtual page table pointer (VPTPTR), (II-B),
1-4

with address translation, (II-B), 3-8
N opcode qualifier

IEEE floating-point, (I), 4-63
VAX floating-point, (I), 4-63

VPTB
See Virtual page table base

VPTPTR
See Virtual page table pointer

w
Waivers, D-1
Warm bootstrapping, (III), 3-22
Watchpoints

with fault on read, (II-A), 6-12
with fault on write, (II-A), 6-12

whami (PALcode) instruction, (II-B), 2-23
whami, current processor number, (II-B), 1-4
Who-Am-I (WHAMI) register, (II-A), 5-31

at processor initialization, (III), 3-20
with PALcode switching, (III), 3-9

Windows NT AXP PALcode, instruction
summary, C-18

WMB instruction, (I), 4-127
causal ordering, (I), 5-9
causal ordering from, (I), 5-12
with shared data structures, (I), 5-9

Word data type, (I), 2-2
wrent (PALcode) instruction, (II-B), 2-24
wrentry (PALcode) instruction, (II-C), 5-36

at initialization, (II-C), 6-2
writes GENERAL_ENTRY register, (II-C),

2-3
writes INTERRUPT_ENTRY register,

(II-C),2-4
writes MEM_MGMT_ENTRY register,

(II-C),2-4

Index-31

Index

wrentry (PALcode) instruction (cont'd)
writes PANIC_ENTRY register, (II-C), 2-5
writes SYSCALL_ENTRY register, (II-C),

2-5
wrfen (PALcode) instruction, (II-B), 2-26
wripir (PALcode) instruction, (II-B), 2-27
Write-back caches, requirements for, (I), 5-4
Write buffers, requirements for, (I), 5-4
WRITE device routine, (111),2-54

characteristics determined by OPEN, (III),
2-55

WRITE_UNQ (PALcode) instruction, (II-A),
2-83

wrkgp (PALcode) instruction, (II-B), 2-28
wrmces (PALcode) instruction, (II-B), 2-29;

(II-C),5-38
wrperfmon (PALcode) instruction, (II-B),

2-30; UI-C),5-39
using, D-2, D-8

wrunique (PALcode) instruction, (II-B), 2-7
required recognition of, (I), 6-5

Index-32

WRUNIQUE (PALcode) instruction
required recognition of, (I), 6-5

wrusp (PALcode) instruction, (II-B), 2-31
wrval (PALcode) instruction, (II-B), 2-32
wrvptptr (PALcode) instruction, (II-B), 2-33
WR_PS_SW (PALcode) instruction, (II-A),

2-20

x
XOR instruction, (I), 4-38
X_floating data type, (I), 2-10

alignment of, (I), 2-11
big-endian format, (I), 2-11
format, (I), 2-11
MAXIMIN, (1),4-60

z
ZAP instruction, (I), 4-56
ZAPNOT instruction, (1),4-56
Zero byte instructions (list), (I), 4-56

	Contents
	Foreword
	A Note on the Structure of This Book
	Preface to the First Edition
	Preface to the Second Edition
	Part I: Common Architecture
	Contents
	Chapter 1 Introduction
	Chapter 2 Basic Architecture
	Chapter 3 Instruction Formats
	Chapter 4 Instruction Descriptions
	Chapter 5 System Architecture and Programming Implications
	Chapter 6 Common PALcode Architecture
	Chapter 7 Console Subsystem Overview
	Chapter 8 Input/Output Overview

	Part II: Specific Operating System PALcode Architecture
	Section II-A: OpenVMS AXP Software
	Contents
	Chapter 1 Introduction to OpenVMS AXP
	Chapter 2 OpenVMS AXP PALcode Instruction Descriptions
	Chapter 3 OpenVMS AXP Memory Management
	Chapter 4 OpenVMS AXP Process Structure
	Chapter 5 OpenVMS AXP Internal Processor Registers
	Chapter 6 OpenVMS AXP Exceptions, Interrupts, and Machine Checks

	Section II-B: DEC OSF/1 Software
	Contents
	Chapter 1 Introduction to DEC OSF/1
	Chapter 2 DEC OSF/1 PALcode Instruction Descriptions
	Chapter 3 DEC OSF/1 Memory Management
	Chapter 4 DEC OSF/1 Process Structure
	Chapter 5 DEC OSF/1 Exceptions and Interrupts

	Section II-C: Windows NT AXP Software
	Contents
	Chapter 1 Introduction to Windows NT AXP Software
	Chapter 2 Processor, Process, and Thread Structures and Registers
	Chapter 3 Memory Management
	Chapter 4 Exceptions, Interrupts, and Machine Checks
	Chapter 5 Windows NT AXP PALcode Instruction Descriptions
	Chapter 6 Initialization and Firmware Transitions

	Part III: Console Interface Architecture
	Contents
	Chapter 1 Console Subsystem Overview
	Chapter 2 Console Interface to Operating System Software
	Chapter 3 System Bootstrapping

	Appendixes
	Contents
	Appendix A Software Considerations
	Appendix B IEEE Floating-Point Conformance
	Appendix C Instruction Summary
	Appendix D Waivers and Implementation-Dependent Functionality

	Index

